Co-Products/By-Products:

In General:

1) In the past, energy was a sub-component, but it has recently been elevated to a higher priority level.

2) What do we people mean by bio-energy? Need clarification of/establish a definition of bioenergy. (e.g. Energy from biomass)

- 3) Should have integrated systems that reflect synergistic ecosystem services
- 4) On site utilization of power is important
- 5) Manure=energy

Anaerobic digesters—what is the next step?

Viewed as mature, but design options may evolve Generate hydrogen for microbes and microbial fuel cells energy. Ethanol production by-products Hybrid, wind, solar, control systems Bio energy from manure waste: Hydrogen and electricity Energy recovery from biofuels

Problem Statement:

- 1) Energy: Develop technologies to recover energy from manure and to conserve energy.
- 2) Develop beneficial uses from bioenergy residue.
- 3) Develop protocols to quantify environmental credits.
- 4) Risk assessment: Establishing risk based limits on by-products on beneficial use of MIA byproducts.
- 5) By product utilization technologies: What are the rates that we need? Where, when, what, how? Establishing beneficial uses of municipal/industrial/agricultural by-products.

Objective Statements, Organized by Problem Statement:

- 1) Energy, identify:
 - A. Microbial sources
 - B. Themochemical systems
 - C. Integrated systems
 - D. System energy conservation and transfer systems

Pathogen and PACs Breakout Session

- 1) Kimberly Cook Co-Chair (KY MSA)
 - a) Fate Transport Pathogens
 - b) Odors
 - c) Swine/Chicken
- 2) Cliff Rice Co-Chair (Beltsville)
 - a) PACs
- 3) Rob Dungan (ID NW)
 - a) Bioaerosols
 - b) Dairy/Cattle
- 4) Michael Jenkins (GA S)
 - a) Fate Transport Pathogens
 - b) Chickens/Dairy
- 5) Mark Ibekewe (CA W)
 - a) Fate Transport Pathogens
 - b) MST
 - c) Dairy
- 6) John Brooks (MS MSA)
 - a) Fate Transport Pathogens
 - b) Chickens/Swine
- 7) Carl R.
- 8) Tom Moorman (IA)
 - a) Fate Transport Pathogens
 - b) Swine

Research Problem Area & Subsets

- 1) Pathogens
 - a) Fate and Transporti) Microbial Ecology
 - b) Bioaerosols
 - i) Endotoxin
 - ii) β Glucans
 - c) Microbial Source Tracking
 - d) Best Management Plan/Technologies
 - e) Quantitative Microbial Risk Assessment
- 2) PACs
 - a) Environmental Frequency
 - b) Fate and Transport
 - c) Source
 - d) BMP & Mitigation Technology
- 3) Antibiotic Resistant Bacteria
 - a) Environmental Frequency
 - b) Fate and Transport
 - c) Source

4) Holistic treatment technologies (group integration)

Pathogen and PACs Breakout Session .

- 1) Kimberly Cook Co-Chair (KY MSA)
 - a) Fate Transport Pathogens
 - b) Odors
 - c) Swine/Chicken
- 2) Cliff Rice Co-Chair (Beltsville)a) PACs
- 3) Rob Dungan (ID NW)
 - a) Bioaerosols
 - b) Dairy/Cattle
- 4) Michael Jenkins (GA S)
 - a) Fate Transport Pathogens
 - b) Chickens/Dairy
- 5) Mark Ibekewe (CA W)
 - a) Fate Transport Pathogens
 - b) MST
 - c) Dairy
- 6) John Brooks (MS MSA)
 - a) Fate Transport Pathogens
 - b) Chickens/Swine
- 7) Carl R.
- 8) Tom Moorman (IA)
 - a) Fate Transport Pathogens
 - b) Swine

Research Problem Area & Subsets

- 1) Pathogens
 - a) Fate and Transport
 - i) Microbial Ecology
 - b) Bioaerosols
 - i) Endotoxin
 - ii) β Glucans
 - c) Microbial Source Tracking
 - d) Best Management Plan/Technologies
 - e) Quantitative Microbial Risk Assessment
- 2) PACs
 - a) Environmental Frequency
 - b) Fate and Transport
 - c) Source
 - d) BMP & Mitigation Technology
- 3) Antibiotic Resistant Bacteria
 - a) Environmental Frequency

- b) Fate and Transportc) Source4) Holistic treatment technologies (group integration)

Breakout Session 4- Andy Cole/Karamat Sistani

Component: Nutrient Management

- Problem Area 1: Animal Feeding and Management Balanced diets for nutrient management
- Problem Area 2: Innovative Technologies for collection, storage, and treatment- Collection, Storage, Treatment, and Utilization Separation/Extraction of nutrients Volume reduction & storage Microbial mechanisms from excretion to application
- Problem Area 3: Management tools for indexing and evaluating nutrient fate and transport – Nutrient Fate and Transport Nutrient management for water quality Better methods for nutrient measurements
- Problem Area 4: Farming systems and practices for efficient and balanced manure nutrient management Farming Systems and practices for efficient and balanced nutrient management Application technologies

Component: Nutrient Management, Preservation, and Enhancement of Manure Resources

- Problem Area 1: Animal Feeding and Management
- Problem Area 2: Collection, Storage, Treatment, and Utilization

Develop protocols to quantify for environmental credits

• Problem Area 3: Nutrient Fate and Transport

Biological, chemical, and physical mechanisms affecting nutrient availability and loss

- Problem Area 4. Farming Systems and practices for efficient and balanced nutrient management
- Problem Area 5. Develop technologies to recover and conserve energy from animal production

Component: Management, Enhancement, and Utilization of Manure Resources

Problem Area 1. Animal Nutrition, and Management

Problem Area 2. Collection, Storage, Treatment, and Utilization of manure

Problem Area 3. Utilization of manure in an integrated farming system to improve soil, water, and air quality.

Problem Area 4. Manure as a renewable energy resource.