NIST Special Database 10

Supplemental Fingerprint Card Data
for NIST Special Database 9

C.LWatsun

National Institute of Standards and Technology
Advanced Systems Division
Image Recognition Group
June 29, 1993

1.0 INTRODUCTION

This document describes the NIST fingerprint database, NIST Special Database 10. The database
provides a large sample of patterns for transitional fingerprint classes and classes with a low natural
frequency of occurrence in NIST Special Database 9. The 552 fingerprint cards in NIST Special
Database 10 are non-mated cards archived on a set of three CD-ROM’s with the first CD-ROM
containing 2160 fingerprint images and the last two CD-ROMs containing 1680 fingerprints each.
All fingerprints are stored in NIST’s IHead raster data format and compressed using a non-standard
implementation of the JPEG lossless [1] compression algorithm. The prints are 832 (w) X 768 (h)
pixels (see Appendix A). Image data stored on the first CD-ROM requires approximately 690
megabytes of storage. The second and third CD-ROM:s require approximately 590 megabytes of
storage. The average compression ratio for all the images is 1.9 : 1.

The data was collected by selecting non-mated fingerprint cards, from the FBI’s Technical Master
File, which contained the most occurrences of the desired fingerprint patterns. Since the entire card
was digitized, there is a mix of other classes within the specific class groupings. The data also
includes a significant number of referenced fingerprints. Appendix C shows the exact distribution
of the classes and referencing for each major class group that was collected.

The specific classes being collected were Tented Arch, Arch, Low Ridge Count Loops, Central
Pocket Whorls, Double Lo~ Whorls, Plain Whorls and Accidental Whorls. The fingerprints are
classified using the Nation::: < ‘rime Information Center (NCI("} classes assigned by the FBI[2]. All
classes and references are siored in the NIST IHead id field of each file.

2.0 NON-STANDARD IMPLEMENTATION OF JPEG LOSSLESS COMPRESSION

The compression used was developed from techniques outlined in the WG10 “JPEG” (draft) stan-
dard [1] for 8-bit gray scale images with modifications to the compressed data format. This is the
same code used in NIST Special Database 4 and 9. The NIST IHead format already contained most
of the information needed in the decompression algorithm, so the JPEG compressed data format

was modified to contain only the information needed when reconstructing the Huffman code tables

and identifying the type of predictor used in the coding process. Codes used to compress and
decompress the images are still developed per the draft standard, but only applied to 8-bit gray
scale images.

The standard uses a differential coding scheme and allows for seven possible ways of predicting a
pixel value. Tests showed that predictor number 4 provided the best compression on the fingerprint
images; therefore, this predictor was used to compress all of the images.

3.0 DATABASE REFLECTANCE CALIBRATION

The reflectance values for the fingerprint database, NIST Special Database 10, were calibrated
using a reflection step table [3]. A plot of the reflectance values obtained using this step table is
shown in Appendix B. Also shown on the plot and below is an equation used to predict the reflec-
tance of a given datapoint. The plot in Appendix B shows that this predicted reflectance closely
follows the actual reflectance obtained using the refiection step table.

predicted % reflectance = -5.1 + (.36 * grayscale pixel value)

4.0 FINGERPRINT FILE FORMAT [4][5]

Image file formats and effective data compression and decompression are critical to the usefulness
of image archives. Each fingerprint was digitized in 8-bit gray scale form at 19.6850 pixels/mm
(500 pixels/finch), 2-dimensionally compressed using a modified JPEG lossless algorithm, and
temporarily archived onto computer magnetic mass storage. Once all prints were digitized, the
images were mastered and replicated onto ISO-9660 formatted CD-ROM discs for permanent ar-
chiving and distribution.

After digitization, certain attributes of an image are required to correctly interpret the 1-dimen-
sional pixel data as a 2-dimensional image. Examples of such attributes are the pixel width and
pixel height of the image. These attributes can be stored in a machine readable header prefixed to
the raster bit stream. A program which manipulates the raster data of an image is able to first read
the header and determine the proper interpretation of the data which follow it.

Numerous image formats exist, but most image formats are proprietary. Some are widely support-
ed on small personal computers and others on larger workstations. A header format named IHead
has been developed for use as a general purpose image interchange format. The IHead header is
an open image format which can be universally implemented across heterogeneous computer ar-
chitectures and environments. Both documentation and source code for the IHead format are pub-
licly available and included with this database. IHead has been designed with an extensive set of
attributes in order to adequately represent both binary and gray level images, to represent images
captured from different scanners and cameras, and to satisfy the image requirements of diversified
applications including, but not limited to, image archivalfretrieval, character recognition, and fin-
gerprint classification. Figure 1 illustrates the IHead format.

‘ Header Length

ASCIH Format Image Header

8-bit Gray Scale Raster Stream
110101001101001111010010110. ..

« Representing the digital scan across the
page left to right, top to bottom.
* 8 bits to a pixel
* 256 levels of gray
* 1 Pixel is packed into a single byte
of memory.

Figure 1: An illustration of the IHead raster file format.

Since the header is represented by the ASCII character set, IHead has been successfully ported
and tested on several systems including UNIX workstations and servers, DOS personal comput-
ers, and VMS mainframes. All attribute fields in the IHead structure are of fixed length with all
multiple character fields null-terminated, allowing the fields to be loaded into main memory in
two distinct ways. The IHead attribute fields can be parsed as individual characters and null-ter-
minated strings, an input/output format common in the ‘C’ programming language, or the header
can be read into main memory using record-oriented input/output. A fixed-length field containing
the size in bytes of the header is prefixed to the front of an IHead image file as shown in Figure 1.

File Name: IHead.h

Package: NIST Internal Image Header

Author: Michael D. Garris
Date: 2/08/90

/* Defines used by the ihead structure */
#define INDR_SIZE 288 *
#define SHORT_CHARS 8 I*
#define BUFSIZE 80 ¥
#define DATELEN 26 I*

typedef struct ihead{
char id[BUFSIZE];
char created[DATELEN];
char width[SHORT_CHARS];
char height{fSHORT_CHARSL;
char depth[SHORT_CHARS];
char density[SHORT_CHARS];
char compressi]SHORT_CHARS];
char complen[SHORT_CHARS];
char align[SHORT_CHARS];
char unitsize[SHORT_CHARS];
char sigbit;
char byte_order;
char pix_offsetfSHORT_CHARS];
char whitepix[SHORT _CHARS];
char issigned;
char rm_cm;
char tb_bt;
char Ir_rl;
char parent{BUFSIZE];
char par_x[SHORT_CHARS};
char par_y[SHORT_CHARS];
}JIHEAD;

/

len of hdr record (always even bytes) */
of ASCII chars to represent a short */
default buffer size */

character length of data string */

J* identification/comment field */

/* date created */ ‘
/* pixel width of image */

/* pixel height of image */

/* bits per pixel ¥/

/* pixels per inch */

/* compression code */

/* compressed data length */

/¥ scanline multiple: 8116132 */

/* bit size of image memory units */
/* 0->sigbit first | 1->sigbit last */

¥ 0->highlow | 1->lowhigh*/ ~

/* pixel column offset */

f* intensity of white pixel */

/* 0->unsigned data | 1->signed data */
/* O->row maj | 1->column maj */
* 0->top2bottom | 1->bottom2top */
/% 0->lef2right | 1->right2left */

/* parent image file */

/* from x pixel in parent */

/* from y pixel in parent */

Figure 2: The IHead ‘C’ programming language structure definition.

The IHead structure definition written in the ‘C’ programming language is listed in Figure 2. Fig-
corresponding to the structure members listed in
Figure 2. This header information belongs to the database file aa000001.pct (see Figure A.1 in
Appendix A). Referencing the structure members listed in Figure 2, the first attribute field of
IHead is the identification field, id. This field uniquely identifies the image file, typically by a file
name. The identification field in this example not only contains the image’s file name, but also the
from an inked or live scan printed image, and the
NCIC classification of the fingerprint, with any references to another classification (see Figure 8
and Section 5.4 for an example of class referencing). This convention enables an image recogni-
tion system’s hypothesized classification to be automatically scored against the actual classifica-

ure 3 lists the header values from an IHead file

sex of the individual, if the image was scanned

tion.

IMAGE FILE HEADER

Identity : aa000001.pct m 1 aa
Header Size : 288 (bytes)

Date Created : Tue Mar 23 03:41:03 1993
Width : 832 (pixels)

Height : 768 (pixels)

Bits per Pixel : 8

Resolution : 500 (ppi)

Compression : 6 (code)

Compress Length : 360295 (bytes)
Scan Alignment : 8 (bits)
Image Data Unit : 8 (bits)

Byte Order : High-Low

MSBit : First

Column Offset : 0 (pixels)

White Pixel 1 255

Data Units : Unsigned

Scan Order : Row Major,
Top to Bottom,
Left to Right

Parent : tape506.2a001.01 4096x1536

X Origin : 0 (pixels)

Y Origin : 0 (pixels)

Figure 3: The IHead values for the fingerprint data file 2a000001.pct.

The attribute field, created, is the date on which NIST received the digitized image. The next
three fields hold the image’s pixel width, height, and depth. A binary image has a pixel depth of
1 whereas a gray scale image containing 256 possible shades of gray has a pixel depth of 8. The
attribute field, density, contains the scan resolution of the image; in this case, 19.6850 pixels/mm
(500 pixels/inch). The next two fields deal with compression.

In the IHead format, images may be compressed with virtually any algorithm. Whether the image
is compressed or not, the IHead is always uncompressed. This enables header interpretation and
manipulation without the overhead of decompression. The compress field is an integer flag which
signifies which compression technique, if any, has been applied to the raster image data which ;-
lows the header. If the compression code is zero, then the image data is not compressed, and the
data dimensions: width, height, and depth, are sufficient to load the image into main memory.
However, if the compression code is nonzero, then the complen field must be used in addition to
the image’s pixel dimensions. For example, the images in this database have a compression code
of 6 signifying that modified JPE - »ssless compression has been applied to the image data prior
to file creation. In order to load tk+ <ompressed image data into main memory, the value in com-
plen gives the size of the compressed block of image data.

Once the compressed image data has been loaded into memory, JPEG lossless decompression can
be used to produce an image which has the pixel dimensions consistent with those stored in its
header. Using JPEG lossless compression and this compression scheme on the images in this data-
base, an average compression ratio of 1.9 to 1 was achieved.

The attribute field, align, stores the alignment boundary to which scan lines of pixels are padded.
Pixel values of 8-bit gray scale images are stored 1 byte (or 8 bits) to a pixel, so the images will
automatically align to an even byte boundary.

The next three attribute fields identify data interchanging issues among heterogeneous computer
architectures and displays. The unitsize field specifies how many contiguous bits are bundled into
a single unit by the digitizer. The sigbit field specifies the order in which bits of significance are
stored within each unit; most significant bit first or least significant bit first. The last of these three
fields is the byte_order field. If unitsize is a multiple of bytes, then this field specifies the order in
which bytes occur within the unit. Given these three attributes, data incompatibilities across com-
puter hardware and data format assumptions within application software can be identified and ef-
fectively dealt with.

The pix_offset attribute defines a pixel displacement from the left edge of the raster image data to
where a particular image’s significant image information begins. The whitepix attribute defines
the value assigned to the color white. For example, the gray scale image described in Figure 3 is
gray print on a white background and the value of the white pixel is 255. This field is particularly
useful to image display routines. The issigned field is required to specify whether the units of an
image are signed or unsigned. This attribute determines whether an image with a pixel depth of 8,
should have pixel values interpreted in the range of -128 to +127, or 0 to 255. The orientation of
the raster scan may also vary among different digitizers. The attribute field, rm_cm, specifies
whether the digitizer captured the image in row-major order or column-major order. Whether the
scan lines of an image were accumulated from top to bottom, or bottom to top, is specified by the
field, tb_bt, and whether left to right, or right to left, is specified by the field, rl_Ir.

The final attributes in IHead provide a single historical link from the current image to its parent
image. The images used in this database were renamed from their original filenames, given by the
FBI, and the ‘link’ to the original filename was stored in the parent field as well as the size of the
ten print image (columns x rows) before the individual fingerprints were segmented. The FBI file-
name consists of three fields separated by periods. The first field contains a tape number (i.c.
tape501, tape502, ..., tape523), indicating the FBI streamer tape the file was stored on. The second
field contains 5 characters. The first two characters in the second field indicate the specific fin-
gerprint class group being collected. The next three characters are the card sequence number for
that class grouping. The last field indicates the finger number of the file (01-10).

The par_x and par_y fields contain the origin, upper left hand corner pixel coordinate, from
where the extraction took place from the parent image. These fields provide a historical thread
through successive generations of images and subimages. We believe that the IHead image format
contains the minimal amount of ancillary information required to successfully manage binary and
gray scale images.

5.0 DATABASE CONTENT AND ORGANIZATION

NIST Special Database 10 contains 5520 8-bit gray scale fingerprint images which are distributed
on three ISO-9660 formatted CD-ROM:s and compressed using a non-standard implementation of
the JPEG lossless compression algorithm [1]. Included with the fingerprint data are software and
documentation.

NIST Special Database 10
da man SrC
Fingerprint Software Fingerprint
Images Manual Software
Pages Utilities

Figure 4: Top level directory tree for each CD-ROM in NIST Special Database 10.

5.1 Datahase File Hierarchy

The top level of the file structure contains three directories src, man, and data (see Figure 4). The
code needed to decompress and use the image data is contained in the src directory with man pages
for the source code stored in the man directories. The data directory contains the fingerprint
images stored in two levels of subdirectories for easier access and clarity (see Figure 5). The first
level of subdirectories indicate the specific class collected within that group of data. The specific
class groupings on each CD-ROM are: disc 1-> arches (aa), central pocket whorls (cw) and double
loop whorls (dw), disc2 -> low ridge count loops (sl) and plain whorls (pw), and disc 3 -> tented
arches (tt) and accidental whorls (xw). The next level has a subdirectory for each fingerprint card
which contains the ten segmented fingerprint images for each card. The aa, sl and tt class groups
have 120 cards each (card_001 - card_120)and the other class groups have 48 cards each.

Fingerprints are stored with filenames containing two letter, six digits and a “.pct” (picture) exten-
sion. The first two characters in the filename are the same as the specific class being collected (aa,
tt, sl, cw, dw, pw or xw). The next six characters indicate the sequence number (000001 - 001200
for aa, sl and tt groups). The finger number is given by the last of the six digits, with zero repre-
senting digit ten on the fingerprint card (see Figure 6 for fingerprint card layout). Every ten prints
in sequential order are a group of prints from the same card (i.e. digits 1-10).

data

s'//\pw

card_001 card_120 card_ 001 _ card_048

slﬂ()()()il.pct leOllJl.pct . pwﬂOOL()l.pct pWOOOJWl.pct
s1000002.pct s1001192.pct pw000002.pct pw000472.pct
S]000609.p¢t s1001199.pct pw000009.pct pw000479.pct
s1000010.pct s1001200.pct pw000010.pct pw000480.pct

Figure 5: Arrangement of fingerprint files on second disc of NIST Special Database 10.

1. R. Thumb 2. R. Index 3. R. Middle 4.R. Ring 5.R. Little

6. L. Thumb 7. L. Index 8. L. Middle ~ 9.L.Ring 10. L. Little

Figure 6: Layout of fingerprint card numbers.

5.2 Low Count Loops

The main low count loops collected were ulnar loops (see statistics in Appendix C). The user can
create low count radial loop data by flipping the ulnar loop image about a vertical axis centered on
the image. This allows for more samples of both low count loop classes

5.3 NCIC Classifications

The classes stored in the NIST Ihead id field are the NCIC classes [2], including any references,
that were assigned by the FBI Identification Division Automated System (IDAS). A listing of the

possible class codes is given below. Note that the classification ac (approximate class) means that
the classification immediately after the ac is the best classification that can be assigned to the print
given the information shown in the image.

Classification name (class code)

Arch (aa)

Tented Arch (tt)

Ulnar Loop Ridge Counts (01 - 49)

Radial Loop Ridge Counts (51 - 99)

Plain Whorl Inner Ridge Tracing (pi)

Plain Whorl Outer Ridge Tracing (po)

Plain Whorl Meeting Ridge Tracing (pm)
Central Pocket Whorl Inner Ridge Tracing (ci)
Central Pocket Whorl Outer Ridge Tracing (co)
Central Pocket Whorl Meeting Ridge Tracing (cm)
Double Loop Whorl Inner Ridge Tracing (di)
Double Loop Whorl Outer Ridge Tracing (do)

- Double Loop Whorl Meeting Ridge Tracing (dm)
Accidental Whorl Inner Ridge Tracing (xi)
Accidental Whorl Outer Ridge Tracing (xo0)
Accidental Whorl Meeting Ridge Tracing (xm)
Approximate Class (ac) followed by a valid class
Amputation or Missing (xx)

Scar or Mutilation (sr)

Figure 7: Classification codes for NIST Special Database 10.

5.4 Class Referencing

The referencing of a fingerprint is caused by a variety of ambiguities such as a scar occurring in
the fingerprint, the quality of the print rolling, or the print having ridge structures characteristic of
two different classes. The referenced prints could easily cause a wrong classification when used in
testing an automated classification system but could provide a challenge in the later stages of devel-
opment.The id field of the prints in NIST Special Database 10 contain the primary fingerprint class
followed by any references. An example IHead header is shown in Figure 8 (aa000042.pct) and
the corresponding print is shown in Figure A.2. The fingerprint i classified as an aa and referenced
toatt.

IMAGE FILE HEADER

Identity : aa0D00042.pct m i aaftt
Header Size : 288 (bytes)

Date Created : Tue Mar 23 (4:04:48 1993
Width : 832 (pixels)

Height : 768 (pixels)

Bits per Pixel : 8

Resolution : 500 (ppi)

Compression : 6 (code)

Compress Length : 296094 (bytes)
Scan Alignment : 8 (bits)
Image Data Unit : 8 (bits)

Byte Order : High-Low

MSBit : First

Column Offset : 0 (pixels)

White Pixel 1 255

Data Units : Unsigned

Scan Order : Row Major,
Top to Bottom,
Left to Right

Parent : tape506.aa005.02 4096x1536

X Origin : 0 (pixels)

Y Origin : 0 (pixels)

Figure 8: The IHead values for the fingerprint data file aa000042.pct.

5.5 Segmenting the Fingerprint Images

The individual fingerprint images were obtained by scanning all ten prints on a card into one large
image (4096 X 1536 pixels) and then segmenting each individual image from that larger image.
The individual images were segmented at the same exact points on all the larger (full card) images.
The image size of 832 X 768 pixels was selected to allow the user the capability of reconstructing
the fingerprint card image and resegmenting the individual fingerprint images if desired. The
images overlap by 32 pixels with horizontally adjacent images and by 18 pixels with vertically
adjacent images which must be accounted for when reconstructing the fingerprint card image.

5.6 Inked and Live Scan Printed

The fingerprints were scanned from two types of prints. The first type were fingerprint patterns cre-
ated by rolling the individuals ink covered finger on the fingerprint card (denoted by an i in the id
field). The second type were patterns taken with a live scanning device and then printed onto a fin-
gerprint card (denoted by an | in the id field). This is important in that the quality of the image is
affected by the resolution of the printer used to print the live scanned image onto the fingerprint
card.

10

6.0 SOFTWARE FOR ACCESSING DATABASE

Included with the fingerprint images are documentation and software written in the ‘C’ program-
ming language. The software was developed on a SUN sparc station and has only been tested on
that platform. Four programs are included in the src directory: dumpihdr, ihdr2sun, sunalign,
and dcplljpg. These routines are provided as an example to software developers of how IHead
images can be manipulated and used. Descriptions of these programs and their subroutines are
given below as well as in the included man pages located in the man directory. Copies of the man-
ual pages are also included in Appendix D.

6.1 Compilation

The CD-ROMs used for NIST Special Database 10 are read only storage medium. The files in the
src directory must be copied to a read-writable partition prior to compiling. After copying these
files, executable binaries can be produced by invoking the UNIX utility make to execute the
included makefile. An example of this command follows.

make -f makefile.mak

6.2 Dumpihdr <Ihead file>

Dumpihdr is a program which reads an image’s IHead data from the given file and formats the
header data into a report which is printed to standard output. The report shown in Figure 3 was gen-
erated using this utility. The main routine for dumpihdr is found in the file dumpihdr.c and calls
the external function readihdr().

Readihdr() is a function responsible for loading an image’s IHead data from a file into main mem-
ory. This routine allocates, reads, and returns the header information from an open image file in an
initialized THead structure. This function is found in the file ihead.c. The IHead structure definition
is listed in Figure 2 and is found in the file ihead.h

6.3 Thdr2sun <Ihead file>

Thdr2sun converts an image from NIST IHead format to Sun rasterfile format. Ihdr2sun loads an
IHead formatted image from a file into main memory and writes the raster data to a new file
appending the data to a Sun rasterfile header. The main routine for this program is found in the file
ihdr2sun.c and calls the external function ReadTheadRaster() which is found in the file raste-
rio.c.

ReadIheadRaster() is the procedure responsible for loading an IHead image from a file into main
memory. This routine reads the image’s header data returning an initialized [Head structure by call-
ing readihdr(). In addition, the image’s raster data is returned to the caller uncompressed. The
images in this database have been 2-dimensionally compressed using a modified JPEG lossless
compression algorithm, therefore ReadlheadRaster() invokes the external procedure jpglldep()
which is responsible for decompressing the raster data. Upon completion, ReadIheadRaster()

11

returns an initialized IHead structure, the uncompressed raster data, the image’s width and height
in pixels, and pixel depth.

Jpglldcp() accepts image raster data compressed using the modified JPEG lossless compression
algorithm and returns the uncompressed image raster data. Jpglldcp() was developed using tech-
niques described in the WG 10 “JPEG” (draft) standard [1] and adapted for use with this database.
Source code for the algorithm is found in jpglldcp.c.

6.4 Dcplljpg <lossless JPEG compressed file>

Dcplljpg is a program which decompresses a fingerprint image file (approximately 10 seconds per
image, for images from this database, on a scientific workstation) that was compressed using the
modified JPEG compression routine. The routine accepts a compressed image in NIST IHead for-
mat and writes the uncompressed image to the same filename using the NIST IHead format. The
main routine is found in dcplljpg.c and calls the external functions ReadTheadRaster() (see sec-
tion 6.3 for ReadIheadRaster description) and writeihdrfile().

Writeihdrfile() is a routine that writes an IHead image into a file. This routine opens the passed

filename and writes the given IHead structure and corresponding data to the file. Writeihdrfile()
is found in the src file rasterio.c.

12

References

[11 WG10 “JPEG”, committee draft ISO/IEC CD 10198-1, “Digital Compression and Coding of
Continuous-Tone Still Images,” March 3, 1991.

[2] The Science of Fingerprints. U.S. Department of Justice, Washington, D.C., 1984.
[3] National Bureau of Standards, “Standard Reference Materials,” Reflection Step Table 2601.

[4] M.D. Garris, “Design and Collection of a Handwriting Sample Image Database,” Social Sci-
ence Computing Journal, Vol. 10: 196-214, 1992.

[5]1 C.I. Watson and C.L. Wilson, “NIST Special Database 4, Fingerprint Database,” National
Institute of Standards and Technology, March 15, 1992.

13

Appendix A: Database Fingerprint Image Samples

14

Figure A.1: Fingerprint file aa000001.pct from NIST Special Database 10.

15

Figure A.2: Fingerprint file 2a000042.pct from NIST Special Database 10.

16

Appendix B: Database Reflectance and Resolution Calibration

17

81

PERCENT REFLECTANCE

FINGERPRINT DATABASE REFLECTANCE VALUES

90
80 —
70
60 ¥
50
40
30 —
20

10

O I ' T I 1 | 1 ' T I T | I | I | I
0 25.5 51 76.5 102 127.5 153 178.5 204 229.5 255
GRAYSCALE PIXEL VALUES (0 = BLACK, 255 = WHITE)

KEY: SOLID: SCANNED DASHED: PREDICTED
PREDICTED % REFLECTANCE = -5.1 + (.36 * GRAYSCALE PIXEL VALUE)

Database Resolution Calibration

The resolution of the scanner used to create the database was calibrated using a NBS
1010A resolution chart!. A portion of this image is shown below (Figure B.2) after
being magnified for viewing (Note: Printing has significantly reduced the quality of
this image.). The scan of the table showed that the vertical resolution was approxi-

mately 10.5 line pairs/mm and the horizontal resolution was approximately 11.0 line
pairs/mm.

Figure B.2: Scan of Resolution Calibration Table.

1. National Bureau of Standards, Microcopy Resolution Test Chart, Standard Reference Material 1010a,
ANSI and ISO test chart No. 2.

19

Appendix C: Fingerprint Class Distribution Statistics

20

Class Distribution

The data in Figure C.1 shows the exact class distribution of NIST Special Database 10. Since the
data was collected by storing all ten fingerprints from a card some of the specific class groupings
contain numerous fingerprints from other classes..

Note:
7L (1-5 ridge count loops) All whorl ridge tracings (I,M,O) for

7™ (6-30 ridge count loops) a whorl class are counted together
?7H (>30 ridge count loops) (i.e. PLPM,PO are counted in PW).

Specific Class Groupings

| _,aa _sl _tt cw_ _dw_ pw__xw | total

o AA 1199 88 | 1287
2 UL | 843 149 2 | 994
= UM | 164 86 71 1 321
S RL | 189 23 | 212
g RM | 10 I 10
g TT | 842 | 842
O PW | 153 138 228 250! 769
g W | 308 94 71 409
S DwW I 19 342 79 1241 564
XW | 6 91 105

SR | 1 4 2 I 7

——

Total | 7200 1200 1200 480 480 780 430! 5520

Figure C.1: Class distribution statistics for NIST Special Database 10.

21

Class Referencing

The data in Figure C.2 shows the class referencing for NIST Special Database 10. The referencing
statistics are given for each specific class grouping. All primary classes without references (UL,
UM, ...) show the number of unreferenced prints for that particular class. See the note on page 21
for an explanation of the L, M, and H as used with the ulnar and radial loops. If a primary class has
more than one reference the ordering is insignificant, meaning UL/AA/TT is the same as UL/TT/
AA and both would be counted as UL/AA/TT.

Figure C.2: Class referencing statistics for NIST Special Database 10.

Specific Class Groupings

Class/Reference _aa _sl tt cw_ _dw_ pw_ _xw_total
UL 812 178 69 1059
UL/ UM 5 5 10
UL/TT 184 48 232
UL/UM/TT 1 3 4
UL/PW/DW 1 1
UL/CW/TT 1 1
UL/AA/TT 2 2
UM

UM/UL 3 3 6
UM/CW 3 3
UM/TT 3 3
UM/ULYTT 1 1
UM/CW/DW 1 1
RL 115 18 133
RL/TT 70 9 79
RL/RM/TT 1 1
RM

RM/RH 1 1
RM/CW 1 1
RM/TT 2 2
RM/PW/CW 1 1
RM/DW/XW 1 1
PW 145 120 198 220 683
PW/CW 8 9 4 21
PW/DW 18 21 26 65

Class/Reference

Cw

Cw/UM
CW/RM
CW/PW
CW/DW
CW/PW/DW
CW/PW/XW
CW/DW/XW

DW
DW/UM
DW/PW
DW/CW
Dw/XwW
DW/PW/CW

XwW
XW/RM
XW/PW
XW/CW
XW/DW
XW/PW/DW

AA
AA/TT
AA/UL/TT

TT

TT/UL
TT/UM
TT/RL
TT/RM
TT/ICW
TT/AA
TT/UL/UM
TT/UL/RL
TT/UL/AA
TT/RL/RM
TT/RL/AA

Total scars

1160
32

Specific Class Groupings

sl

15

tt_

68
20

341
310

23

cW dw__pw
216 81
10 5
6
70 8
2
1
1
2
11 268 67
1 3 1
1 65 10
5 4 1
2
5

xw_ total

1 298
2 17
1
1
1
1

~)
N =N WO

105 451

1228
52

341
310

Appendix D: Manual Pages for Database Source Code

DCPLLJPG (1) USER COMMANDS DCPLLJPG (1)

NAME
dcpllipg ~ non—standard JPEG lossless decompression for
Thead 8 bit gray scale images

SYNOPSIS
dcplljpg ihdrfile

DESCRIPTION
Dcplljpg takes an 8 bit gray scale ihead image, which was
compressed using jpegcomp4, and decompresses it using tech-
niques from the committee draft ISO/IEC CD 10198-1 for
"Digital Compression and Coding of Continuous-tone Still
images" with modifications to the draft image header.
NOTE: dcplljpg does not allow more than 8 bits/pixel input
precision.

OPTIONS
ihdrfile

Any 8 bit gray scale ihead raster image (previously
compressed using jpegcomp4) .

EXAMPLES .
dcplljpg foo.pct

FILES
ihead.h NIST’s raster header include file
jpeg.h Include file for jpeg algorithm

SEE ALSO
dumpihdr (1), ihdr2sun(1), ReadIheadRaster (3),
writeihdrfile(3)

DIAGNOSTICS
dcpllipg exits with a status of -1 if an error occurs.

BUGS
dcplljpg only handles gray scale images up to 8 bits per
pixel precision.

Sun Release 4.1 Last change: 14 November 1991 1

25

DUMPIHDR(1) USER COMMANDS DUMPIHDR (1)

NAME
dumpihdr — takes a NIST IHead image file and prints its
header content to stdout
SYNOPSIS
dumpihdr ihdrfile
DESCRIPTION
Dumpihdr opens a NIST IHead rasterfile and formats and
prints its header contents to stdout.
OPTIONS
ihdrfile
any NIST IHead image file name
EXAMPLES
dumpihdr foo.pct
FILES
ihead.h NIST’s raster header include file
SEE ALSO :
ihdr2sun(l), ReadIheadRaster(3), writeihdrfile (3),
writeihdr (3), readihdr(3), printihdr (3)
DIAGNOSTICS
Dumpihdr exits with a status of -1 if opening ihdrfile
fails.
BUGS
Sun Release 4.1 Last change: 15 March 1990 1

26

IHDR2SUN (1) USER COMMANDS IHDR2SUN(1)

NAME
ihdr2sun -~ takes a NIST ihead image and converts it to a

Sun rasterfile

SYNOPSIS
ihdr2sun [-o outfile] ihdrfile [mapfile]

DESCRIPTION

Ihdr2sun converts a NIST ihead rasterfile to a Sun raster-—

file. If the optional argument mapfile is included on the
command line and the input image is multiple bitplane, the
colormap in mapfile will be inserted into the Sun raster-
file, otherwise a default colormap gray.map will be used
when necessary. The Sun image file created will have the
root name of ihdrfile with the extension .ras appended,
unless an alternate outfile is specified.

OPTIONS
ihdrfile
any ihead raster image

mapfile
optional colormap file

EXAMPLES
ihdr2sun foo.pct gray.map

FILES
/usr/include/rasterfile.h
sun’s raster header include file

ihead.h NIST's raster header include file
SEE ALSO
dumpidhr (1), sunalign(l), rasterfile(5)
DIAGNOSTICS
Thdr2sun exits with a status of -1 if opening ihdrfile
fails.
BUGS

Thdr2sun does not currently support multiple bit levels per
pixel other than depth 8.

Sun Release 4.1 Last change: 08 March 1990 1

27

SUNALIGN (1) USER COMMANDS SUNALIGN (1)

NAME
sunalign - takes a sun rasterfile and word aligns its scan-—

lines

SYNOPSIS
sunalign sunrasterfile

DESCRIPTION
Sunalign takes the file sunrasterfile and determines if the
stored scan lines in the file require word alignment. If
so, the command overwrites the image data maeking scan lines

word aligned. This command is useful when taking clipped
images from the HP Scan Jet and importing them into Frame
Maker.

OPTIONS
sunrasterfile

any sun rasterfile image

EXAMPLES
sunalign foo.ras

FILES

/usr/include/rasterfile.h
sun’s raster header include file

SEE ALSO
rasterfile(5)

DIAGNOSTICS
Sunalign exits with a status of -1 if opening sunrasterfile
fails.

BUGS

Sun Release 4.1 Last change: 08 March 1990 1

28

JPGLLDCP (3) C LIBRARY FUNCTIONS J?GLLDCP(B)

NAME
jpglldcp - takes a JPEG lossless compressed input data
buffer (with modified data header) and writes the
uncompressed data to the passed output buffer
SYNOPSIS
void jpglldcp(indata, width, height, depth, outbuffer)
unsigned char *indata, *outbuffer;
int width, height, depth;
DESCRIPTION
jpglldcp () takes the input buffer indata and decompresses it
writing the uncompressed data into the output buffer out-
buffer with length equal to the original image dimensions
given. This procedure was developed using techniques from
the committe draft ISO/IEC CD 10198-1 for "Digital Compres-
sion and Coding of Continuous-tone Still Images"” with modif-
ications to the draft image header. The source is found in
the source code file jpglldcp.c.
indata
— the compressed data input buffer
width
- the pixel width of the image from which the input
data came
height
— the pixel height of the image from which the input
data came
depth
— the pixel depth of the image from which the input
data came
outbuffer
— the output buffer in which the uncompressed data is
to be returned
SEE ALSO
dcpllipg(l), ReadIheadRaster(3), writeihdrfile(3)
BUGS
NOTE: jpglldcp will only work with gray-scale images that
were compressed using a modified data header (not the stan-
dard lossless JPEG data header).
Sun Release 4.1 Last change: 14 January 1992 1

29

PRINTIHDR(3) C LIBRARY FUNCTIONS PRINTIHDR (3)

NAME
printihdr - prints an ihead structure to the passed file
pointer
SYNOPSIS
#include <ihead.h>
printihdr (head, f£fp)
IHEAD *ihead;
FILE *fp;
DESCRIPTION
Printihdr() takes a pointer to an ihead structure and prints
the ihead structure to the file pointed to by fp. The source
is found in the source code file ihead.c. ’
fp - an open file pointer
ihead
— a pointer to an initialized ihead structure
SEE ALSO
writeihdrfile(3), writeihdr(3), readihdr(3), ReadIheadRas—
ter (3), dumpihdr (1)
BUGS
Sun Release 4.1 Last change: 15 January 1992 1

30

READIHDR (3) C LIBRARY FUNCTIONS READIHDR(3)

NAME
readihdr - allocates and reads header information into an
ihead structure and returns the initialized structure

SYNOPSIS
#include <ihead.h>

readihdr (£p)
FILE *fp;

DESCRIPTION

Readihdr () takes a file pointer to an ihead structured file.
Then allocates and reads the header information from the

file into an ihead structure. The source is found in the
source code file ihead.c.

fp - an open file pointer

SEE ALSO

ReadIheadRaster(3), writeihdrfile(3), printihdr(3),
writeihdr (3), dumpihdr(l)

BUGS

Sun Release 4.1 Last change: 16 January 1992 1

31

READIHEADRASTER (3) C LIBRARY FUNCTIONS READIHEADﬁASTER(3)

NAME
ReadTheadRaster — loads into memory an ihead structure and
corresponding image data from a file
SYNOPSIS
#$include <ihead.h>
ReadlheadRaster (file, head, data, width, height, depth)
char *file;
IHEAD **head;
unsigned char **data;
int *width, *height, *depth;
DESCRIPTION
ReadIheadRaster() opens a file named file and allocates and
loads into memory an ihead structure and its corresponding
raster image data. If the image data is compressed,
ReadIheadRaster will wuncompress the data before returning
the data buffer. This routine also returns several integers
converted from their corresponding ASCII entries found in
the header. The source is found in the source code file
rasterio.c.
file — the name of the file to be read from
head — a pointer to where an ihead structure is to be allo-
cated and loaded
data — a pointer to where the array of binary raster image
data is to be allocated and loaded
width
- integer pointer containing the image’s pixel width
upon return
height
— integer pointer containing the image’s pixel height
upon return
depth
- integer pointer containing the image’s Bits Per Pixel
upon return
SEE ALSO
printihdr(3), readihdr(3), writeihdrfile(3), writeihdr(3),
dumpihdr (1)
DIAGNOSTICS
ReadIheadRaster () exits with -1 when opening file fails.
BUGS
Sun Release 4.1 Last change: 05 March 1990 1

32

. WRITEIHDRFILE (3) C LIBRARY FUNCTIONS WRITEIHDRFILE (3)

NAME
writeihdrfile — writes an ihead structure and corresponding
image data to a file
SYNOPSIS
#include <ihead.h>
writeihdrfile(file, head, data)
char *file;
IHEAD *head;
unsigned char *data;
DESCRIPTION

Writeihdrfile() opens a file name file and writes an ihead
structure and its corresponding image data to it. The source
is found in the source code file rasterio.c.

file - the name of the file to be created

head - a pointer to an initialized ihead structure

data - the array of raster image data

SEE ALSO
writeihdr (3), printihdr(3), ReadIheadRaster(3), readihdr(3),
dumpihdr (1)

DIAGNOSTICS
Writeihdrfile() exits with -1 when opening file fails.

BUGS

Sun Release 4.1 Last change: (. March 1990 1

33

WRITEIHDR(3) C LIBRARY FUNCTIONS WRITEIHDR(3)

NAME
writeihdr — writes an ihead structure to an open file
SYNOPSIS
#include <ihead.h>
writeihdr (fp, ihead)
FILE *fp;
IHEAD *ihead;
DESCRIPTION
Writeihdr() takes a pointer to an ihead structure and writes
it to the open file pointed to by fp. The source is found in
the source code file ihead.c.
fp — an open file pointer
ihead
— a pointer to an initialized ihead structure
SEE ALSO .
writeihdrfile (3), printihdr(3), readihdr(3), ReadIheadRas-—
ter(3), dumpihdr (1)
BUGS
Sun Release 4.1 Last change: 02 March 1990 1

34

