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Kinetics of Heterogeneous Nucleation in Supersaturated
Vapor: Fundamental Limits to Neutral Particle Detection
Revisited

Robert McGraw, Jian Wang, and Chongai Kuang
Environmental Sciences Department, Atmospheric Sciences Division, Brookhaven National Laboratory,
Upton, NY

We examine the nucleated (with barrier) activation of perfectly
wetting (zero contact angle) particles ranging from essentially bulk
size down to approximately 1-nm mass diameter. While similar
studies trace back to the pioneering work of Fletcher, we present
here a novel approach to the analysis based on general area con-
structions that enable key thermodynamic properties, including
surface and bulk contributions to nucleation work, to be inter-
preted geometrically with reference to the Kelvin curve. The ki-
netics of activation are described in more detail in terms of the
mean first passage time (MFPT) for barrier crossing. MFPT the-
ory and benchmark calculations are used to develop and test a new
approximate-but-simpler-to-use analytic expression for the barrier
crossing rate. The present study is motivated by recent condensa-
tion particle counter (CPC) studies that appear to finally establish
the long-predicted detection of “sub-Kelvin” particles in the nano-
size regime. Corresponding states thermodynamic and kinetic scal-
ing approaches are used to facilitate the correlation and selection
of optimal CPC working fluids and operating conditions based on a
new metric for heterogeneous nucleation, the signal-to-noise ratio,
and physical and chemical properties.

[Supplementary materials are available for this article. Go to
the publisher’s online edition of Aerosol Science and Technology
to view the free supplementary files.]

1. INTRODUCTION
Striking advance has been made over the past several years

in condensation particle counter (CPC) development, enabling
particles in the sub-3-nm diameter range approaching the size
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of molecular clusters to be routinely detected in the laboratory
(Winkler et al. 2008; Iida et al. 2009; Sipila et al. 2009;
Vanhanen et al. 2011) and in the atmosphere (Jiang et al. 2011).
This breakthrough in instrumentation calls for a re-examination
of the foundations of the heterogeneous nucleation theory, still
largely based on the capillarity approximation (Fletcher 1958),
wherein even small clusters are modeled as bulk-property liquid
drops with simplified kinetics. Fletcher’s theory predicts het-
erogeneous nucleation, driven by thermal fluctuations, for the
activation of very small particles (less than about 6 nm), whereas
larger particles undergo a transition to barrierless growth at the
Kelvin limit. Activation by nucleation below the Kelvin limit
is a key factor in lowering the detectable size, but only recently
has the process been definitively observed (Winkler et al. 2008).
Another important development has been the screening of mul-
tiple CPC working fluids for optimal detector performance in
the sub-3-nm regime (Magnusson et al. 2003; Iida et al. 2009).

The present study has several objectives, beginning with
re-examination of the theory. Any improvement over Fletcher’s
analysis is not easily done. One can contemplate a first-
principles molecular simulation, but an accurate prediction
of nucleation rate requires more realistic model potentials
than are presently available. Molecular dynamics and Monte
Carlo-based simulations of nucleation, which utilize the model
potentials, are particularly useful at establishing trends—e.g.,
identifying even small systematic departures from the classical
nucleation theory—but such simulations are beyond the scope
of the present study. Instead, we continue to rely on the
capillarity approximation for estimating the thermodynamic
properties needed for the theory, while focusing on improving
the kinetics. For this, an analysis of the mean first passage
times (MFPTs) required for the aggregate of molecular
evaporation/condensation growth steps to reach and exceed
the size of the critical cluster (consisting of seed particle plus
condensate) is presented. Recent results from Wedekind et al.
(2007) are extended for this purpose to the kinetics of heteroge-
neous nucleation. Series expansions for MFPT and nucleation
rate are evaluated numerically and used to derive a simple
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1054 R. MCGRAW ET AL.

analytic expression for predicting the heterogeneous nucleation
rate. Comparison with the full MFPT calculation shows the
approximate formula to be accurate to within a few percentage
points for nucleation barrier heights in excess of about 5 kT—a
range well covering the region of interest to the present study.

Although physical and chemical properties are derived
from the capillarity approximation, a new approach to the
thermodynamic analysis is presented. As described in Section
2, the approach is based on graphical constructions derived
from the Kelvin curve. There are several reasons for pursuing
the new approach: it provides convenient area constructions
for homogeneous and heterogeneous nucleation barriers and a
graphical interpretation even for key kinetic terms, such as the
Zeldovich factor, used in the newly derived rate expression. The
method further simplifies the scaling analysis used to correlate
working fluid performance in Section 5. Finally, the graphical
approach provides a molecular-based framework that recovers
results from the classical nucleation theory when the capillarity
approximation is used, while retaining applicability even in
cases where the classical theory fails (Section 6).

The new results are discussed in the context of early specula-
tions on the application of nucleation and growth as a detection
tool for single neutral molecules and clusters (Reiss et al. 1977).
A full analysis of detection capability will require, among other
considerations, going beyond Fletcher’s theory and viewing het-
erogeneous nucleation as a multi-component molecular interac-
tion process in the nano-size regime. Here, we take preliminary
steps in this direction to show that the new formulation provides
a molecular-level framework, rooted in mass action and detailed
balance, which can be exploited to great advantage in attempts
to go beyond the classical nucleation theory.

While the results reported here were in preparation, the au-
thors learned of a similarly motivated study of heterogeneous
nucleation, also based on the capillary theory and perfect wet-
ting (Fernandez de la Mora 2011). Although there are similar-
ities between the two studies, there are notable differences in
approach. Differences include the introduction here of corre-
sponding states scaling, MFPT kinetics, and novel area con-
structions that provide a basis for handling the departure from
the capillary theory in the form of positive/negative deviations
in equilibrium vapor pressure from the Kelvin relation.

2. THERMODYNAMIC AREA CONSTRUCTIONS
This section develops several graphical constructions for

key thermodynamic properties that include nucleation barrier
height, surface work, and barrier shape. The approach derives
from the Kelvin relation, which gives the critical size (generally
consisting of seed plus condensed fluid) as a function of vapor
saturation ratio:

ln

(
Peq(g)

P ∞
eq

)
=
(

32π

3

)1/3
(

σv
2/3
1

kT

)
g−1/3. [1]

Here, g = nseed + n is the number of condensed solvent
molecules, each of molecular volume v1, required to fill the
total volume, v, consisting of the seed particle volume, vseed ≡
nseedv1, plus the condensate, vcond = nv1. Equivalently, g is
the number of liquid-phase condensate molecules present in the
same-size homogeneous drop, v = vseed + vcond = gv1. Used
here as a continuous parameter, nseed = vseed/v1 refers not to the
number of molecules actually present in the seed, but is rather a
measure of seed volume. Peq(g) is the vapor pressure in (unsta-
ble) equilibrium with the drop, and P ∞

eq is the bulk equilibrium
vapor pressure over a flat surface. The nondimensional group of
physical constants appearing on the right-hand side of Equation
(1), which will henceforth be written as �/T ≡ σv

2/3
1 /kT , is

a convenient scaling parameter used extensively in the sequel.
Here, σ is the bulk surface tension, v1 is derived from the bulk
density, and � = σv

2/3
1 /k has units of temperature.

Barrier profiles for heterogeneous and homogeneous nucle-
ation may be derived using thermodynamic area constructions
similar to those introduced recently to analyze the deliquescence
and efflorescence of small particles (McGraw and Lewis 2009).
For vapor pressures given by the Kelvin relation, these relations
are of the form:

W (n)

kT
=
∫ n

0
ln

(
Peq(n′)
Pext

)
dn′, [2]

where n is the actual (not volume equivalent) number of con-
densed solvent molecules present in the particle, n′ is a dummy
integration variable, and W (n) is the reversible work required
to condense n molecules from the surrounding external vapor
at pressure Pext. The homogeneous nucleation barrier profile is
recovered for nseed = 0, in which case n = g. A derivation of
Equation (2) that includes its extension to an arbitrary vapor
pressure dependence on particle size is provided in the Supple-
mentary Information, together with a detailed derivation of the
various subregion areas, Ri , indicated in Figure 1.

Figure 1 illustrates area constructions for both homogeneous
and heterogeneous nucleation using water vapor at 200% rela-
tive humidity (RH) as an example. For the homogeneous case,
the reduced barrier height is (Supplementary Information):

W ∗
homo

kT
= R1 + R2, [3]

which follows from Equation (2) for the upper limit of integra-
tion set at n = n∗ = g∗, the intersection of the Kelvin curve
(solid curve) and the horizontal dashed line. In the heteroge-
neous case, for seed volume vseed, the integration in Equation
(2) is from n′ = 0 (g = vseed/v1) to n∗ (g = g∗), yielding the
reduced barrier height (Supplementary Information):

W ∗
hetero

kT
= R1. [4]
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LIMITS TO NEUTRAL PARTICAL DETECTION 1055

FIG. 1. Area constructions derived from the Kelvin curve. Solid curve is
the Kelvin curve for water from Equation (1). Horizontal dashed line is for
a water vapor saturation ratio of 2 (relative humidity = 200%). The point of
intersection marks the critical drop size, g∗, consisting of the seed particle plus
n∗ = g∗ − vseed/v1 molecules of condensed water. See text for interpretation
of labeled areas R1 − R4 and the tangent line.

A conceptual advantage of the new approach is that, in principle,
it avoids the arbitrary separation into surface and bulk properties
inherent in the capillarity drop model. Thus, if the true vapor
pressure curve P1(n), not shown in Figure 1, were somehow
available, e.g., from a molecular simulation of cluster evapora-
tion rate, Equation (2) would remain valid—the only require-
ments being an ideal vapor mixture (an excellent approximation
at near-atmospheric pressure conditions) and cluster condensa-
tion and evaporation rates that satisfy detailed balance. In the
absence of a sufficiently accurate molecular-based approach, we
continue with the capillarity approximation, in which case the
barriers from graphical construction reduce exactly to those de-
rived conventionally from the classical nucleation theory (Sup-
plementary Information).

Several well-known, capillarity-based relations for the bar-
rier height follow easily from the graphical construction when
the vapor pressure is given by the Kelvin relation. Continu-
ing with the homogeneous case, we obtain the following two
equivalent results:

W ∗
homo

kT
= 1

2
g∗ ln

(
Pext

P ∞
eq

)
= 1

2
(R3 + R4), [5a]

W ∗
homo

kT
= 1

3

A∗σ
kT

= 1

3
(R1 + R2 + R3 + R4), [5b]

where A∗ ≡ A(g∗) is the surface area of the critical cluster
(Supplementary Information). Equation (5a) is important to the
scaling analysis in Section 5. Unified full barrier profiles for
either heterogeneous or homogeneous (nseed = 0) nucleation
follow from Equation (2), with limits of integration from nseed

to nseed + n for variable n, where n is the number of molecules

of liquid condensate,

W (n)

kT
= R1(n) = −n ln

(
Pext

P ∞
eq

)

+ (36π )1/3

(
�

T

)
[(nseed + n)2/3 − n

2/3
seed), [6]

in agreement with the classical result. �/T is the previously
defined physical constant grouping, appearing within parenthe-
ses, on the right-hand side of Equation (1). The function R1(n)
evaluated at the critical size n = n∗ equals R1. Dividing the first
and second terms on the right-hand side of Equation (6) by the
middle terms from Equations (5a) and (5b), respectively, gives
the following working-fluid-independent result:

W (n)

W ∗
homo

= 3

(
n

g∗ + f

)2/3

− 2

(
n

g∗ + f

)
− (3f 2/3 − 2f ),

[7]

where f = vseed/(g∗v1) = nseed/g
∗ is the ratio of seed volume

to volume of the critical particle. Equation (7) has been written
in expanded form, where −2f and 2f are added to the second
and the third bracketed term, respectively, to show that at the
critical condition, W (n∗) = W ∗, where n∗/g∗ + f = 1 and the
sum of the two leading terms on the right-hand side is unity,

W ∗

W ∗
homo

= R1

R1 + R2
= −3f 2/3 + 2f + 1. [8]

The first equality follows Equations (3) and (4); the “hetero”
subscript of Equation (4) having been dropped, noting that ho-
mogeneous nucleation is just a special case of the graphical
construction with R2 = 0. The homogeneous (f = 0) limit
of Equation (7) was utilized previously (McGraw 2001). The
unified result obtained here shows that the barrier profiles for
perfect wetting are characterized by a universal one-parameter
family of curves independent of the detailed physiochemical
properties of the condensing fluid. These curves are shown for
several values of f in Figure 2.

For use in the following section, we require the Zeldovich
factor, which is a measure of barrier curvature at the critical size
(Abraham 1974):

Z =
√

−1

2π

[
∂2(W ∗

homo/kT )

∂g2

]
g∗

=
√

−1

2π

[
∂2(W ∗

hetero/kT )

∂n2

]
n∗

=
√−γ

2π
. [9]

The first equality is the definition of this quantity. The second
equality shows that Z has the same value for the homogeneous
nucleation and the perfect wetting heterogeneous nucleation
cases. This follows by inspection of the graphical construction
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1056 R. MCGRAW ET AL.

FIG. 2. Scaled nucleation barrier profiles from Equation (7) for several seed
volume fractions (f = nseed/g

∗). Curves, top to bottom: homogeneous nucle-
ation case (f = 0), an intermediate heterogeneous nucleation case (f = 0.25),
and the Kelvin limit (f = 1).

and provides an interpretation for the second partial derivatives
as each equals the slope, γ , of the tangent line to the Kelvin
curve at g∗, indicated in Figure 1. Mathematically, this result
derives from Equation (2): taking the first derivative of this
equation with respect to n gives ln(Peq(n)/Pext) on the right-
hand side, which on differentiation again gives the slope of
ln Peq(n) at n. Equation (9) results with n = n∗ and g = g∗.
That the same Zeldovich factor applies in the two cases is seen
graphically as a simple consequence of the upper limits of inte-
gration being located at the same Kelvin size. Vehkamäki et al.
(2007) provide a convenient formula for evaluating Z for het-
erogeneous nucleation on spherical particles under more general
nonzero contact angle conditions. Using their results, we have
shown (unpublished) that the same area and slope constructions
for W ∗

hetero/kT and Z, respectively, apply as well in the more
general case. Of course, Peq(n) depends on the contact angle
and only (discontinuously) reduces to the Kelvin curve for per-
fect wetting. Evaluating the slope of the Kelvin curve, i.e., the
derivative of Equation (1), gives:

Z =
√

1

6π

ln Sext

g∗ = 1

8π

(
�

T

)−3/2

(ln Sext)
2, [10]

where in the second equality, g∗ has been eliminated in favor of
ln Sext ≡ ln(Pext/P

∞
eq ).

3. MFPT KINETICS AND ACTIVATION RATE
Consider a collection of condensate-free (n = 0) seed par-

ticles, M, of initial vapor phase concentration [M]0 = N (0),
uniform diameter dseed, and zero contact angle for wetting by
the working fluid. The subsequent uptake and exchange of
molecules from the working fluid, present in the supersaturated
vapor at concentration [F1] = nv , is described by the following

sequence of condensation/evaporation steps:

M + F1 ↔ MF1

MF1 + F1 ↔ MF2
...

MFn + F1 ↔ MFn+1

. [11]

A similar kinetics applies to homogeneous nucleation on re-
placement of M by F1. Particles sufficiently large (e.g., twice
the critical cluster size MFn∗ ) are assumed far enough into the
growth-dominated regime that they no longer re-cross the bar-
rier at any reasonable rate. This is essentially the same argu-
ment used to introduce the Szilard absorbing boundary con-
dition in the classical nucleation theory (Abraham 1974), and
for the present application, justifies the placement of an imag-
inary model boundary distinguishing “un-activated” from “ac-
tivated” particles. Because the boundary is in effect absorbing
(no-returns), the model activation rate equals the rate of its first
crossing, or MFPT.

3.1. Model Assumptions
We use an exponential decay model (by Winkler et al.

[2008]):

dN

dt
= −Jhetero = −J1N. [12]

In the last equality, particles are treated as independent to the
extent that the steady-state nucleation rate, Jhetero (number of
particles activated per unit volume per second), is proportional
to the number concentration of remaining un-activated particles,
N :

Jhetero = NJ1, [13]

where J1 is the per-particle crossing rate. During a short time in-
terval dt, Jheterodt particles per unit volume are lost to activation.
Combining these results gives

N (t) = N (0)e−J1t , [14]

where N (0) is the initial number concentration of seed particles,
and the exponent gives the probability that any given particle re-
mains un-activated at time t. Several assumptions are implicit in
the model that a direct calculation of the MFPT and comparison
with measurement can test. First, the assumption of steady-state
nucleation rate: conditions under which the quasi-equilibration
of precritical clusters and steady-state nucleation are reached
on time scales shorter as compared with the decay of N can
be seen from a calculation of the MFPT as a function of the
absorbing boundary location, as described in connection with
Figure 3. Second, the exponential decay model requires random
rather than deterministic activation—a property that can also be

D
ow

nl
oa

de
d 

by
 [

B
ro

ok
ha

ve
n 

N
at

io
na

l L
ab

] 
at

 0
8:

40
 0

7 
Ju

ne
 2

01
2 



LIMITS TO NEUTRAL PARTICAL DETECTION 1057

FIG. 3. Typical behavior of the mean first passage time (MFPT) to reach a
given cluster size as a function of that size. Here, n is the number of molecules
condensed onto the seed. Region I, quasi-equilibrium between clusters of pre-
critical size. Region II, inflection point at the critical size. Region III, rapid-
growth regime. Calculations are for heterogeneous nucleation of l-menthol on
a 1.5-nm-diameter seed. Sext = 86.0, W ∗/kT = 18.1, J1 = 1 s−1.

checked through a study of the MFPT. Finally, Equation (12)
assumes that just one seed particle is present in the critical nu-
cleus. This is easily tested experimentally using the nucleation
theorem (Equation (24)) below.

3.2. Calculation of the MFPT
We classify un-activated (activated) particles as those be-

longing to size class MFnmaxand smaller (MFnmax+1 and larger),
where nmax = 2n∗. Our interest is primarily in the MFPT
to reach MFnmax+1 so defined, but a study for variable nmax,
to show insensitivity to boundary placement at 2n∗ and verify
other assumptions implicit in the exponential model, was also
carried out. Let U be the domain of un-activated particles such
that MFn ∈ U for 0 ≤ n ≤ nmax, and let PU (t) be the prob-
ability that a seed that is condensate-free at t = 0 remains in
the un-activated domain at time t. Then, the fraction of particles
leaving U at time t is −dPU (t)/dt . By definition, the MFPT is
the mean time it takes to leave U, which is (Hänggi et al. 1990):

τ ≡ −
∫ ∞

0
t
dPU

dt
dt =

∫ ∞

0
PU (t)dt. [15]

The last equality follows an integration by parts. Evaluating
the last integral using PU (t) = N (t)/N(0) = exp(−J1t) from
Equation (14) for the exponential decay model gives τ = 1/J1,
showing that the MFPT equals the reciprocal of the per-particle
crossing rate.

Benchmark calculations are based on the following formula
for the MFPT (Hänggi et al. 1990; Wedekind et al. 2007):

τ (nmax) =
nmax∑
j=0

(
eWhetero(j )/kT

Dj

j∑
i=0

e−Whetero(i)/kT

)
. [16]

The double summation is a discretized version of Equation (2)
of Wedekind et al. (2007). Dummy indices i and j refer to

the number of condensate molecules in the seed-condensate
particle (the n in MFn) and the summation begins with the initial
seed, M (n = 0). Equation (16) describes the case of particles
undergoing diffusion and drift, along the size coordinate, n, with
reflecting and absorbing boundaries located at 0 and nmax + 1,
respectively. Dj is the size-dependent diffusion coefficient along
the size coordinate, which is also equal to the collision rate of
vapor molecules, with a particle of size n = j (g = nseed + j )
(McGraw 2001):

Dj = nv

√
8πkT

mv

r2
1 (nseed + j )2/3 = PextA(j )√

2πmvkT
. [17]

Here, r1 is the vapor monomer radius corresponding to the
molecular volume v1, nv is the vapor number concentration,
mv is vapor molecular mass, and A(j ) = 4πr2

1 (nseed + j )2/3 is
the surface area of the seed–condensate cluster for n = j . Direct
evaluation of the double summation of Equation (16) provides
the benchmark against which a new approximate formulation
for J1 will be tested and used to analyze the scaling proper-
ties of heterogeneous particle activation rate in the following
section.

4. A SIMPLE BUT ACCURATE EXPRESSION FOR MFPT
AND HETEROGENEOUS NUCLEATION RATE

Figure 3 illustrates a typical distribution of the MFPTs re-
quired to exceed any specified (seed plus condensate) particle
size as a function of that size or, equivalently, as a function of the
upper limit, nmax, in the double summation of Equation (16).
The steep inflection region centered at the critical size (region
II) is indicative of a wide separation of time scales between the
rapid quasi-equilibration of precritical particles (region I) and
the significantly longer times required for barrier crossing and
depletion of N , which occur on the order of τ = 1/J1. The fig-
ure also shows the MFPT to be insensitive to nmax sufficiently
beyond the critical particle size (region III). Henceforth, we set
nmax = 2n∗. Starting with Equation (16), a simple but accurate
expression can be derived for the MFPT and the per-particle
heterogeneous nucleation rate. The result, with details of the
derivation provided in the Supplementary Information, is:

J1 = 1

τ
≈ PextA(j ∗)√

2πmvkT
(1 − e−h)Ze−W ∗

hetero/kT . [18]

Multiplication by N gives the total heterogeneous nucleation
rate:

Jhetero ≈ N
PextA(j ∗)√

2πmvkT
(1 − e−h)Ze−W ∗

hetero/kT . [19]

The reaction set defined by Equation (11) describes an
associating vapor and a correction for association is included
in the rate through the factor (1 − e−h), where h is the length
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1058 R. MCGRAW ET AL.

of the vertical line segment separating regions R1 and R2

in Figure 1 (see Supplementary Information). In the limit of
large h, the distribution of precritical seed–condensate clusters
is dominated by the n = 0 condensate-free seeds, M, and
[M] = N . For the general case that association is present,
[M] = (1 − e−h)N and Equation (19) becomes

Jhetero ≈ [M]
PextA(j ∗)√

2πmvkT
Ze−W ∗

hetero/kT , [20]

which is proportional to the concentration of the start-
ing species—seeds without condensate. The concentration of
condensate-free seeds [M], treated here as just another molecu-
lar constituent of the vapor, is reduced below N by the associa-
tion factor 1−e−h, and Jhetero is correspondingly reduced. This is
an example of the somewhat counterintuitive effect that associ-
ation has on increasing the stability of a metastable vapor phase
through suppression of the nucleation rate (Katz et al. 1966).

4.1. Homogeneous Nucleation Rate
At high-enough saturation ratio, homogeneous nucleation of

the vapor itself will compete with heterogeneous nucleation
and interfere with particle detection, making the comparison of
these two nucleation channels a necessary consideration. The
homogeneous nucleation rate is (Abraham 1974)

Jhomo = nv

(
P ∞

eq

Pext

)
PextA(g∗)√

2πmvkT
Ze−W ∗

homo/kT

= neq
v

PextA(g∗)√
2πmvkT

Ze−W ∗
homo/kT . [21]

As noted previously, Z has the same value here as in the hetero-
geneous case. The vapor pressure ratio, within parentheses to
the right of the first equality, supplies the 1/Sext correction due
to Courtney (1961). It should be noted that Courtney’s correc-
tion, which derives from the addition of a term kT ln(Pext/P

∞
eq )

to the classical Whomo in order to gain consistency with the law
of mass action, does not apply to Whetero because the correction
cancels on taking free-energy differences relative to M when a
seed is present.

4.2. Testing the New Rate Expression
Figures 4 and 5 show the Kelvin curve, together with

the calculated homogeneous nucleation threshold range from
Equation (21) (here shown for rates within ±2 orders of mag-
nitude of Jhomo = 1 cm−3s−1) and heterogeneous nucleation
threshold range from Equation (18) (rates within ±2 orders of
magnitude of Jhetero = 1 cm−3s−1, which numerically equals
J1(s−1) for N = 1 cm−3). The filled circles are from the full
double summation for the MFPT for τ = 1 s (Equation (16)
with nmax = 2n∗) and should be compared with the approx-
imate expression (middle curve) for Jhetero = 1. Agreement is
excellent: to within about 5% in the case of menthol and 2%
for water. The larger discrepancy for menthol is probably due

FIG. 4. Nucleation rates for menthol. Solid curve is the Kelvin limit. Dashed
lines and curves are contours of constant nucleation rate. Horizontal lines: con-
tours of constant homogeneous nucleation rate: top to bottom, Jhomo = 100, 1,
and 0.01 cm−3s−1. Dashed curves give similar contours for the heterogeneous
nucleation rate from the new approximate prefactor-exponent form: top to bot-
tom, Jhetero = 100, 1, and 0.01 cm−3s−1 for N = 1 cm−3. Markers: results from
the double-summation calculation for mean first passage time, J1 = 1 cm−3s−1.

These show excellent agreement with the approximate result (middle curve).

to discretization error as the number of molecules in the critical
nucleus is considerably less in the case of methanol than the case
of water. Barrier heights where the unity nucleation rate thresh-
olds intersect are 18.5 kT for menthol (Figure 4) and 18.3 kT

for water (Figure 5), i.e., much lower than for homogeneous nu-
cleation, where typical barrier heights range between 50 and 70
kT (see Equation (26) below and parameters given in Table 1 for
calculation of the heterogeneous barrier height). Closer to the
region where the seed diameter approaches the Kelvin diameter,
e.g., for barrier heights lower than about 5 kT , the approxima-
tions used to derive the new analytic expression begin to fail
and so the full double-summation formula for the MFPT should

FIG. 5. Nucleation rates for water. Solid curve is the Kelvin limit. Dashed lines
and curves are contours of constant nucleation rate. Horizontal lines: contours of
constant homogeneous nucleation rate: top to bottom, Jhomo =100, 1, and 0.01
cm−3s−1. Dashed curves give similar contours for the heterogeneous nucleation
rate from the new approximate prefactor-exponent form: top to bottom, Jhetero =
100, 1, and 0.01 cm−3s−1 for N = 1 cm−3. Markers: results from the double-
summation calculation for mean first passage time, J1 = 1 s−1. These show
excellent agreement with the approximate result (middle curve).
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LIMITS TO NEUTRAL PARTICAL DETECTION 1059

TABLE 1
Parameters and scaling properties for the four working fluids included in Figure 7 and the theoretical minimum particle size

(dmin
seed) that can be detected by each for N = 1 cm−3 at the threshold conditions Jhomo = Jhetero = 1. Other properties include the

critical saturation ratio for homogeneous nucleation, Scr; dimensionless corresponding states parameter, �/T ; log vapor
saturation ratio in unstable equilibrium with the minimum detectable particle size, h; molecular number concentration of vapor in
equilibrium with bulk liquid, n

eq
v ; and the volume per molecule of bulk liquid working fluid, v1. Note comparative constancies of

homogeneous nucleation barrier height and f min = nmin
seed/g

∗. Data sources: l-menthol, Becker and Reiss (1978); n-nonane, Rudek
et al. (1996); n-butanol, Magnusson et al. (2003); water: Wölk and Strey (2001)

Property l-Menthol n-Nonane n-Butanol Water

Scr 111.5 7.41 3.11 3.20
T (K) 323.15 300.00 300.00 298.15
�/T 4.19 2.40 1.64 1.69
g∗ 23.6 57.8 101.6 102.2
W ∗

homo/kT 55.5 57.9 57.7 59.5
n

eq
v (cm−3) 1.19 × 1016 1.57 × 1017 2.58 × 1017 7.69 × 1017

f min(N = 1) 0.230 0.244 0.254 0.251
h(f min) 2.98 1.20 0.66 0.68
nmin

seed 5.4 14.1 25.8 25.7
v1(cm3) 2.38 × 10−22 2.99 × 10−22 1.53 × 10−22 3.00 × 10−23

dmin
seed(nm) 1.35 2.00 1.96 1.14

be used instead. The exponential decay model (Equation (14))
will also fail in this regime as activation begins to take on less
the character of a random barrier crossing process and more
of deterministic growth. According to the 5 kT criterion, the
simplified expression for heterogeneous nucleation rate can be
used reliably for f ≤ 0.5 (or dseed/dKelvin less than about 80%).
This is the predominant range of interest anyway as the general
goal is to achieve selective detection of the smallest particles,
which is favored by being close to the heterogeneous nucleation
threshold and well below the Kelvin limit. For f ≤ 0.5, the
association factor is typically between 0.2 and 1, while 1/Sext

typically exceeds 0.01. In the context of nucleation, such cor-
rections are often regarded as small, but here, they are needed
to achieve the few percentage level of accuracy with reference
to the MFPT benchmark we have described.

4.3. Nucleation Theorems
Nucleation theorems give the relative sensitivity of nucle-

ation rate to saturation ratio, temperature, or other constraints
(Kashchiev 1982; McGraw and Wu 2003; Vehkamäki et al.
2007). The following relations in terms of the log saturation
ratio follow immediately from the area construction (Figure 1)
on application of the fundamental theorem of integral calculus
to the areas R1 and R1 + R2:

∂ ln Jhetero

∂ ln Sext
= ∂ ln Khetero

∂ ln Sext
− ∂W ∗

hetero
/kT

∂ ln Sext

= 1 − ∂(R1)

∂ ln Sext
= 1 + g∗ − nseed = 1 + n∗, [22]

∂ ln Jhomo

∂ ln Sext
= ∂ ln Khomo

∂ ln Sext
− ∂W ∗

homo/kT

∂ ln Sext

= 1 − ∂(R1 + R2)

∂ ln Sext
= 1 + g∗. [23]

Partial derivatives are taken at constant temperature, and Khetero

and Khomo are the prefactors from Equations (19) and (21), re-
spectively, for the heterogeneous and homogeneous nucleation
rate, each of which makes a contribution of unity to the rela-
tive sensitivity. Evaluating instead the relative sensitivity with
respect to seed concentration gives

∂ ln Jhetero

∂ ln N
= 1, [24]

as expected from the one-seed-per-critical-nucleus assumption.
More generally, measurement of ∂ ln Jhetero/∂ ln N yields the
number of seed particles present in the critical nucleus. An-
other heterogeneous nucleation theorem that follows immedi-
ately from inspection of the area construction gives sensitivity
of the log rate to changes in seed particle size, nseed:

∂ ln Jhetero

∂nseed
≈ − ∂R1

∂nseed
= h (h ≥ 0). [25]

The approximate equality neglects a small contribution from the
association term in the kinetic prefactor. The requirement that h
be nonnegative is discussed in Section 6.
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1060 R. MCGRAW ET AL.

5. FUNDAMENTAL LIMITS TO NEUTRAL PARTICLE
DETECTION

5.1. Maximizing Detector Sensitivity
Avoiding interference from homogeneous nucleation re-

quires that the homogeneous nucleation rate be less than or com-
parable to the activation rate: Jhomo/Jhetero ≤ 1 or, from Equation
(13), Jhomo/J1 ≤ N (cm−3). Under typical CPC measuring con-
ditions, N is in the 10–1000 cm−3range. Nucleation thresholds
are typically sharp, as illustrated for menthol and water in Fig-
ures 4 and 5, respectively, for N = 1 cm−3. The figures show
threshold bands, where the rates Jhomo and Jhetero take on middle
and extreme values of 1, 10−2, and 102, and characteristically
small intersection regions, where the ratio Jhomo/Jhetero ranges
from 10−4 to 104. Operating a CPC just below the homoge-
neous nucleation threshold, Jhomo = 1 cm−3s−1, which defines
the critical saturation ratio Scr, avoids interference from homo-
geneous nucleation, while maximizing sensitivity for smallest
particle detection. The smallest particles will be detected under
conditions that are simultaneously close to the homogeneous
and heterogeneous nucleation thresholds, while preserving the
above inequalities. These conditions are used next to establish
fundamental size and concentration limits to neutral particle
detection.

5.2. Signal-to-Noise Ratio Perspective
Taking nucleation rates from Equations (19) and (21), the

preceding criterion becomes

Jhomo

Jhetero
= n

eq
v

N

(
1

1 − e−h

)
A(g∗)

A(n∗)
e−(W ∗

homo−W ∗
hetero)/kT

= n
eq
v

N

{(
1

1 − e−h

)
e−R2

}
≈ n

eq
v

N
e−R2

= n
eq
v

N
exp

[
−W ∗

homo

kT

(
3f 2/3 − 2f

)] ≤ 1. [26]

The second equality uses the fact that the surface area ratio
is unity. As before, f = nseed/g

∗ and R2, the area under the
Kelvin curve referenced in Figure 1, has been evaluated in the
last equality using Equation (8). In the approximate equality,
we neglect the inverse association factor, which as noted pre-
viously is typically close to unity and much less important to
the subsequent discussion than n

eq
v , R2, or N. The expression

to the right of the approximate equality has an especially trans-
parent interpretation in terms of the signal-to-noise ratio: For
steady-state homogeneous nucleation, the constrained equilib-
rium concentration of clusters of size nseed is given by n

eq
v e−R2 ,

where R2 is the reversible work required to assemble a precrit-
ical cluster of this size from vapor in the capillary drop model.
(That the concentration of vapor in equilibrium with bulk liquid
n

eq
v appears, rather than the actual supersaturated vapor concen-

tration nv , follows Courtney [1961].) Although these precritical
clusters arise from thermal fluctuations in the vapor, they have

FIG. 6. Curves of equal heterogeneous and homogeneous nucleation rates
(SNR = 1) for n-butanol. Logarithm of n

eq
v e−R2 or N (these quantities are

equal along these curves from Equation (26)) versus seed diameter (nm). Solid
curves: T = 300 K, top to bottom, J = 106(Sext = 3.67), J = 1(Sext =
3.11), J = 10−6(Sext = 2.78). Dashed curves: T = 320 K, top to bottom,
J = 106(Sext = 2.87), J = 1(Sext = 2.56), J = 10−6(Sext = 2.31). Results
are shown for dseed/dKelvin < 0.8, beyond which the barrier height is lower
than 5 kT . Signal-to-noise ratios for a given set of conditions exceed (are less
than) unity to the right of and above (left and below) the corresponding curve.
Horizontal lines: typical range for N in CPC measurements (101–103 cm–3).

the same probability to subsequently grow to critical size and
contribute to homogeneous nucleation rate that the permanent
perfect wetting seeds have of contributing to the heterogeneous
nucleation rate. Whenever the two concentrations are equal, the
homogeneous and heterogeneous nucleation rates will also be
the same. The expression to the right of the approximate equal-
ity is simply this ratio of concentrations: fluctuating clusters
of seed size (thermal noise) to actual seeds N (signal). Viewed
from this perspective, the ratio n

eq
v e−R2/N , like its equivalent

Jhomo/Jhetero, should normally be maintained less than unity, and
its inverse, the signal-to-noise ratio (SNR), greater than unity in
order that the concentration of homogeneously formed clusters
not exceed the concentration of seeds. (One can conceive of
tricks to work with lower SNRs, such as modulating the seed
concentration, but such considerations are beyond the scope of
the present study.) Figure 6 shows curves of constant SNR = 1
(equivalently, curves for which N = n

eq
v e−R2 ) for n-butanol at

two different temperatures and three different nucleation rates
obtained by varying Sext. Detection at smaller size is seen to be
favored by higher N, lower T , and lower Sext for a relatively
lower homogeneous nucleation rate.

5.3. Scaling and Minimum Detection Size
Because the working fluid enters primarily through its equi-

librium vapor pressure and nondimensional homogeneous nu-
cleation parameters, corresponding states scaling ideas pre-
viously developed to correlate the homogeneous nucleation
thresholds of supersaturated vapors (McGraw 1981; Rasmussen
and Babu 1984; Hale 1992) can be used here. The power of
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LIMITS TO NEUTRAL PARTICAL DETECTION 1061

FIG. 7. Scaled nucleation rate. Dashed hyperbolic curves: contours of con-
stant homogeneous nucleation barrier height, 50 kT (lower curve) and 70 kT
(upper curve). The region between these curves provides a good indication of
homogeneous nucleation threshold range for most substances. Markers show
four candidate working fluids and are centered on the critical cluster size and
critical saturation ratio (as indicated here for the case of nonane), which for
each fluid gives Jhomo = 1 cm−3s−1. Error bars show a four order of magnitude
range in nucleation rate from Jhomo = 0.01 cm−3s−1 to Jhomo = 100 cm−3s−1.
No error bar means that the height of the symbol itself exceeds this range. The
solid curve is the Kelvin curve for nonane (�/T = 2.40 at T = 300 K). The
horizontal and vertical dotted lines for nonane mark the logarithm of its critical
saturation ratio ln(Scr) and g∗, respectively. The area of the rectangle bounded
by these lines and the axes is twice the reduced barrier height, W ∗

homo/kT . The
caret marks the N = 1 cm−3 detection limit for nonane.

scaling is illustrated through its application to a selection of
four widely different working fluids for which homogeneous
nucleation measurements are available (Figure 7; Table 1). Ho-
mogeneous nucleation barrier heights for many substances tend
to be in the 50−70 kT range bounded by the dashed hyperbolic
curves (McGraw 1981), as illustrated for these four fluids in
Figure 7. Each of the fluid-characteristic points shown in the
figure lies at the intersection of several important curves. To
avoid crowding the figure, these are drawn only for nonane to
illustrate the method. They include the curve of constant ho-
mogeneous nucleation barrier height (Equation (5a), which if
drawn would pass through the nonane point and lie within the
hyperbolic dashed curves), the Kelvin curve (which depends
on the scaling parameter �/T ), and the horizontal and vertical
lines marking ln Scr and g∗, respectively. The parameters needed
to construct similar sets of curves for each of the other working
fluids are provided in the table.

The maximum sensitivity condition for each working fluid
lies close to the critical saturation ratio, indicated in Figure 7
for nonane by the horizontal dotted line. The threshold values
in the first row of Table 1 were obtained from Equation (21) by
adjusting Sext to have Jhomo = 1. Thus, the minimum detectable
size lies close to the ln(Scr) line, between 0 and g∗, and close to
the heterogeneous nucleation threshold. Its precise location is
obtained by solving Equation (26) (here with seed concentration

N = 1 cm−3) for the equality condition Jhomo/Jhetero = 1. The
result, with nmin

seed ≡ f ming∗, is marked by the caret in Figure 7
for nonane and provided for the other fluids in row 9 of Table 1.
Near constancy of f min (row 7) for the different working fluids
suggests its value as an important heterogeneous nucleation
scaling parameter. Using molecular volumes, obtained from the
bulk liquid density (row 10), to convert nmin

seed to a spherical mass-
equivalent volume gives the minimum detectable seed particle
diameters shown in the last row of the table. The entries for
menthol and water match particle diameters at the intersection
of the threshold rates, Jhomo = Jhetero = 1, shown in Figures 4
and 5, respectively. The smallest diameter, at 1.14 nm, is found
for water even though its scaling parameters are very close
to those of n-butanol at 300 K, which has the second highest
minimum detection diameter, 1.96 nm. The nmin

seed values are close
for water and n-butanol, so the difference lies predominately in
the smaller molecular volume for water. Comparing water and
menthol, we observe that the latter has the highest �/T (row
3), which gives it the smallest g∗ (row 4). Here again, water
wins out for having the smaller detection diameter due to its
factor-of-eight smaller molecular volume.

The scaling parameter �/T contains T implicitly in � and
explicitly in 1/T . A useful approximate form for the temperature
dependence of �/T has been obtained by Hale (1992) for sur-
face tensions approximated by a linear form, σ = σ0(Tc − T ),
where Tc is the critical temperature. Neglecting a small temper-
ature dependence in density gives �/T ≈ �H(Tc/T − 1), with
�H ≡ σ0v

2/3
1 /k. Temperature dependence is exhibited in Figure

7 for the case of n-butanol at 10◦ intervals, from 270 to 320 K,
by the triangles positioned from left to right, respectively.

5.4. Nucleation and Growth as a Detection Tool
The preceding discussion examined the case that N ≈

1 cm−3 and applies to the detection of seed particles (or large
molecular impurities) of volume nmin

seedv1 present in the vapor at
concentrations of order 1 cm−3. The question naturally arises
as to whether or not it is possible to detect still smaller parti-
cles and even single neutral molecules this way. According to
Equation (26) and Figure 6, the detection of molecule “impuri-
ties” comparable in size to the molecular volume of the working
fluid requires their presence at the much higher concentration
N ≈ n

eq
v . Intermediate sizes require intermediate seed concen-

trations N (Figure 6). The efficiency of particle detection, equal
to activation probability within the CPC, is defined as:

ε = 1 − N (τ )

N (0)
= 1 − e−J1τ , [27]

where N (τ ) is the concentration of un-activated particles leav-
ing the CPC after residence time τ . A typical CPC residence
time of τ = 0.1 s, and J1 = 1 cm−3s−1, gives ε ≈ 0.1, which
for this residence time is the detection efficiency at the mini-
mum detectable particle sizes reported in Table 1. Efficiency,
being dependent only on the product J1τ , is a metric that does
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1062 R. MCGRAW ET AL.

not include noise from interfering homogeneous nucleation. On
the other hand, from Equation (26), SNR ≈ Jhetero/Jhomo =
NJ1/Jhomo ≈ Nε/(Jhomoτ ) includes the homogeneous nucle-
ation effect. The last approximation (from Equation (27)) is
useful in the limit of low activation probability. Indeed, ε varies
widely along the SNR = 1 curves of Figure 6. Thus, having
N = 100 cm−3 gives a noticeably smaller detectable size than
having N = 1 at the same SNR. These smaller particles will be
detectable at the same rate but at only 1% efficiency relative to
the (somewhat larger) detectable size limits reported in Table 1,
based on having N = 1 cm−3.

Evidence for the detection of critical nuclei containing just
one organic molecule comes from laboratory measurements on
the ternary p-toluic acid/sulfuric acid/water (Zhang et al. 2004)
and cis-pinonic acid/sulfuric acid/water (Zhang et al. 2009) sys-
tems and their interpretation using the nucleation theorem (Mc-
Graw and Zhang 2008). In both cases, the concentration of the
organic acid present in the vapor was of the order 1010cm−3—far
in excess of unity, and comparable to the sulfuric acid vapor
concentration. For a nucleation rate of 103cm−3s−1, this implies
detection efficiency for the organic acid in the 10−8 range. Noise
arises due to binary homogeneous nucleation in the background
sulfuric acid/water vapor mixture. Analysis of ternary-to-binary
nucleation rate ratios in the p-toluic acid/sulfuric acid/water
system (Figure 4 of McGraw and Zhang 2008) gives SNRs for
detection of p-toluic acid in the 5–10 range.

In their investigations of nucleation and growth as a detec-
tion tool, Reiss et al. (1977) concluded: “It is unlikely, however,
that single neutral molecules can be detected [referring to detec-
tion using a diffusion cloud chamber], although the possibility
remains for detecting individual polymer molecules of a sub-
stantial degree of polymerization” (p. 140). Elsewhere in their
paper, on page 29, the authors state: “Even though theory shows
that one cannot detect a single impurity molecule, it shows that
there may be cases in which a nucleus contains only a single
[such] molecule. But this is not the same as having every impu-
rity molecule serve as a nucleus.” Their findings are consistent
with the results obtained here. The following section presents a
preliminary analysis showing that the graphical method can be
used to incorporate departures from the Kelvin relation due to
interactions at the molecular scale.

6. INCORPORATING DEPARTURE FROM THE KELVIN
RELATION

An important tool for direct testing of the Kelvin relation
for small droplets became available with the ability to mea-
sure nucleation rates (as opposed to earlier measurements that
yielded only nucleation threshold conditions). Strey et al. (1994)
performed such a test using homogeneous nucleation rate mea-
surements in conjunction with the nucleation theorem to give
a determination of the critical cluster size for n-butanol. The
Kelvin relation sufficed to predict cluster sizes down to as few
as 40 molecules, an equivalent radius of curvature of 1 nm.

FIG. 8. Area construction similar to Figure 1 but illustrating the effect of
interactions that lower the equilibrium vapor pressure relative to the Kelvin
curve (solid curve). The dotted curve, which only departs from Kelvin at the
smallest cluster sizes, results in a lowering of the barrier height for homogeneous
nucleation to R1+R2−κ . The dashed curve shows lowering of the heterogeneous
barrier from R1 to R1 − δ. Here, h is the length of the vertical line segment
(Equation (S18)). Note that the abscissa (upper scale) has been shifted in the
heterogeneous case to tally only the number of molecules of condensed working
fluid. The lower scale, which runs out to g∗, applies to the homogeneous case.

Similar studies for water showed agreement down to about 30
molecules or about 0.6-nm radius of curvature (Wölk and Strey
2001). One concludes from these studies that even though the
Kelvin relation relies on macroscopic surface tension and den-
sity to predict the vapor pressures of small drops, it tends to
work surprisingly well.

A seemingly common case in homogeneous nucleation oc-
curs when the Kelvin relation works well for clusters of crit-
ical size but fails for smaller ones. This situation is depicted
schematically in Figure 8 by the dotted vapor pressure curve
[P = P1(g)] for the case of attractive interactions that lower
the vapor pressures of very small clusters relative to the Kelvin
curve. The integrated area between P1(g) and the dashed line
at ln Sext equals the corrected reduced barrier height for homo-
geneous nucleation, which in this case is lower by κ from the
prediction of the classical nucleation theory (CNT) based on the
Kelvin curve:

κ =
∫ g∗

0
ln[Peq(g)/P1(g)]dg. [28]

In spite of this barrier lowering, g∗ and barrier curvature near
g∗ are the same as in the classical nucleation theory because
the location and slope at the crossing point of P1 and Peq with
ln Sext remain the same. Thus, the effect of κ is to cause a uni-
form vertical shift in the barrier relative to CNT, resulting in
either a lower (the case depicted here for κ > 0) or higher
(κ < 0) barrier height: W ∗

homo −W ∗
homo(CNT) = −κkT . The ex-

perimental signature of this effect, in accord with the nucleation
theorem, is a vertical shift (also by κ) in curves of ln Jhomo versus
ln Sext, as is commonly seen in rate measurements (Strey et al.
1994; Wölk and Strey 2001). This effect has been studied using
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LIMITS TO NEUTRAL PARTICAL DETECTION 1063

molecular-based theory (McGraw and Laaksonen 1996), but the
present graphical approach makes it more transparent. For the
case of n-butanol, the experimental rate exceeds the classical
nucleation theory prediction by about a factor of 10 (Strey et al.
1994), yielding κ ≈ 2 − 3. For water, the observed shifts (and
corresponding values of κ) are smaller and undergo a change in
sign at about 240 K (Wölk and Strey 2001).

6.1. Substrate–Working Fluid Interactions
Molecular-scale interactions between a particle surface and

the working fluid can also result in departure from the Kelvin re-
lation. Such interactions are not easily incorporated into macro-
scopic properties such as the contact angles and line tensions
used by the classical nucleation theory. Evidence for strong sur-
face effects that seem to defy a classical description is seen
in recent measurements comparing nanometer-sized particles
of Ag and NaCl. These substances show very different activa-
tion efficiencies and, in the case of NaCl, unusual temperature
dependence (Schobesberger et al. 2010). While not complete
without a detailed picture of the interactions in question, the
graphical method provides a molecular framework for general-
ization of the classical nucleation theory based on deviations in
vapor pressure (positive or negative) relative to the Kelvin curve.
Figure 8 illustrates the case that departures from the classical
homogeneous nucleation theory are due to interactions that take
place within clusters of the pure working fluid that are smaller
than the seed so that P1(g) ≈ Peq(g) for g ≥ nseed, but inter-
actions between the seed and the working fluid can still cause
departure from the classical heterogeneous nucleation theory
for perfect wetting. The effect on vapor pressure is depicted
by the dashed curve [P = P2(g)] in Figure 8 for the case of
attractive interactions, resulting in a vapor pressure lowering
near the seed surface. Reduction in h, as suggested in the figure,
might possibly be inferred through measurements of the relative
sensitivity of heterogeneous nucleation rate to seed size using
the nucleation theorem of Equation (25). Note, however, that
whenever the vapor pressure at nseed falls below Pext, h becomes
negative. Familiar examples occur in the Thompson theory, for
charged particles, and in the Kohler theory for soluble nuclei.
In such cases, Equation (25) predicts a relative sensitivity of
zero as the particle undergoes spontaneous growth until achiev-
ing stable equilibrium at Pext. Considering only positive h, the
integrated effect of vapor-pressure-lowering interactions is to
cause a shift in the heterogeneous nucleation barrier height:
W ∗

hetero − W ∗
hetero(CNT) = −δkT , where CNT, within parenthe-

ses, refers not only to the classical nucleation theory but also to
perfect wetting. δ is the area indicated in Figure 8:

δ =
∫ g∗

g=nseed

ln[P1(g)/P2(g)]dg. [29]

The κ- and δ-type molecular interactions (Equations (28) and
(29), respectively) result in modification of the criterion of

Equation (26):

Jhomo

Jhetero
≈ n

eq
v

N
e−R2e(κ−δ) ≤ 1. [30]

The methods used to analyze Equation (26) are readily carried
over to Equation (30). Positive values of δ − κ allow for the
detection of smaller particles. Because measurements suggest
that κ is typically quite small (i.e., several kT), almost any kind
of molecular bonding between the substrate and the working
fluid should allow for the detection of smaller particles than as
predicted by Equation (26). The opposite tendency, requiring a
larger particle sizes for the same detection efficiency, follows
for repulsive interactions (δ < 0)—including interactions of
the type that manifest macroscopically as cases of imperfect
wetting.

The results in this section show qualitatively and quanti-
tatively how molecular interactions that lower (elevate) vapor
pressure cause enhancement (reduction) of the nucleation rate.
For the ternary organic acid/sulfuric acid/water systems dis-
cussed in Section 5, recent quantum chemical calculations point
to strong organic acid–sulfuric acid hydrogen bonding as re-
sponsible for the stabilization of the critical complex and en-
hancement of the nucleation rate seen in laboratory measure-
ments (Zhao et al. 2009).

7. SUMMARY AND DISCUSSION
In this paper, we presented theory and a graphical method

for the analysis of homogeneous and heterogeneous nucleation
barriers. The results reproduce the classical nucleation theory
for the case that the droplet vapor pressure follows the Kelvin
relation, while allowing interactions at the molecular scale that
cause deviations in vapor pressure from the Kelvin result, and
from the classical nucleation theory, to be formally included.
Several nucleation theorems were shown to follow immediately
from the graphical method, as does the Zeldovich factor, here
related to the slope of the Kelvin curve at the critical nucleus size,
that appears in expressions for homogeneous and heterogeneous
nucleation rate.

Calculations based on MFPT kinetics were carried out and
used as the benchmark to develop and test a new simplified
expression for the MFPT and heterogeneous nucleation rate.
Including (or not including in the case of heterogeneous nucle-
ation) Courtney’s 1/S correction and allowing for particle–vapor
association at precritical levels of condensate yielded accura-
cies to within a few percentage points when compared with the
MFPT results.

Criteria for guiding the selection of working fluids and op-
erating conditions in order to optimize neutral particle detec-
tion were derived from a consideration of detection efficiency
and a new metric for assessing heterogeneous nucleation—the
signal-to-noise ratio. Corresponding states correlations, previ-
ously developed in the context of the homogeneous nucleation
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theory, were shown to be applicable to heterogeneous nucle-
ation and used to identify key scaling parameters and obtain
results in a universal (material-independent) form. Detectability
at minimal-seed-to-molecular-volume ratio, vseed/v1 = nmin

seed,
was shown to be favored for larger values of �/T , lower vapor
concentration, n

eq
v , and molecular-level particle–working fluid

interactions that lower vapor pressure relative to the Kelvin
curve. In the latter case, to the extent such interactions (e.g.,
hydrogen bonding or antigen–antibody interactions) are fa-
vored and characteristically paired, highly selective methods for
nanoparticle detection based on nucleation and growth should
result. Future research should include extending the graphical
method (or equivalent) to multi-component working fluids, more
complete development of molecular-based approaches to the nu-
cleation theory, and theory and experiment aimed at elucidating
temperature dependence.
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