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ABSTRACT

This study develops a Gaussian mixture rainfall-rate estimator (GMRE) for polarimetric radar-based

rainfall-rate estimation, following a general framework based on the Gaussian mixture model and Bayes

least squares estimation for weather radar–based parameter estimations. The advantages of GMRE are 1) it is

a minimum variance unbiased estimator; 2) it is a general estimator applicable to different rain regimes in

different regions; and 3) it is flexible and may incorporate/exclude different polarimetric radar variables as

inputs. This paper also discusses training the GMRE and the sensitivity of performance to mixture number. A

large radar and surface gauge observation dataset collected in central Oklahoma during the multiyear Joint

Polarization Experiment (JPOLE) field campaign is used to evaluate the GMRE approach. Results indicate

that the GMRE approach can outperform existing polarimetric rainfall techniques optimized for this JPOLE

dataset in terms of bias and root-mean-square error.

1. Introduction

Weather radars have been important for rainfall-rate

estimation because of their ability to cover large areas

with reasonable spatial and temporal resolutions. A

cornerstone of radar-based rainfall estimation is the use

of efficient conventional power-law relations (PLR)

between the radar reflectivity factor Z and rainfall rate

R [hereafter R(Zh)], where Zh is the radar reflectivity

factor in horizontal polarization Zh (mm6 m23) and ZH

(dBZ). A common source of error for these methods is

that PLR coefficients are often customized to a particu-

lar longer-term climatology or seasonal/regional pre-

cipitation regimes, and therefore are not universally

applicable (e.g., Bringi et al. 2004; Cifelli et al. 2011;

Fulton et al. 1998; Ryzhkov et al. 2005a; Wang and

Chandrasekar 2010). Although space–time variability

in the drop size distribution (DSD) contributes to such

apparent diversity in power-law coefficients (Lee and

Zawadzki 2005), assessing the performance of PLR es-

timators may be complicated further by factors that in-

clude radar attenuation in rain, beam geometrical

considerations, and contamination from hail or melting

layer media (e.g., Anagnostou et al. 2006; Giangrande

and Ryzhkov 2008; Lee 2006).

Weather radars with dual-polarization capability

provide additional insight into the precipitation medium

and can help resolve some uncertainties from DSD

variability and additional sources (Seliga and Bringi

1976). Dual-polarization radar moments, including the

differential reflectivity (Zdr) and specific differential

phase (Kdp), allow unique insights into rain parameters,

including the size, shape, and orientation of raindrops

(Gorgucci et al. 2002). Algorithms that utilize polari-

metric radar measurements show significant improve-

ment over traditional R(Zh) relations and lessened

sensitivity to DSD variability and partial attenuation in

rain (e.g., Bringi et al. 2004; Hogan 2007; Ryzhkov et al.

2005a; Vulpiani et al. 2009). In addition to PLR methods

that estimate rainfall rate R directly from polarimetric

radar measurements, recent studies have approached the
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issue of DSD variability by computing the corresponding

R from DSD parameters retrieved from polarimetric ra-

dar measurements (e.g., Vulpiani et al. 2006; Cao et al.

2010) using neural network or Bayesian approaches.

Most of the polarimetric rainfall-rate estimators are

still deterministic PLRs, where Zh, Zdr and Kdp are used

in different combinations or the most appropriate esti-

mator is selected for a given set of polarimetric radar

measurements (Ryzhkov et al. 2005a). Deterministic es-

timators usually fail to account for the fact that micro-

physics varies in space and time, even within the same

precipitation, leading to estimates that are less than opti-

mal. To address this problem, Bringi et al. (2004) derived

a new R(Zh) that varies continuously in space and time.

Hogan (2007) presented a spatially variational method

where coefficient a in R(Zh) is iteratively refined. Vulpiani

et al. (2009) developed a nonlinear estimator based on

neural network, and Cao et al. (2010) proposed a Bayesian

approach where only Zh and Zdr are used due to the as-

sumption of a single Gaussian distribution of the joint

distribution of Zh and Zdr given DSD parameters.

Recently, Li and Zhang (2011) introduced the Gaussian

mixture parameter estimator (GMPE), a linear Bayesian

estimator. Because the Gaussian mixture model (GMM)

ensures convergence to the prior distribution of dual-

polarization variables, the GMPE (a minimum variance

unbiased estimator) was shown to outperform PLRs in

both rainfall-rate estimation and attenuation correction

using simulated polarimetric radar measurements. How-

ever, the performance of the GMPE has not been tested

for real-world rainfall applications.

Rainfall-rate estimators can be developed either through

measurements or simulations. Rainfall-rate estimators

developed from measurements are usually optimized for

specific radar and regions but are less suitable for others,

because precipitation is different for different regions,

and radars may have different calibration errors and

noise levels. On the other hand, rainfall-rate estimators

developed from simulations are more general and less

sensitive to measurement error, but they depend on dif-

ferent assumptions. Because of the natural variability of

raindrop size, shape, and terminal velocity, any specific

model–assumption might lead to errors in simulated po-

larimetric radar measurements. The single-cell Monte

Carlo simulation proposed in Li et al. (2011) and adopted

in this study addresses such variability by allowing vari-

ables, including raindrop shape, canting angle, and DSD,

to have uncertainties, making them more suitable for

GMPE development and enabling them to better embody

the simulated dual-polarization variable distribution.

In this study, the GMPE approach is applied to polari-

metric radar-based rainfall-rate estimation. To distinguish

it from general GMPE, it is renamed the Gaussian

mixture rainfall-rate estimator (GMRE). The flowchart

of the GMRE approach is shown in Fig. 1. The GMRE

approach was validated by using data collected during

the Joint Polarization Experiment (JPOLE) from the

well-gauged central Oklahoma region and S-band radar

data from the KOUN radar (Doviak et al. 2002), the

polarimetric prototype of the Weather Surveillance

Radar-1988 Doppler (WSR-88D), over a multiyear pe-

riod (Ryzhkov et al. 2005b). Performance of GMRE will

be compared to other rainfall-rate estimators that were

developed and tested on the JPOLE dataset.

This paper is organized as follows: Sections 2 and 3

introduce the general background and details of the

Monte Carlo simulation as well as the GMRE algorithm.

Section 4 gives a description of the JPOLE dataset and

processing methods, followed by the results and com-

parison of GMRE and other rainfall-rate estimators in

section 5. Section 6 presents the discussion and conclu-

sions.

FIG. 1. Flowchart of Gaussian mixture rainfall-rate estimator.
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2. Monte Carlo simulation

a. Introduction

Polarimetric variables and the associated rain param-

eters for a given radar resolution volume are influenced

by several factors, including DSD, drop shape behavior,

drop canting angles, and terminal velocity of a raindrop.

Unlike simulations that employ fixed relations, Monte

Carlo simulation allows variables to have uncertainties

(or randomness) to avoid assumptions or loss of gener-

ality. In this way, Monte Carlo simulation outputs can

capture the desirable variable distributions beyond an

ensemble average value and include important statistical

information.

For this study, a single-cell Monte Carlo simulation

can be considered as a single volume (cell) filled with

uniformly distributed raindrops. Outputs from the sim-

ulation are the composite of echoes backscattered by

raindrops. The number and size of raindrops in the

volume are controlled by the DSD, which is usually

represented by models that contain free parameters.

This study adopts an exponential distribution as given by

N(D) 5 N0 exp(2LD). (1)

This distribution depends on the following two param-

eters: the intercept parameter N0 (m23 mm21) and slope

parameter L (mm21). Slope is uniquely determined if N0

and water content W are known when given by

L 5
pN0rw

W

� �1/4

, (2)

where rw is the density of water. Because N0 and W have

physical meaning, the dynamic range of both is well

studied, and only a weak correlation is found between

those parameters (Zhang et al. 2008). Even though the

exponential distribution may not represent very small or

large raindrops as well as the gamma distribution (three

free parameters), selecting this distribution helps reduce

the number of unrealistic parameter cases. Once a DSD

is obtained, rainfall rate R (mm h21) can be computed

from

R 5 6p 3 1024

ðD
max

D
min

y(D)D3N(D) dD, (3)

where y(D) is the terminal velocity relationship from

Brandes et al. (2002).

To further reduce the DSD error on small raindrops

and include enough big drops, Dmin and Dmax are set at

0.5 and 8 mm, respectively. Raindrops are modeled as

oblate spheroids with the polynomial relation between

axis ratio ra (minor to major axis) and equivolume di-

ameter D, as given in Brandes et al. (2002). To further

generalize for different kinds of raindrop behavior, ran-

domness between [20.2(1 2 ra), 0.2(1 2 ra)] is added to ra

(Li et al. 2011). Scattering amplitudes of a raindrop are

calculated using the T-matrix method (Mishchenko 2000).

If the copolar backscattering and forward-scattering am-

plitudes are denoted as Sb
hh,vv and S

f
hh,vv, then the copolar

radar reflectivity factor of horizontal (Zh) and vertical

polarization (Zy), differential reflectivity (Zdr), and spe-

cific differential phase (Kdp) of the volume are defined as

follows:

Zh,y
5

4l2

p4jKwj
2V

� Sb
hh,vv, (4)

Zdr 5
Zh

Z
y

, (5)

Kdp 5 1023180

pV
�R(S

f
hh 2 Sf

vv), (6)

where V is the size of the volume and � indicates

summation over all raindrops in the volume. To ensure

that enough raindrops are in the volume and balance

computational load, V is set at 1000 m3.

b. Simulation procedures

Shown by many observation studies, intercept param-

eter and water content vary for different rain regimes

(e.g., Waldvogel 1974; Zhang et al. 2008). Reciprocally,

different types of rain may be emulated from randomly

generating N0 and W. The empirical range of N0 is from

101.5 to 106 m23 mm21, while W can reach 10 g m23

(Zhang et al. 2008). While the ranges of N0 and W are well

studied, the distribution of N0 and W remains less certain.

In some studies (e.g., Li et al. 2011; Vulpiani et al. 2006),

a uniform distribution of DSD parameters is assumed,

which leads to equal probability for different rain types.

This assumption may not hold in general because smaller

rainfall (R , 30240 mm h21) is more frequent than

heavier rainfall intervals/cases.

In this paper, prior distributions of N0 and W are de-

signed to favor rainfall lower than 40 mm h21 and

marginalize the probability of extreme rain cases by

setting W from a one-sided Gaussian distribution and N0

from a uniform distribution with a smaller upper bound.

Table 1 gives details of the simulation. Outputs of the

simulation include rain microphysics parameters N0, L,

R, and the corresponding dual-polarization variables Zh,

Zdr, and Kdp. It is worth mentioning that 8000 cases have

been generated to help provide statistical significance.

As illustrated in Fig. 2, in the majority of the cases R is
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lower than 40 mm h21 and the number of occurrences

decreases significantly as R increases. Even though the

prior distribution input into the Monte Carlo simulation

emphasizes smaller rainfall, a broad range of rainfall is

still covered because R reaches as high as 180 mm h21.

Figures 3a,b show the scatterplots of ZH and ZDR as

well as ZH and Kdp from the MC simulation. According

to the Next Generation Weather Radar (NEXRAD)

R(Zh) relationship [Eq. (18)], R 5 20 mm h21 corre-

sponds to approximately 43 dBZ for observed reflec-

tivity. Combined with the R distribution in Fig. 2, where

70% of the occurrences are R . 20 mm h21, the ma-

jority of cases concentrated between 43 and 60 dBZ can

be explained. Because of a large amount of big and

oblate raindrops caused by a combination of large R

and N0 as well as randomness added to the axis ratio

relation, there are some extreme cases where ZH .

55 dBZ, ZDR . 5 dB, and Kdp . 2.58 km21 in the simu-

lation dataset. An advantage of the Monte Carlo simu-

lation is that it can provide the relative possibility of

occurrence for extreme cases. The incorporation of ex-

treme cases are necessary for training the GMM and it

will not influence the performance of GMRE, because

the GMM always converges to the true distribution as the

number of mixtures increases [GMM and number of

mixtures is defined in Eq. (7)]. Figures 4a,b present the

approximate distribution of ZH and ZDR from one

trained GMM with 5 mixtures and another one with 20

mixtures. The approximate distribution from the GMM

with 20 mixtures clearly shows more detail and is much

closer to the original distribution in the simulation dataset

(Fig. 3a). In contrast, the approximate distribution from

the GMM with five mixtures ignores some details while

preserving the key portions of the original distribution.

3. Gaussian mixture rainfall-rate estimator

If polarimetric radar measurements are denoted as

vector z, rainfall-rate retrieval is based on the connec-

tions between z and R. There are mainly three kinds of

rainfall-rate retrieval approaches. Many conventional

and polarimetric approaches, including NEXRAD, as-

sume PLRs between z and R and use linear regres-

sion models (e.g., Bringi et al. 2004; Cifelli et al. 2011;

Ryzhkov et al. 2005a). Neural network approaches con-

sider a black box that has z as input and R as output (e.g.,

Vulpiani et al. 2006, 2009). Bayesian probability ap-

proaches try to estimate R from maximizing the poste-

rior probability p(R j z) (e.g., Cao et al. 2010; Chiu and

Petty 2006; Di Michele et al. 2005; Evans et al. 1995).

This section presents the theoretical fundamentals of

GMRE as well as training and testing GMRE using

simulation dataset, following Li and Zhang (2011).

a. Theoretical fundamentals of the
GMRE approach

Microphysics parameters such as R, W, N0, and L and

the corresponding radar variables such as Zh, Zdr, and

Kdp of a radar resolution volume (single cell) can be

combined and considered as an unknown and random

vector (called state vector) x, such as x 5 (R, Zh, Zdr)
T.

TABLE 1. Key parameters of the single-cell Monte Carlo simulation.

Radar frequency 2.705 GHz (matching KOUN frequency)

Radar elevation angle 08

Volume of a single radar resolution cell 1000 m3

Temperature Uniformly distributed between 58 and 208C

Raindrop size Between 0.5 and 8 mm with a step size of 0.1 mm

Canting angle distribution Gaussian with a 0 mean and standard deviation 108

Scattering model T matrix

Axis ratio of raindrops (Brandes et al. 2002)

Terminal velocity of raindrops (Brandes et al. 2002)

Intercept parameter N0 (m23 mm21) Uniformly distributed between 101.5 and 104

Water content W (g mm23) One-sided Gaussian with mean 0 and standard deviation 2

FIG. 2. Distribution of R in the Monte Carlo simulation.
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The prior distribution of x, p(x), can be learned and

represented by the GMM and is expressed as

p(x) 5 �
M

i51

aiN (x; mi, Si), (7)

whereN (m, S) is the Gaussian distribution with mean m

and covariance matrix S; M is the number of Gaussian

mixtures used; and ai, mi, and Si are the weighting, mean,

and covariance matrix for the ith Gaussian mixture, re-

spectively. With a given number of mixtures, the GMM

can be trained using the expectation maximization (EM)

algorithm (Russell and Norvig 2009) from training da-

tasets.

Given radar measurements z and measurement noise

vector v, the estimation problem can be formulated

based on a linear relationship,

z 5 Hx 1 v. (8)

Matrix H links the state vector to observation and can be

easily modified to include/exclude different sensor out-

put variables. For example, if a GMM is trained with

state vector x 5 (R, Zh, Zdr, Kdp)T, then GMRE can be

used with different H regardless of whether Kdp is avail-

able [z 5 (Zh, Zdr, Kdp)T or not z 5 (Zh, Zdr)
T], and re-

mains the best estimator for both scenarios.

FIG. 3. Scatterplots of S-band dual-polarized radar signatures from

Monte Carlo simulation: (a) ZH and ZDR and (b) ZH and Kdp.

FIG. 4. Approximate distribution from GMM for simulated radar

signatures: approximate distribution from GMM with (a) 5 and (b)

20 mixtures. In both plots, warmer color represents higher proba-

bility density.
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According to the Bayesian theorem, conditional dis-

tribution p(x j z), also known as the posterior distribu-

tion, yields

p(x j z) 5
p(z j x)p(x)

p(z)
. (9)

If measurement noise v is modeled as white Gaussian

noise from N (0, R), p(z j x) is

p(z j x) 5 N (z 2 Hx; 0, R) 5 N (z; Hx, R) (10)

and p(z), according to linear transformation and the ad-

dition property of Gaussian distribution, is also a Gaussian

mixture with the same number of mixtures as p(x) and can

be written as

p(z) 5 �
M

i51

aiN (z; Hmi, Pi), (11)

where Pi 5 HSiH
T 1 R is the covariance matrix for ith

Gaussian mixture in p(z). Plugging p(z j x), p(x) and p(z)

into Eq. (9) yields

p(x j z) 5

N (z; Hx, R) �
M

i51

aiN (x; mi, Si)

�
M

i51

aiN (z; Hmi, Pi)

. (12)

Because the product of two Gaussian distributions is still

Gaussian (see the appendix),

N (z; Hx, R)N (x; mi, Si) 5 N (z; Hmi, Pi)N (x; m̂i, P̂i),

(13)

where m̂
i
5 m

i
1 K

i
(z 2 Hm

i
), P̂

i
5 (I 2 K

i
H)S

i
, and K

i
5

S
i
HTP21

i . If bi is set to be

bi 5
aiN (z; Hmi, Pi)

�
M

i51

aiN (z; Hmi, Pi)

, (14)

then Eq. (12) can be further written as

p(x j z) 5 �
M

i51

biN (x; m̂i, P̂i). (15)

As shown in Eq. (15), p(x j z) is also a Gaussian mixture

with the same number of mixtures as p(x) and bi is the

weighing of the ith Gaussian mixture in p(x j z). The Bayes

least squares estimate of x is given as the conditional

mean (Lewis et al. 2006)

x̂ 5 E[x j z] 5 �
M

i51

bim̂i, (16)

where E[�] is the expectation operator. Here, x̂ is consid-

ered the best estimate of x in terms of minimum variance

and unbiased performance. Estimates of R, N0, and L are

obtained at the same time using the same GMRE model.

b. Training of GMREs

Because rainfall rate R can be estimated directly from

radar observations or recovered from DSD parameters

N0 and L, the state vector is set as x 5 (R, N0, L, ZH, ZDR,

Kdp)T to compare the performance of both approaches.

Even though other dual-polarization variables, such as

the linear depolarization ratio (LDR) and correlation

coefficients (rhv), are not included in the state vector in

this study, GMRE can discover and use hidden rela-

tionships among different variables, and additional vari-

ables would generally lead to a better performance.

Because a GMM would converge to any particular

distribution if sufficient mixtures are used, it is safe to

assume that prior distribution p(x) has a Gaussian mix-

ture form. Training GMRE is a learning process during

which knowledge of p(x) is acquired from the training

dataset, and it is stored in the weightings, means, and co-

variance matrixes of a GMM. Therefore, the training

problem becomes how to estimate some unknown pa-

rameters (ai, mi, and Si) from a given dataset. The EM

algorithm (Russell and Norvig 2009), an iterative opti-

mization method, has been widely used in mixture models.

It proceeds as follows: in the E step, a posterior probability

is assigned to each individual sample in the dataset. In the

M step, a new estimate of the unknown parameters is

obtained by increasing the global likelihood, that is, the

combination–product of all posterior probabilities. The

algorithm will continue until the global likelihood can no

longer be increased and it converges to the nearest local

maximum, which depends on the initial clustering values

of the dataset. Because of the limited number of mixtures

and the convergence to the local maximum of the EM

algorithm in training GMM, while GMRE is the opti-

mized estimator in theory, training GMRE [or, in other

words, characterizing p(x)] may lead to a suboptimum

performance of GMRE. However, near-optimal perfor-

mance can be achieved by choosing the proper number of

mixtures and better initial clustering values. In this study,

the k-means clustering algorithm (Russell and Norvig

2009) is used in the initial clustering of the training data-

sets for better initial clustering values and faster conver-

gence in GMM training.

c. Results of GMREs on simulation datasets

Simulation datasets are divided into two portions:

7000 cases are used for training and the remaining 1000

cases are used for testing GMRE. To better analyze the
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performance and compare it with other approaches,

three error terms, including bias, RMSE, and fractional

standard error (FSE) are considered. If X is the pa-

rameter (such as R, N0, and L) being estimated, then X̂

is the estimated value of the parameter and the esti-

mation error is defined as �X 5 X̂ 2 X. Thus, the bias is

the mean of estimation error �X , RMSE can be calcu-

lated from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

X 1 s2
X

q
, and FSE (%) yields

FSE 5 100
RMSE

X
, (17)

where sX is the standard deviation of the estimation and

X is mean of the parameter.

Once the GMRE has been constructed, it is ready to

be tuned and perform in different scenarios. For exam-

ple, if only reflectivity factor ZH is available, such as with

the legacy WSR-88D, GMRE can be used with H 5 [0, 0,

0, 1, 0, 0]. The rainfall rate retrieved by GMRE with ZH

will be denoted as RG(ZH). For dual-polarized radar

without (or with low quality) differential phase mea-

surements, input to GMRE becomes z 5 (ZH, ZDR)T

and H yields

H 5

�
0 0 0 1 0 0

0 0 0 0 1 0

�
.

The rainfall rate retrieved with z 5 (ZH, ZDR)T will be

denoted as RG(ZH, ZDR). For radars with full dual-

polarization capabilities (z 5 (ZH, ZDR, Kdp)T), the same

GMRE also can be applied. With z 5 (ZH, ZDR, Kdp)T,

R can be directly estimated from GMRE (denoted as

RG) or calculated from retrieved DSD parameters (N0

and L) using Eq. (3) (denoted as RDSD).

Figure 5 illustrates the RMSEs of GMRE with dif-

ferent inputs and number of mixtures. In general, more

observation variables input into GMRE would lead to

better performance. As the number of mixtures in-

creases, the RMSEs of RG(ZH), RG(ZH, ZDR), and RG

improve slowly while the RMSE of RDSD significantly

lowers from more than 4 mm h21 to less than 2 mm h21.

Tables 2 and 3 compare the performance of GMRE with

5 and 20 mixtures. The GMRE with 20 mixtures is better

than the GMRE with 5 mixtures in basically every cat-

egory. As mentioned in last section, GMRE is a mini-

mum variance, unbiased estimator as long as GMM

converged to prior distribution p(x). More mixtures in

GMM leads to a closer approximate distribution to p(x)

(as can be seen in Figs. 4a,b) and better estimation

performance, which would eventually reach minimum

variance and unbiased estimations. Therefore, the

question becomes how many mixtures are appropriate

for GMRE, and the answer varies for different appli-

cations. For RG(ZH) and RG(ZH, ZDR), GMRE with 5

mixtures would be sufficient to perform near its optimal

point (with minimum variance and unbiased estima-

tion), while RG needs 15 mixtures and RDSD may need

more than 20 to reach to their optimal performance on

the simulation dataset. Figure 6 illustrates the plots of

the rainfall-rate estimation from RG and RDSD with 5

and 20 mixtures versus the simulated truth data. Given

the same weather radar observations z 5 (ZH, ZDR,

Kdp)T, RG performs significantly better than RDSD when

GMRE has five mixtures because RDSD is calculated

from the retrieved N0 and L, where the estimation error

of N0 and L accumulates and magnifies, therefore

leading to larger RMSE for RDSD. For GMRE with 20

mixtures, the better performance of RDSD is obtained

FIG. 5. RMSEs of GMRE with different inputs as the number of

mixtures increases.

TABLE 2. Rain parameters retrieved by GMREs with 5 mixtures

for the simulation dataset: N0 (mm21 m23), L (mm21), and all

rainfall rate R (mm h21).

log10(N0) L RG(ZH) RG(ZH, ZDR) RDSD RG

Bias 0.17 0.01 20.16 20.27 0.2 0.07

STD 1.47 0.11 10.07 6.66 4.31 1.65

RMSE 1.48 0.11 10.07 6.66 4.32 1.65

FSE (%) 2.96 12.96 30.93 20.47 13.26 5.08

TABLE 3. Rain parameters retrieved by GMREs with 20 mix-

tures for the simulation dataset: N0 (mm21 m23), L (mm21), and

all rainfall rate R (mm h21).

log10(N0) L RG(ZH) RG(ZH, ZDR) RDSD RG

Bias 0.08 0 20.05 20.01 0.12 0.03

STD 0.68 0.07 9.74 6.1 0.98 0.65

RMSE 0.69 0.07 9.74 6.1 0.98 0.65

FSE (%) 1.37 8.31 29.9 18.75 3.02 2.01
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due to more accurate estimates of N0 and L. As the

number of mixtures increases, the performance of RDSD

improves, but it will not surpass RG. Therefore, RDSD

will not be considered in later discussion.

The above simulation results indicate that if GMRE is

trained from a dataset whose distribution matches that

of the testing dataset, then the GMRE with more mix-

tures has better performance because GMM converges

closer to the true distribution as the number of mixtures

increases. Also, these simulation results assume a noise-

free environment, which means the noise covariance

matrix R 5 0. In terms of the performance of the GMRE

in a noisy environment, it has been shown that estima-

tion from GMRE is robust when the observations con-

tain Gaussian noise (Li and Zhang 2011). As long as the

Gaussian noise assumption holds, then GMRE would

remain a minimum variance and unbiased estimator.

4. JPOLE dataset description

The JPOLE dataset is a polarimetric radar dataset

collected between 2002 and 2005 in central Oklahoma

using the KOUN WSR-88D quality radar. A total of 43

events of various precipitation types, including warm-

season convective storms containing hail, mesoscale

convective systems (MCS) with intense squall lines and

trailing stratiform precipitation, widespread cold-season

stratiform rain, and select tropical storm remnants, are

observed and selected for analysis (Giangrande and

Ryzhkov 2008). Concurrent gauge observations from

the densely spaced Agricultural Research Service (ARS)

and Oklahoma Mesonet (MES) network stations located

50–150 km (e.g., Fiebrich et al. 2006; McPherson et al.

2007; Shafer et al. 2000) from the KOUN radar are also

included with this dataset.

FIG. 6. Plots of estimated rainfall rate and true rainfall rate for simulation dataset: (a) RG retrieved by GMRE with

5 mixtures, (b) RDSD retrieved by GMRE with 5 mixtures, (c) RG retrieved by GMRE with 20 mixtures, and (d) RDSD

retrieved by GMRE with 20 mixtures. Bias and RMSE are in mm h21 for all plots.
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Dual-polarized measurements (ZH and ZDR) from

KOUN have been compared and calibrated using cross

comparison with a disdrometer, the nearby KTLX radar

(Oklahoma City, Oklahoma, WSR-88D), and polari-

metric signatures of dry aggregated snow above the

melting level. Attenuation correction in rain has been

performed on ZH and ZDR using differential phase Fdp.

Nonmeteorological echoes are filtered by a rhv . 0.85

threshold. To mitigate hail contamination, the ZH , 53

dBZ and 0 , ZDR , 5 dB thresholds were applied.

Gauges further than 150 km from the radar have been

removed to avoid–reduce partial beam filling and melting

layer effects. Figures 7a,b show scatterplots of the ZH and

ZDR measured at ARS and MES gauges. Compared to

the scatterplots from the simulation, clear differences in

distributions can be observed. There are extensive ob-

servations between 10 and 40 dBZ in the JPOLE dataset

and the majority of the KOUN pairings have ZDR ,

3 dB.

If hourly radar accumulations are defined as an hourly

rainfall estimate centered on a gauge, then validation of

GMRE can be performed by comparing hourly gauge

and radar rainfall accumulations over gauge locations.

Because usually only eight–nine radar scans are available

over the same gauge location within 1 h, the nearest

neighbor interpolation method is used to calculate hourly

radar accumulations.

5. Results and comparisons

For a performance comparison of the GMRE approach,

three rainfall-rate retrieval algorithms are selected. These

relations are PLR form, based on an empirical regression

of the measured gauge (or video disdrometer) and radar

data. The first one, with Zh as the only input, is the in-

version of the standard NEXRAD rainfall formula for

continental (nontropical) application (Fulton et al. 1998),

R(Zh) 5 1:7 3 1022Z0:714
h . (18)

The second one, with Zh and Zdr as inputs, had opti-

mized performance for rain in central Oklahoma during

the JPOLE field campaign (Ryzhkov et al. 2005a),

R(Zh, Zdr) 5 1:42 3 1022Z0:77
h Z21:67

dr . (19)

The third, proposed in Ryzhkov et al. (2005b), combines

the merits of different algorithms for various rain in-

tensities and uses different combinations of radar vari-

ables Zh, Zdr, and Kdp based on rainfall rate estimated

from Eq. (18),

RSYN 5

R(Zh)/(0:4 1 5:0jZdr 2 1j1:3) R(Zh) , 6

44:0jKdpj
0:822sign(Kdp)/(0:4 1 3:5jZdr 2 1j1:7) 6 , R(Zh) , 50

44:0jKdpj
0:822sign(Kdp) R(Zh) . 50

.

8>>><
>>>:

(20)

FIG. 7. Scatterplots of dataset-measured (a) ZH and ZDR at ARS

gauges and (b) ZH and ZDR at MES gauges.
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Note that the polarimetric algorithms in (19) and (20)

have been optimized to perform well over the entire

JPOLE dataset and were proven in later studies to be

solid references for Oklahoma precipitation climatol-

ogy. In comparison, because the GMRE is constructed

from a simulation dataset generated from general mi-

crophysical parameterization, it should apply to and be

capable in other precipitation regimes.

Two GMREs, one with 5 mixtures (G5) and the

other with 20 mixtures (G20), are tested using this

JPOLE dataset. Since noise properties of different

dual-polarization variables in the JPOLE dataset are un-

known, R is set to be zero in the current implementation.

Because FSE statistics are heavily weighted toward small

hourly precipitation accumulations, they are not exam-

ined during this test. Tables 4 and 5 summarize the results

and comparisons of all retrieval algorithms over the ARS

and MES gauges.

With reflectivity ZH as input, RG5(ZH) outperforms

conventional NEXRAD R(Zh) in terms of RMSE for

both datasets. With ZH and ZDR as inputs, RG5(ZH,

ZDR) performs slightly worse than the JPOLE R(Zh,

Zdr) relation for the ARS dataset, but better for the

MES dataset in terms of RMSE. With full polarimetric

inputs ZH, ZDR, and Kdp, RG5 has the best performance

in every category for both datasets; RG20 is comparable

to RSYN for the closer ARS dataset, but slightly worse

than RSYN for the MES dataset. All estimates but one

from the GMREs show a negative bias, probably be-

cause of the fact that they are trained from a dataset that

favors smaller rainfall. From the previous section, the

GMRE with 20 mixtures converges closer to the distri-

bution of the simulation dataset [denoted as ps(x)],

while the GMRE with 5 mixtures is only able to rep-

resent a general outline of ps(x) without many details.

However, because ps(x) does not precisely match the

distribution of the KOUN-based measurement dataset

[denoted as pm(x)], the GMRE with 20 mixtures is ap-

parently overfitted to ps(x) and prohibits optimal per-

formance in pm(x). However, the GMRE with five

mixtures can outperform the JPOLE-tuned synthetic

RSYN relation in terms of bias and RMSE, even though it

represents a less detailed ps(x), as highlighted in Figs. 8

and 9.

It is interesting to compare the performance of the

simulation dataset–trained GMRE in this study with the

neural network approach introduced in Vulpiani et al.

TABLE 4. Performance comparison of rainfall retrieval algorithms

for the ARS dataset. Unit: mm h21.

R(Zh)

R(Zh,

Zdr) RSYN RG5(ZH)

RG5(ZH,

ZDR) RG5 RG20

Bias 1.68 20.01 20.24 22.12 20.80 20.04 20.49

STD 5.36 3.03 2.90 4.26 3.52 2.76 2.87

RMSE 5.62 3.03 2.91 4.76 3.61 2.76 2.91

TABLE 5. Performance comparison of rainfall retrieval algorithms

for the MES dataset. Unit: mm h21.

R(Zh)

R(Zh,

Zdr) RSYN RG5(ZH)

RG5(ZH,

ZDR) RG5 RG20

Bias 1.58 0.31 20.3 21.76 20.57 0.19 20.27

STD 5.24 4.44 3.12 4.56 4.05 2.98 3.30

RMSE 5.47 4.45 3.13 4.88 4.09 2.99 3.31

FIG. 8. Comparison plots of radar–gauge hourly accumulated

rainfall rate for ARS dataset: (a) RSYN retrieved from ARS dataset,

and (b) RG retrieved by GMRE with 5 mixtures from ARS dataset.

Bias, STD, and RMSE are in millimeters for both plots.
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(2009) for the same ARS dataset. For these particular

events [Table 2 in Vulpiani et al. (2009) and Table 4

herein], both the neural network and GMRE approach

outperformed the synthetic relation, with the five-mixture

GMRE showing a slightly better performance overall in

terms of bias, STD, and RMSE.

These results confirmed that if GMRE is trained from

a dataset whose distribution does not precisely match

(but approximates) the distribution of the testing dataset,

GMRE is still able to perform very well. When ps(x) 6¼
pm(x), the GMRE with less mixtures may perform even

better than the GMRE with more mixtures, which could

be overfitted to ps(x). However, depending on how ps(x)

approximates pm(x) and how much ps(x) and pm(x) re-

semble one another, the optimal number of mixtures

may vary. For example, comparing the dark blue area

and light blue area where ZH is between 15 and 50 dBZ

in both Figs. 4a,b with the same areas in Figs. 7a,b, the

distribution of G5 (Fig. 4a) at this area is clearly much

closer to the same area of Figs. 7a,b than G20 (Fig. 4b).

This explains why RG5 outperforms RG20 in both ARS

and MES datasets. It also explains why extreme cases in

the training dataset will not affect the performance of

GMRE because only the relative probabilities of cases

at areas of interest matter. As a consequence, GMRE

should be trained from a large ps(x) that covers a broader

range of occurrences than pm(x) (such as the extreme

cases covered in the simulation of this study), to ensure

that it is capable of handling not only a particular dataset,

but also the radar observations from different seasons–

regions. In addition to covering a broad range of sce-

narios, the training dataset also needs to have appropriate

proportions of different kinds of precipitation. The more

realistic the training dataset, the better the performance

of GMRE can achieve in real environments. The perfor-

mance of GMRE may be improved if it is trained from

a dataset generated from measured DSDs over a wide

range of time and area.

6. Discussion and conclusions

This study develops a Gaussian mixture rainfall-rate

estimator for polarimetric radar–based rainfall-rate es-

timation. Theoretically, GMRE is the optimal estimator

in terms of minimum variance and unbiased perfor-

mance. It is also a general and flexible approach that can

be adapted easily to different observation variables and

rain types without compromising its performance.

Training the GMRE is essential. During the training

process, the prior distribution of microphysics parame-

ters and observation variables is characterized and ap-

proximated by GMM, which converges to any specific

distribution as the number of mixtures increases. In this

study, the training dataset is constructed from a single-

cell Monte Carlo simulation where the parameters of

exponential DSD, N0 and W, are randomly generated

first from designed distributions that favor light and

moderate rain. Then, uniformly distributed raindrops of

different sizes are put into the single cell according to the

DSD. Summing up waves scattered by each raindrop

within the single cell, the Monte Carlo simulation pro-

duces realistic dual-polarization radar signatures.

GMREs with a different number of mixtures are

trained and tested using the general simulation dataset.

With more mixtures, the GMM converges more readily

FIG. 9. Comparison plots of radar–gauge hourly accumulated

rainfall rate for MES dataset: (a) RSYN retrieved from MES data-

set, and (b) RG retrieved by GMRE with 5 mixtures from MES

dataset. Bias, STD, and RMSE are in millimeters for both plots.
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to the simulation distribution, leading to better estima-

tion. For the same radar observations, the rainfall rate

directly estimated from the radar moments (RG) is more

precise than the rainfall rate retrieved from taking an

indirect path through the estimated DSD parameters

(RDSD) wherein estimation error accumulates and

magnifies.

Two GMREs, one with 5 mixtures and the other with

20 mixtures, in company with three PLR algorithms, are

tested using the JPOLE dataset. As expected, better

results are achieved when more radar observation

variables are available for both the GMRE and PLR

algorithms. While RG5(ZH, ZDR) has a performance

comparable to R(Zh, Zdr), RG5(ZH) performs better

than the single-parameter R(Zh) and RG5 outperforms

the synthetic RSYN JPOLE relation, which is the stan-

dard benchmark for this JPOLE dataset. However, RG20

does not perform as well as RG5, which can be attrib-

uted to overfitting the GMRE to the specific simula-

tion distribution that is dissimilar to the KOUN radar

measurement distribution. Estimates from GMREs

generally have a negative bias, which may reflect that

these methods were trained from datasets that favor

smaller rainfall over heavier rainfall, and also the fact

that KOUN polarimetric radar inputs such as specific

differential phase are smoothed somewhat in space–

time.

In conclusion, GMRE shows great promise over

conventional PLR techniques and provides a statisti-

cally optimized solution for rainfall-rate estimation. The

convergence capability of GMM provides a general

framework to accommodate extra information not only

from dual-polarization diversities, but also from other

diversities, such as multiple frequencies. A subject of

ongoing research is to combine ground-based radar

measurement with Ku–Ka band satellite radar mea-

surements into the GMRE for better quantitative pre-

cipitation estimation (QPE). Because GMRE is a best

estimator in terms of variance and bias performance, as

long as the prior distribution is accurate, the focuses of

rainfall-rate retrievals may be shifted from developing

new algorithms–coefficients to constructing a better

training dataset for GMRE. For example, better per-

formance of GMRE may be achieved by tuning the

distribution of N0 and W in Monte Carlo simulations. If

GMRE is trained from a dataset, either from simulation

or measurement, without any climatologically driven

optimization, then a global GMRE is possible for all

rain types and regions. It is worth mentioning that ap-

plications of GMRE are not limited to the S band.

Similarly, a GMRE can also be built for C- or X-band

radars. Like other rainfall-rate estimation techniques,

inputs to GMPE have to be corrected from attenuation

before they could be used, especially in C and X band.

As demonstrated in Li and Zhang (2011), attenuation

correlations also can be incorporated into the GMRE

framework, which will be studied in detail in future re-

search.
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APPENDIX

Proof of Eq. (13)

Herein,

N (z; Hx, R)N (x; mi, Si) 5
1ffiffiffiffiffiffiffiffiffiffi

(2p)
p (m1n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRj � jSij

q e
2(1/2)jjz2Hxjj2

R21 2(1/2)jjx2m
i
jj2

S21
i

5
1ffiffiffiffiffiffiffiffiffiffi

(2p)
p (m1n) ffiffiffiffiffiffi

C2

p e2(1/2)C
1

5 N (z; Hmi, Pi)N (x; m̂i, P̂i)

According to the Sherman–Morrison–Woodbury formula (Lewis et al. 2006),

P21
i 5 (HSiH

T 1 R)21

5 R21 2 R21H(HTR21H 1 S21
i )21HTR21

5 R21 2 R21HP̂iH
TR21.

Then,
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C1 5 kx 2 m̂ik
2

P̂
21

i

1 kzk2
P21

i
2 2mT

i HTP21
i z 1 kmik

2
HTP21

i H

5 kx 2 m̂ik
2

P̂
21

i

2 2mT
i ST

i P̂iH
TR21z 2 kHTR21zk2

P̂
i

2 kS21
i mik

2

P̂
i

1 kzk2
R21 1 kmik

2
S

21
i

5 kx 2 m̂ik
2

P̂
21

i

2 kHTR21z 1 S21
i mik

2

P̂
i

1 kzk2
R21 1 kmik

2
S

21
i

5 kx 2 P̂iS
21
i mi 2 P̂iH

TR21zk2

P̂
21

i
2 kHTR21z 1 S21

i mik
2

P̂
i

1 kzk2
R21 1 kmik

2
S

21
i

5 kxk2
S

21
i 1HTR21H

1 kzk2
R21 1 kmik

2
S

21
i

2 2zTR21Hx 2 2mT
i S21

i x

5 kz 2 Hxk2
R21 1 kx 2 mik

2
S

21
i

and

C2 5 jRj � jSij

5 det

"
R 0

0 Si

# !

5 det

�
I 0

H I

�"
R 0

0 Si

#"
I HT

0 I

# !

5 det

"
Si SiH

T

HSi HSiH
T 1 R

# !

5 det

�
I Ki

0 I

�"
P̂i 0

HSi Pi

# !

5 det

"
P̂i 0

0 Pi

# !
5 jPij � jP̂ij.
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