
PREDICTING SOFTWARE FAULTS 
 

Jay Naphas 
 

Federal Aviation Administration/AST-300, 800 Independence Avenue SW, Washington, DC 20591, USA, 
Jay.Naphas@faa.gov 

 
 
ABSTRACT 
 
At first glance, software faults appear to occur 
randomly.  On deeper inspection, faults seem to 
possess a devious intelligence, hiding in the system to 
elude software testers and pouncing on unsuspecting 
users at the worst possible moments.  These 
observations hint at the idea that we need a central 
organizing theory of software safety that makes 
testable predictions about the potential software faults 
in a system from known or knowable information.  
This paper proposes a new theory to meet this demand, 
and presents both the derivation of the theory and a set 
of predicted observations to verify it. 
 
1. DERIVING THE THEORY 
 
All software faults are manifestations of errors in 
mental models; this is the proposed central organizing 
theory of software safety.  Mental models are 
developed by communication processes, both among 
people and between humans and computers.  Mental 
models are stored in the human mind between 
communication steps and in software as it is written.  
Errors in software may or may not be severe enough to 
demand correction, but the errors exist, in every case, 
as a result of errors in mental models.  From the theory, 
we predict that the most effective prevention and 
mitigation measures for software faults will be derived 
from psychology and sociology.   
 
Further, software error mitigations that ensure the 
construction of accurate mental models and 
communicate those models with high fidelity will be 
the most effective, and organizations that implement 
such measures will experience relatively few software 
faults.  These predictions are testable, and examples 
from accident history attest to their accuracy. 
 
At this point, it is important to note the role of 
computer hardware in software safety.  The mental 
model stored as software must include an 
understanding of the mechanical limits of the hardware 
on which the software executes.  Any defect in that 
understanding, or any difference between the as-built 
computer hardware and the programmer’s assumptions 
about that hardware, will introduce potential errors into 
the software.  Technical understanding of computer 
hardware, and indeed of system hardware generally, is 

a necessary, but not sufficient, part of the mental 
modeling processes that produce software. 
 
The central organizing theory of software safety also 
predicts that lower software error rates correspond to 
effective communication techniques within and 
between every stage of the software development 
process, and indeed at every stage of the system 
development process.  Further, communication 
effectiveness is necessarily limited by the capabilities 
of the human mind and the computer hardware; the 
implications of this constraint are assessed in this paper 
and applied to complex software development.  What 
emerges from this paper is a theory that organizes our 
thinking about software safety, and that makes 
experimentally verifiable predictions about the types of 
software faults that can emerge from any specific 
development effort. 
 
To derive the theory, we must first limit the faults 
under consideration, and software safety must include 
all those situations in which software has a safety role.  
The software safety domain is defined here as a 
continuum from faults with minimal, peripheral 
software involvement to faults that manifest entirely in 
the software.  At one end of the software safety 
domain, we find computer hardware faults for which 
software may be a possible mitigation; single-event 
upsets in memory are one example.  These are 
hardware problems for which software can provide an 
effective remedy, but for which software is not 
intrinsically necessary. 
 
The software-only end of the spectrum is more difficult 
to bound, and it is this boundary condition that gives us 
the first insight into the form of the theory.  A true 
“software-only” fault would have to manifest in the 
software of its own accord.  This definition rules out 
human error, hardware flaws, and design defects; 
design, after all, is a human action.  The fact that all 
software is brought into existence by human action, 
whether by directly coding or using other software to 
deliberately generate more code (as with a compiler or 
autocode generator), implies that, in the matter of 
finding a true root cause, no “software-only” end 
exists.  Faults that manifest in software do so, without 
exception, because a human put the faults there. 
 



It is important, at this point, to note that much software 
is now written using other software.  In modern coding, 
it is therefore critical to understand the mental model 
stored in the software that you use to create other 
software.  The theory predicts that there is an 
opportunity for mental model conflict, and therefore 
software error, of a size and form dictated by the 
disparity between the actual mental model stored in the 
coding support software and the programmer’s 
understanding of that model.  In other words, the 
programmer must understand the software they use to 
create software, as well as the software they’re 
creating, in order to accurately translate their mental 
model into code. 
 
The fact that software faults are universally of human 
origin leads to the theory of software fault causation 
when combined with one other important fact: software 
is a set of instructions that a computer executes over 
time, not a component that exists in space.  A fault in 
software is thus analogous to a missed step in a 
procedure, a computation performed with invalid 
numbers, or a mathematical error in a calculation, such 
as 2+2=5.  These are errors that represent flaws in the 
mental model preserved in the software; they are errors 
in design.  Software faults are therefore the 
manifestations, during execution, of the flaws in the 
models from which the software was written.  Those 
models are formed in the human mind, and are thus 
formed by psychological and sociological processes. 
 
Indeed, when software faults manifest into accidents, it 
often seems as though “the machine had a mind of its 
own,” and this is not a trivial observation.  In such 
situations, the software truly “believes” something 
about the world that is patently false, and that belief 
has caused it to take unsafe actions or inactions.  The 
difference between reality and the software’s 
understanding of the world is the proximate cause of 
such accidents.  The root cause of all software errors, 
however, and the cause that we can address with the 
theory of software safety, remains with the humans, for 
they inescapably give the software all of its beliefs, 
both true and false.  
 
There are theoretically infinite beliefs that can be used 
to write software, and an equally infinite variety of 
false beliefs that serve the same purpose.  The problem 
of false belief has resulted in the development and 
application of Common Ground Theory [1] to improve 
the safety of robotic systems; by checking the robot’s 
beliefs against the operator’s beliefs directly, the two 
perform tasks faster and safer [2].  A false belief may 
be that it doesn’t matter which propellant gets to the 
combustion chamber first, or that 3 meters plus 1 foot 
equals 4 meters, or that 129 can be stored in an 8-bit 
signed integer, or that all values between -10 and +10 

are permissible denominators, or that the compiler 
checks for counter synchronization, but the practical 
implication is that an erroneous belief was used by a 
programmer to write the software.  That is the root 
cause of every software fault. 
 
This conclusion is not to be used to blame the 
programmer, because the flaw in the mental model, or 
the false belief, very frequently enters the system 
during requirements development.  Creating a complex 
mental model of a system that no single person can 
fully understand demands communication, for 
communication is the only means available to increase 
the mental capacity of a person or group beyond the 
bounds set by psychophysiology.  Communication is 
therefore critical for the development of good 
requirements, because each system designer must be 
able to check their changes to the design against a 
common model of how the system will operate.  
Communication errors are frequently the cause of 
requirement errors, and requirement errors are passed 
to programmers who dutifully write them into system 
behaviors that pass tests.  At the same time, the system 
tests are frequently written from the requirements that 
contain the initial error, which makes the primary 
mitigation measure for software error (testing) far less 
effective when this is done. 
 
Communication errors, in this paper, include errors of 
both commission and omission, both deliberate and 
inadvertent, and both within groups of humans and 
between humans and computers.  Further, the working 
definition of “communication” here is: “the process by 
which a mental model is transferred from one storage 
medium (biological or electronic) to another.”  
Psychological limitations are the characteristics of the 
human mind that bound the size and complexity of the 
concepts it can actively manipulate and store at any one 
time.  This further complicates the communication 
problem, because there is the potential to lose 
information both due to the method of communication 
and the mind’s method of storing and recalling it. 
 
This is where the central organizing theory of software 
safety finds its greatest utility: focusing our mitigation 
measures on the very complex problems presented by 
the development of complex mental models.  
Mitigation measures for software faults must maintain 
the fidelity of the mental model of a system throughout 
its development, and provide the means to directly 
check the mental model of the system for errors.  
Armed with this test, we can evaluate the effectiveness 
of changes to the design process in terms of storing and 
checking mental models prior to making changes, and 
consciously design system development processes that 
transfer and store mental models with a minimum of 



loss or error.  That is precisely what will reduce the 
prevalence of software error. 
 
The theory has one further implication.  The design of 
a system is precisely analogous to the design of 
software, so we postulate that the safest designs will 
result from design processes that produce and store 
accurate mental models.  The theory can thus be 
expanded to read: all errors in software and system 
design are manifestations of errors in mental models.  
We can therefore evaluate design processes, as well as 
programming practices, based on their ability to 
develop, communicate, and store mental models.  The 
implications of this theory for reducing the initial error 
prevalence in new systems will be explored more 
thoroughly in a forthcoming paper. 
 
2. SPECIFIC PREDICTIONS 
 
To be useful, a theory must make specific, testable 
predictions about the nature of future observations.  
Several such predictions arise directly from the theory 
of software safety posited in this paper.  To understand 
these predictions, we must first characterize exactly 
what is meant by “communication error” or “modeling 
error,” as those are the two sources of software error 
predicted by the theory. 
 
A communication error is a failure of a pair of 
communicators to transfer complete and accurate 
mental model information between the sender and the 
receiver, which results in an incomplete or inaccurate 
mental model in the receiver.  This could be due to any 
or several of the following, or others not listed: 
● Failure of the communicator to recall and 

convey all of the relevant details stored in his 
or her mental model. 

● Failure of the receiver to check the new 
mental model for inconsistencies. 

● Failure of the communicator to verify that the 
receiver has stored and can recall the 
components of the mental model during 
communication. 

● Failure of the communicator to check his or 
her mental model against that of the receiver 
after communicating it. 

 
There are a wide variety of factors that influence the 
likelihood of communication error.  These factors 
include the following: 
● Interpersonal conflicts that overtly hinder 

communication, such as open hostility, 
evident or perceived bias, or other 
breakdowns in communication between sets 
of individuals. 

● Low-fidelity communication methods, such as 
the use of long text descriptions in place of 

easily comprehensible diagrams, email in 
place of meetings, or verbal exchanges 
without adequate preservation of their content. 

● Structural impediments to communication, 
such as geographic separation of development 
team members, when not mitigated by 
communication technologies. 

● Assumptions regarding the knowledge bases 
of others, such as educational background or 
prior experience, that if inaccurate may lead a 
communicator to believe that the receiver 
either already knows some key piece of 
mental model information (such as the units in 
which a program is coded) or that the receiver 
knows too little (leading to a bored or 
dismissive receiver attitude).  Such 
assumptions may lead to interpersonal 
conflicts. 

● Social pressures, both to appear 
knowledgeable and subordinate, may 
influence the information given by a 
communicator and the thoroughness of the 
receiver’s checking of that information. 

 
A modeling error, by contrast, is an error that occurs 
during a person’s internal mental manipulation of the 
model.  The preconditions for modeling errors exist in 
the human mind continuously, and change with 
experience, making modeling errors difficult to 
prevent.  Human working memory is limited 
biologically, and this limitation leads to many 
modeling errors of the “oops, I forgot something” 
variety.  Other sources of modeling error include, but 
aren’t limited to: 
● Attention errors, where an aspect of a mental 

model is thought to be less important than 
others, and under-analyzed as a result. 

● Interruptions.  Mental model manipulation is a 
demanding task, and requires continuous 
focus to prevent components of the model 
from being displaced from working memory 
by a distraction, whether momentary or 
persistent. 

● Extraneous information, brought in from the 
manipulator’s prior knowledge or experience, 
can influence the importance given to 
components of a mental model, or alter them 
entirely. 

● Preconceived notions about the system may 
lead to inaccurate perception of the system or 
its anticipated operating environment, which 
in turn distorts a person’s mental model of the 
system, both when they first learn about the 
system and during their manipulation of the 
mental model of the system. 

 



The two sources of software error, characterized above, 
lead directly to testable predictions about the form and 
prevalence of software errors.  In the following 
discussion of communication problems, it is important 
to acknowledge the challenges associated with 
diagnosing communication problems in an organization 
in real time.  To overcome this limitation, we can focus 
our efforts on setting up an organization for good 
communication from the start, rather than relying on 
finding and fixing problems along the way.  Good 
communication is predicated on trust, familiarity, and 
skill in conveying information.   
 
The most evident prediction derived from the theory of 
software safety concerns software testing.  
Development efforts where the testers report feeling 
“disconnected” from the process, or where tester 
feedback is minimal, or where testing is limited to tests 
designed by system or subsystem designers, will 
experience an increased proportion of errors in general.  
It has long been known, colloquially, that software 
systems tend to be safer when the testers are highly 
engaged and given plentiful resources, and the theory 
explains why this has been observed.  Constructing and 
checking mental models takes time, and testers with 
adequate time and resources to perform those functions 
are more likely to find errors.  In particular, testers 
given the time and latitude to devise and run innovative 
tests of a system tend to find errors that would pass 
through the scripted test process undetected.  Defining 
“adequate time and resources” remains a challenge, and 
the definitions will necessarily vary with other traits of 
the development effort, but the essential point is that 
some combination of time and resources in the testing 
phase will produce a system that has been verified 
across the predictable limits of the operating 
environment, and that the mental model stored as the 
software must be verified across the environment in 
which it will be used. 
 
Development efforts that feature communication 
problems within the system designer group will tend to 
have more errors generally.  In particular, two specific 
types of errors tend to result from such a development 
effort:  
● Resource allocation errors (memory leaks, 

throughput deficiencies, etc) due to changes in 
requirements as the design matures and prior 
mistakes are corrected. 

● Requirement errors (wrong units, mode 
confusion, etc) due to conflicting 
requirements. 

 
Development efforts that feature communication 
problems between system designers and programmers 
will also tend to have more errors in general, and 

similar specific errors.  There are, however, some 
differences worth noting: 
● Resource allocation errors (memory leaks, 

throughput deficiencies, etc) will be 
concentrated in specific software modules, 
instead of distributed across the system. 

● Requirement errors (wrong units, mode 
confusion, etc) will also be concentrated in 
specific modules, and these concentrations 
will correlate with specific programmers. 

 
Notably, in both of the previous two predictions, the 
length of the requirements development and design 
phase is not the key factor; the characteristics of 
communication drive the form and prevalence of the 
errors that result from the development effort.  In fact, 
short requirements development and design stages tend 
to result in more errors discovered during coding and 
testing.  This is due to incomplete communication in 
and between the design and requirements stages; 
complete communication takes time, and that time is 
well spent up front to prevent problems during testing. 
 
It is also noteworthy that diagnosing communication 
problems is a non-trivial challenge.  Almost by 
definition, communication problems are difficult to 
detect because communication problems cause the loss 
of information; without information, it is difficult to 
detect a problem in the information.  This is a 
challenge worth meeting by training people in 
communication skills. 
 
Development efforts that feature communication 
problems between programmers and their computers 
will tend to encounter problems in the debugging and 
testing phases.  Such efforts are fortunately rare, as this 
has been the focus of much of the discipline of 
computer science since its inception.  The evidence that 
an effort is experiencing this problem would be 
requirements that pass every test for consistency and 
completeness, including critiques by programmers.  
Should such a problem be discovered, improved coding 
interfaces may be needed, or programmer 
qualifications may need to be revisited. 
 
The theory of software safety also makes the testable 
prediction that the development effort that produces the 
most complete mental model of the system, and 
transfers it accurately throughout development, will 
result in the safest system.  On a decision-by-decision 
basis, this implies that aspects of the development 
method can be evaluated for the degree to which they 
produce and communicate complete and accurate 
mental models.  Safe software development is the 
result of evaluating the development processes on the 
specific basis of ensuring mental model fidelity. 
 



3. PRECONDITIONS FOR SAFE SOFTWARE 
 
The theory that all software faults are defects in mental 
models produces useful information about the structure 
of a safe software development process.  Specifically, 
there is a set of readily accessible preconditions on 
which safe software necessarily depends.  These 
preconditions include: 
● Testers must have the time, resources, and 

authority to test their full mental model of the 
system against the as-built system. 

● Programmers must have open lines of 
communication with system designers, 
architects, and end users, whenever possible. 

● System designers must be able to consult 
programmers during initial system design.  
This will allow them to intelligently allocate 
tasks between hardware and software, as well 
as verify feasibility of requirements. 

● System designers must be trained to discern 
and communicate the assumptions they make 
about the way a system will be used. 

● Testers must be encouraged to find innovative 
tests of a system that challenge it to respond to 
novel situations. 

● Predicted or representative end users must be 
consulted during system design to verify that 
the requirements implemented by the system 
designers meet the requirements of the end 
users. 

 
These preconditions are offered as examples of 
imperatives derived from the theory.  Software 
development efforts share these needs regardless of the 
purpose of the software, and the assurance of such 
preconditions will drive errors out of any software 
development effort. 
 
4. CONCLUSION 
 
The central organizing theory of software safety 
proposed in this paper is that software faults are, 
without exception, manifestations of errors in mental 
models that result from psychological and sociological 
processes.  This theory gives the space safety 
community a powerful new insight into the prediction 
and mitigation of software faults, a predictive power 
that is absolutely vital in an arena where “fly-fix-fly” is 
prohibitively expensive and ethically untenable.  The 
theory, or at least hints of it, has been long suspected 
by many in the software community, but formal 
recognition is required to drive beneficial changes in 
the way software is developed. 
 
With a formal theory, we can now derive specific 
methods for software safety that directly address the 
root causes of software errors.  Further, we can now 

know, in advance, which safety method will produce 
better results by comparing the fidelities of their mental 
modeling processes.  It is this predictive power, the 
ability to know software has been developed safely 
before it flies, that will be of great benefit to the space 
safety community in the decades to come. 
 
Finally, the theory is broad enough to cover all design 
processes, not only software development.  The critical 
fact is that, in both software development and system 
design, the errors in the mental model transfer into the 
operation of the resulting system.  The mental model 
becomes the physical system and the software that runs 
it, and we can and must get that mental model right.  
Speaking freely, communicating clearly, and 
questioning extensively will prevent errors in our 
designs and in our software. 
 
This paper has named the “enemy” in software safety: 
mental model errors are the cause of all software and 
design errors.  We can now select the design processes 
and programming practices that produce accurate 
mental models, and know that our systems will be safer 
as a result. 
 
5. REFERENCES 
 
1. Clark, H. H.  (1996).  Using Language.  

Cambridge University Press. 
 
2. Stubbs, K. (2008).  Robot Proxy Grounding.  

Doctoral Thesis, Carnegie Mellon University, 
Pittsburgh, PA. 


