PAPER 7 ANTS ## LABORATORY AND FIELD EVALUATION OF A LIQUID BORIC ACID ANT BAIT John H. Klotz¹, David F. Williams², Karen M. Vail³, David H.Oi⁴, and Jim I. Moss⁵ > ¹Department of Entomology University of California, Riverside Riverside, CA 92521-0314 ²USDA, ARS, MAVERL Gainesville, FL 32608 ³Extension Entomology and Plant Pathology University of Tennessee Knoxville, TN 37901-1071 ⁴Department of Entomology Auburn University Auburn, AL 36849-5413 ⁵1508 NW 35th Way Gainesville, FL 32605 A boric acid - sucrose water bait was evaluated for efficacy against five species of urban pest ants: Camponotus abdominalis floridanus (Buckley), Solenopsis invicta Buren, Tapinoma melanocephalum (F.), Linepithema humile (Mayr), and Monomorium pharaonis (L.). LC₅₀s for C. Abdominalis floridanus and LC₉₀s for S. invicta showed a delayed toxicity to boric acid over a 10-fold range of concentration. A continuous exposure to 0.25, 0.5, 0.75, and 1% boric acid - sucrose water bait was effective in reducing large laboratory colonies (60,000-75,000) of S. invicta. By the 6th wk there was a 90% reduction in population index at all four concentrations. A faster kill was obtained with smaller laboratory colonies (250-500 workers) of T. melanocephalum, L. humile, and M. pharaonis feeding continuously on a 1% boric acid-sucrose water bait. All colonies were completely eliminated by 10 wk. Only partial elimination of colonies was achieved when they were exposed to the boric acid bait for 3 d. A bait application of a 1% boric acid in 10% sucrose water against infestations of M. pharaonis in an apartment complex achieved control within the l^{st} wk. In laboratory tests ## **ANTS** with S. invicta, there was a negative correlation with bait consumption and boric acid concentration. As concentration increased, consumption decreased. A bait application of a 1% boric acid in 10% sucrose water against infestations of *M. pharaonis* in an apartment complex achieved control within the 1st wk. In laboratory tests with *S. invicta*, there was a negative correlation with bait consumption and boric acid concentration. As concentration increased, consumption decreased. Our research results show that low concentration (\leq 1%) of boric acid are capable of eliminating ant colonies and that at these rates there is reduced repellency. ## **KEY WORDS** Ants, insecticidal bait, boric acid