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Biological and technological networks contain patterns, termed network motifs, which occur far more often
than in randomized networks. Network motifs were suggested to be elementary building blocks that carry out
key functions in the network. It is of interest to understand how network motifs combine to form larger
structures. To address this, we present a systematic approach to define “motif generalizations”: families of
motifs of different sizes that share a common architectural theme. To define motif generalizations, we first
define “roles” in a subgraph according to structural equivalence. For example, the feedforward loop triad—a
motif in transcription, neuronal, and some electronic networks—has three roles: an input node, an output node,
and an internal node. The roles are used to define possible generalizations of the motif. The feedforward loop
can have three simple generalizations, based on replicating each of the three roles and their connections. We
present algorithms for efficiently detecting motif generalizations. We find that the transcription networks of
bacteria and yeast display only one of the three generalizations, the multi-output feedforward generalization. In
contrast, the neuronal network &f. elegansmainly displays the multi-input generalization. Forward-logic
electronic circuits display a multi-input, multi-output hybrid. Thus, networks which share a common motif can
have very different generalizations of that motif. Using mathematical modeling, we describe the information
processing functions of the different motif generalizations in transcription, neuronal, and electronic networks.
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I. INTRODUCTION motif appears independently in the network or whether in-

A major current challenge is to understand the function ofStances of the motif combine to form larger structures
biological information-processing networid-13. These [15.20,55,5B If the latter occurs, what is the function of
networks, as well as networks from engineering, ecologythese larger structures? Do different networks that share a

and other fields, were recently found to conta&twork mo- certain network motif also share the same structural combi-
tifs: small subgraphs that occur in the network far more ofternations of that motif? These questions require analysis of
than in randomized network45,14. Each class of networks large subgraphs, a computationally difficult problem
was found to have a characteristic set of network moti€s. [26—29. Recently, efficient algorithms for counting sub-
Information-processing networks, such as gene regulatiographs based on sampling have been intrody2&f These
networks[15,17], neuron networks, and some electronic cir- algorithms can at present be effectively used to detect motifs
cuits, were found to share many of the same network motif®f up to six to seven nodes. To go beyond this requires an
[14,14. Recently, in the case of the transcription network ofapproach to efficiently define and detect large structures
the bacteriumE. coli, network motifs were shown theoreti- whose architecture is based on a given motif.

cally and experimentally to function as elementary building To address these issues, we present an approach for unit-
blocks of the network, each performing specific information-ing related groups of motifs of different sizes into families
processing task§l5,18,19. For example, one of the most termedmotif generalizationsThis allows generalizing from
significant motifs shared by biological information process-small motifs to the larger complexes in which they appear.
ing networks is the feedforward logFFL). In transcription ~ We present an efficient algorithm to detect motif generaliza-
networks, the feedforward loop with positive regulations wastions. We find that networks that share the same motif can
shown to act as a “persistence detector” circuit that rejectave different generalizations of that motif. For example, we
transient activation signals yet allows rapid response to inadind different generalizations of the FFL motif in transcrip-
tivation signals[15,18,19. A second motif, the single-input tion, neuronal and electronic networks. Using mathematical
module, was shown to generate a temporal order of gengodels we analyze the information-processing functions
expression, which correlates with the functional order of theof the FFL generalization that is selected in each of these
genes in the pathwafl5,21,22. A third major motif, the  networks.

bifan, which is the building block of dense arrays of over-

lapping regulation, performs hard-wired combinatorial deci- Il. RESULTS
sions governed by the input functions of the output genes
[23_25 y P put g A. Node roles in a subgraph

Network motifs can, in some cases, also be used as build- We begin by definingoles of nodes in a subgraph. A
ing blocks of a coarse-grained version of the netwi@4]. group of nodes in a subgraph share the same role if there is a
Here, we address the question of whether a given networgermutation of these nodes, together with their correspond-
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FIG. 1. (a) A directed three-node subgraptin) This triad has

two roles.(c) Roles in all 13 types of connected triads. In each triad
there are between one and three roles.

ing edges, that preserves the subgraph stru¢sae Appen-
dix A for formal definitiong. For example, in thé&/-shaped
subgraph in Fig. ), nodes(b) and (c) can be permuted,
leaving the structure intact, whereas nodasand (b) can-
not. Thus, this subgraph has two roles, role 1 and rdlei@. d
1(b)]. The FFL has three roleg-ig. 1(c), triad 6], whereas
the three-loodFig. 1(c), triad 7] has only one rolgébecause

a cyclic permutation of the three nodes preserves its struc-
ture). The 13 possible connected directed triads have be- LES
tween one and three roles egétg. 1(c)]. ;

Strong generalization Weak generalization

Bi-fan 5-node generalization of the bi-fan

e 1]
B. Subgraph topological generalizations Multinode simplo
We now define subgraph topological generalizations generalization of the bi-fan

based on node roles. Subgraph topological generalizations
are extensions of a subgraph to a family of larger subgraphs
which share its basic structure. Consider the FFg. 2(a)].
For this three-node subgraph we define three simple gener-
alizations to the level of four nodeg=ig. 2b)]. In each
simple generalization a single role and its connections are
duplicated. In the first simple generalization, tkeole and

its connections are duplicated. This generalization is termed g Multi Y

doubleX FFL or double-input FFL. The other two generali-

zations are obtained by duplicating tiveor Z roles. This

replication process can be continued, leading to higher-order , ,
motif generalizations, the mul¥-(multi-input), multi-Y, and FIG. 2. (a) The feedforward loop triad has three role(input
multi-Z (multi-outpuy FFL generalizationgFig. 2(c)]. node, Y (internal, secondary inpuhode, andZ (output node (b)

More complex generalizations can be obtained by l,ep”_Four-node simple generalizations of the feedforward loop. Xhe

cating more than one of the roles. For examble. duplicatin node is duplicated to form the doublegeneralization. Th& andzZ
both ?heX andZ roles vields five-nbde enerarl)ize,ltiofl% %odes are duplicated to form the douMeand doubleZz generali-

olesy 9 . g. zations, respectivelyc) Simple multi-node generalizations of the
2(d)]. When replicating more than one rofand in some

. . . FFL. (d) Strong and weak generalization rules. A five-node gener-
cases replicating even a single rplene can define two alization of the FFL with twoX nodes, oneY node, and twaZ

kinds of. generalizations: in strong generaillzajuons, eVeNodes. In the strong generalization every combination f %, Z
X,Y,Z triplet forms a FFL. In weak generalizations, every rplet of nodes forms a FFL(e) The bi-fan, a four-node motif with
node participates in at least one FFL, but not all possibleyg rolesX (input role and Y (output role. (f) Five-node simple
FFLs are formedFig. 2d)]. generalizations of the bi-fan. In each of the two generalizations one

This procedure of generalization can be applied to anyf the two roles is duplicatedg) Simple multi-node generalization
subgraph(see formal definition in Appendix)BFor example  of the bi-fan: anX or Y node is replicated to form the multi-input or
simple generalizations of the four-node bi-fan are shown irmulti-output bi-fan generalization, respectively.
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Figs. 2e)—-2(g). We now describe the statistical significance into each node. In the case of positive regulation and AND-
of the generalizations of the motifs found in various net-logic, the three-node FFL has been shown to function as a
works. persistence detectgt5]: it filters out short input stimuli tX
and responds only to persistent signals. On the other hand, it

C. Network motif topological generalizations responds quickly to OFF steps in the input¢15,18. With
an OR-gate the FFL filters OFF pulses and reponds rapidly to
ON pulses[18]. With other sign combinations, the three-
! lﬂode FFL can function as a pulse generator or response ac-

can be _performed effic_iently. by an aIgorithr_n described Ncelerator[18,35. These functions apply to a wide range of
Appendix C. Th? algorithm is based on using the appearfyieraction strengths and to bothD andor-like input func-
ances of the basic subgraph as nucleation points for a searg ns

for its generalizations. As an example, we applied this algo- 0.6 e study the functions of the generalizations of the
rithm to networks in which the FFL and bi-fan are motifs, t0 £ \\e begin with the multi-output FFL, which is the gen-
ask whether any of the possible FFL or bi-fan generalizationg 5 jization that is significant in transcription networks. The
occ_ur.3|gn|f|cantly in the ngtworl(s&\ppendlx Q: In the tran- multi-output FFL has a single input nodé a single internal
scription networks oE. coli [15] andS. cerevisiag14] we 4oy (secondary inpyt and a number of output nodes
find that the multiz FFL generalization is highly significant Z, Z,. [Figs. 2c) and 4a)]. The arrows in the FFL dia-

[Ilz_igs._ 33 and 3b)]. Th]f otr:er ;WOEpOS?ible simlfle g?_ner- gram should be assigned numbers representing the strength
allzat|ons are n’ot significaritn the E. colinetwork, multi- - ¢ e jnteraction of the transcription factgfBF’'s) X andY

Xs an(Ij( rt;1ulrt]|—Ys do notloccgr it all, in trllés.fcerewls;i\e with the promoters of the variou genes[21]. These num-
network both appear only twigeAn example of a muite bers correspond to the activation or repression coefficients of
FFL in theE. coli transcription network, the maltose utiliza- .1, genethe concentration of the TF required for 50%
t'(.)n system, is shown in Fig.(8. In each r_nultlz_ FFL, th? effect [5,21,34). Here, we consider for simplicity the most
different gene¢Z roles share a common biological function .,nmon case, that of FFLs with positive regulation and
(@s srlwown n I\ables Il.l ar(;d i Wh'.ch list all rlr(mlﬂ-FFL AND-logic [18]. We employ a simple model of the dynamics
complexes in thé. coli andS. cerevisiametworks. of this circuit [15]. X(t) is the activity of the transcription

In the network of synaptic connections between neurong : -
. . . i actor X, Y(t) of Y, andZ;(t) is the concentration of the gene
in C. eleganq14,30,31, we find a different FFL generaliza- productZ;. The dynamics of transcription factof and the

tion: the multiX FFL [Fig. 3(c)]. This structure occurs 29 outbut gene product® is aiven b
times in the network, with up to four inputs. Muli-and putg P 159 y

While enumerating all subgraphs of a given size is a dif-

multi-Z FFL's are found in far smaller numbetsgloubleX dY/dt=F(X, Ty, - aY,

and doubleY FFLs appear 3 times eacf82]. An example of

a multi-X FFL in the locomotion control circuit of. elegans dz/dt=F(X,T,,0F(Y,T,,) - aZ;,
] ]

is shown in Fig. 4b).

In networks of connections between logic gates inwhere « is the protein lifetime[37,38 and Ty, Tzlx, TZZX,
forward-logic electronic chip$14,33,34 we find no simple Toy: and T,y are the activation thresholds of the various
generalization of the FFL. These electronic circuits do, howgenes[Fig. 5a)]. For simplicity we use a sharp activation
ever, show a complex FFL generalization—a structure withfunction, F(U,T)=1 if U>T and 0 otherwise. The qualita-
two X's, a singleY, and twoZ's [a weak generalization, Fig. tive results apply also to Michaelis-type activation functions.
4(c)]. In the five forward-logic electronic chips we have ana-These equations can be solved analytically, yielding piece-
lyzed, 70% —100% of the FFLs are embedded in instances Gfise exponential dynamics in response to steplike activation
this five-node structure. profiles ofX. We find that the multi-output FFL can encode a

The most prominent four-node network motif in these nettemporal order of expression of tt genes, by means of
works is the bi-far{14] [Fig. 2(€)]. The bi-fan has two roles gifferent activation thresholdd,, for each of the output
and therefore two simple generalizatidifsg. 2g)]. We find  geneqFigs. 5a) and b)]. This temporal ordering feature is
that both simple generalizations of the bi-femulti-output  ghared with another common network motif, the single-input
and multi-inpuj are significant in the transcription, neuronal, module[15,21,22. Indeed, high-resolution expression mea-
and ele_ctrqnic networkSTa.bIe' b. The multi-output bi-fan g rements on the flagella multi-output FRIn E. coli)
generalizations are more significant and the maxiedul-  showed that the class-2 flagella genes, which are regulated
tiplicity is higher than the maximaX multiplicity in all these  py 5 feedforward loop, are activated in a temporal order that
networks. In these networks we find structures of multi-corresponds to the functional order of the gene product in the
output bi-fan with tenY’s and more, while multi-input bi- assembly of the flagellar mot¢89,4Q.
fans do not exceed six inpit nodes. The timing of activation of geng following a step acti-

vation of X is
D. Functions of multi-output FFL generalization
in transcription networks

The function of the FFL depends on the signs of the in- The rise time of the different genes can be tuned by
teractions (positive or negative regulatign on their szy/Ymax, where Y.y iS the maximal concentration of.
strengths, and on the functions that integrate multiple input®ote thatTij can be easily tuned during evolution—for ex-

r=-an(1- ToylYima)-
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FIG. 4. The FFL generalizations found in biological and tech-
nological networks(a) An example of a thre@ FFL in the tran-
scription network ofE. coli, maltose utilization system. The activa-
tor CRP senses glucose starvation, MalT senses maltotriose, and
malEFG, malK, and malS participate in maltose metabolism and
transport.(b) An example of a doubl FFL in the locomotion
neuronal circuit ofC. elegansAVA and AVD are ventral cord com-
mand interneurons. AVD functions as modulator for backward lo-
comotion. AVA functions as driver cell for backward locomotion.
ASH and FLP are head sensory neurons sensitive to noxious chemi-
cals and nose touclic) A generalized form of the FFI2X,Y,22)
found in forward-logic electronic chips. This five-node structure
appears as a part of a six-node module, which implemrats
(exclusiveor) using fourNAND gates.(d) Truth table of the circuit
described in(c) [a (2X,Y,2Z) FFL generalization with additional
NAND gate at the outpilit There are two input bitX1 andX2 and a
single output bit which is equal X1 xor X2).

FIG. 3. Statistical significance of motif generalizations. The cu-28Mple, by mutations in the binding site ¥fin the Z; pro-

mulative number of multZ FFLs in the real networkblack and
randomized networks-mean + SDray) in (a) E. coli transcription
network.(b) S. cerevisia¢ranscription network(c) The cumulative

moters[25,4(Q. TheZ gene with the lowest activation thresh-
old is turned on first after the stimulation Xf
In addition to generating temporal order, the malt=FL

number of multiX FFL's in the real and randomized networks can act as a persistence detector for all of its output genes

(mean = SD in the C. eleganseuronal network.

[Fig. 5b)]: theZ genes are expressed only if the input stimu-
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TABLE I. Bi-fan generalizations in different network&@X, bY) represents the multiplicity of each of the
roles in the generalizatiofFig. 2g)]. “+": statistically significant generalizations. “~": nonsignificant gen-
eralizations. Number of appearand®) or concentratior(x10°%) (C) [27] are listed.

Transcriptional Networks Neurons  Electronic chips

Generalization Subgraph size E. coli Yeast C. elegans S15850

Basic bi-fan 42X,2Y) +(N=209 +(N=1812 +(N=126 +(N=1040
Multi-output 52X, 3Y) +(N=264) +(N=14857% +(N=152 +(N=1990
6(2X,4Y) +(C=0.019 +(C=3.5 +(C=0.19) +(C=0.28

Multi-input 5(3X%,2Y) +(N=20) +(N=81) +(N=25 +(N=226
6(4X,2Y) -(N=0) +(N=14) +(C=0.015 +(C=0.001

Equal multi-input and -output  (8X,3Y) +(N=6) +(N=21) -(N=0) +(N=301)

lus to X is present for a long enough time. The minimal time  Here « is the relaxation rate of the neurons’ membrane

that a saturating stimulus needs to be present to activatepotential, and the synaptic activation thresholdsBe T,,,

genej is equal tor;. Thus this FFL generalization preserves andT,,.

the functionality of the original FFL motif. This model shows that the circuit can act as a persistence
The turn-off order of th& genes upon a gradual decay of detector for bothX; and X, [Fig. 6b)]. In the locomotion

X activity can be separately controlled by the activation co-neuronal circuit examplgFig. 4(b)], the FFL circuit could

efficients of theX TF, TZX [40]. Thus different turn-on and elicit backward motion only if the stimulation of one of the

turn-off orders of thez; genes can in principle be achieved. sensory neurons is longer than a threshold duratideter-

In summary, the multi- output FFL preserves the functionalitymined by the parameters of the circuit:

of the simple FFL and in addition can encode temporal ex- r=-ain(1 ST Yim)-

pression programs among the differeéhgenes.

A transient stimulation would not be enough to elicit
backward motion. Furthermore, we find that sufficiently
closely spaced short pulses ¥ and X, can elicit a re-
sponse,even if each pulse alone cannffig. 6(c)]. This

A different FFL generallzatlon multi- |nput FFL, is found h|gh||ghts a “memory” function ofY, which can store infor-
in the neuronal network of. elegansin general, the func-  mation from recent stimulations over its relaxation time. In
tion of this circuit depends on the signs on the arrows and ofhe basic three-node FFL, can store information about re-
two input functions(gates: one input function integrates the curring pulses ofX. In the multi-input FFL,Y can store in-
multlple X |npUtS toY, and the other Integrates the |npUtS formation from mu|t|p|e |nput$F|g qc) g|ves an examp!e
from Y andXy, ... Xy, to Z [Fig. 6a)]. and increase sensitivity to one input if the other input has

We analyzed the dynamics of one possible two-input FFLrecently been detected. Generally, if the summed input of the
where the input function governing thénode is artorgate,  jnput nodesX; to nodeY is S(t)=F(X,+Xp, Ty,), Z is acti-
OR X,) [Figs. §a)—6(c)]. This choice of input functions en-
sures that botty and eitherX; or X, are needed foZ to be
activated to a level that allows activation of its downstream
(post synaptix neurons or muscle cellgs is the case, for
example, in the circuit of Fig.®), in which ablation of the ~whereY(t=0)=0, showing that nod¥ effectively integrates
neuron AVD results in loss of sensory input to the neuronthe inputs over a time scale of &/
AVA [41]]. These input functions could in principle be
implemented by simple neurons which integrate weighted
inputs. The input function ofZ, for example, represents Forward-logic electronic chips are networks in which
strong synapses froni and weaker ones frord; and X,. nodes represent logic gates. These circuits are optimized to

It is important to note that the simplest equations thatperform a hard-wired logical function between input and out-
describe transcription networks also describe neurons witput nodes. Forward-logic chips, taken from an engineering
graded potential and no spikin@s C. elegansneurons are databas€ISCAS89, were previously found to display the
thought to bg42,43). In the case of neuronX;(t), Y(t), and  FFL network motif[14]. Here we find that they display a
Z(t) represent neuron membrane potentials. The activatioapecific generalization of the FFL, with two input and two

E. Functions of multi-input FFL generalization
in neuronal networks

t
Y(1) = f St)e et dt > T,
0

F. Function of FFL generalization in electronic chips

dynamics of the circuit in Fig. @) are output nodegFig. 4(c)]. Analyzing the appearances of this
pattern, we find that this five-node generalized FFL motif is
dY/dt=F (X, + X5, Ty - @, part of a commonly used module built of foNaND gates,
which implementsxor (exclusiveor) logic on the two in-
dzZidt=F(Y, T,)F(Xy + X5, T,,) — aZ. puts[44] [see truth table in Fig.)].
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FIG. 5. Kinetics of a double-output FFL generalization follow- A" % J
ing pulses of stimuli(a) A double-output FFL with positive regu- f"s_/\l/\\//\w/
lation andanD-logic input function forZ; andZ,. Numbers on the 0 ‘ . . ‘ . . . E
arrows are activation thresholdgb) Simulated kinetics of the M S S S
double-output FFL in response to a short pulse and a long pulse of ! outputlz
X activity. The dashed and dotted horizontal lines represent the S L /\/
activation threshold3, y andT,,. «=1 was used. . - . .

lir?\e
I1l. DISCUSSION
. . . FIG. 6. Kinetics of a double-input FFL generalization following
This study presented a systematic approach for defining;ses of stimuli(a) A double-input FFL. Input functions for and

and detecting topological generalizations of network motifSz ang the activation thresholds, are shown as gates and numbers on
Motif generalizations are families of subgraphs of differentihe arrows(b) Simulated kinetics of the two-input FFL, with short
sizes which share a common structural theme and which afell-separated stimuli pulses ¥ andX., followed by a persistent
pear significantly more often in the network than in random-x, stimulus.(c) Simulated kinetics of the double-input FFL, with
ized networks. The generalizations are produced by replicashortX; stimulus followed rapidly by a shok, stimulus pulse. The
ing nodes in a basic motif structure. The generalizationslashed horizontal line corresponds to the activation threshold, for
often preserve the functionality of the network motif on T,,. «=1 was used.
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which they are based, because they preserve the roles of Motif generalizations cover a substantial portion of the
nodes in the motiffor example, by replicating input or out- high-order motifs in various biological and technological
put nodes We presented an efficient algorithm for detectingnetworks we have studied. However, motifs generalizations
motif generalizations. We find that different networks which in the present form do not cover all possible types of families
display the same motifs can show very different generalizaof structures that share similar architectural themes. It would
tions of these motifs. We also demonstrated using simplge important to find additional rules for defining families of
models that these generalized motifs can carry out specifigyotifs beyond the current notion of motif generalization by
information processing functions. These functions can ing|e replication. Motifs and their generalizations can help us
principle be tested experimentally in transcription and neuy,nqerstand the design principles of complex networks by

ronal systems. - defining functional building blocks whose function can be
The two sensory transcription networks, from a prokary-tested experimentally

ote (E. col) and a eukaryoteS. cerevisiak showed the same To summarize, this study presented topological generali-

generalization of the FFL: both networks display the multi-__ . . - >
output FFL generalizatiofil5,2q. The other two generaliza- zations of network motifs and an efficient algorithm to detect
By them. We found motif generalizations in several real-world

tions, multi-input and multi¥, are not found significantly in K ks that sh h it p
these transcription networks. Multi-output FFL complexes€Works. Networks that share the same motif were found to

are found throughout the transcription networks in diversgexhibit different generalizations of that motif. The general-
systems(Tables 1l and 1l). The X role is usually a global |ze.d motifs in blologl.cal netV\_/orks were Qemonstrated theo-
transcription factor which controls many genes, ¥hmle is  retically to carry out information-processing functions.
usually a “local” transcription factor which controls specific

gene systems, and tlZenodes are the regulated genes which ACKNOWLEDGMENTS

share a specific function. Often, multi-output FFL'sEncoli
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the same regulation pattefti4,45. Examples include sys-
tems that respond to carbon limitation, drugs, and nitrogen
starvation in both organism@ables Il and 1l). Multi-output
FFL's can also appear in systems that make up a protein
machine; for example, a multi-output FFL i coli controls
genes whose products make up the flagellar basal-body m

APPENDIX A: ROLES IN A SUBGRAPH—A FORMAL
DEFINITION

o We classify nodes in a subgraph into structurally equiva-
= . - 2nt classes. Each class represents a role. The measure of
tor [39] (X=fhDC, Y=TliA, Z=class-2 flagella gengsWe  gy,0qyra) equivalence that we use here is automorphic

find that the multi-output FFL can serve as a persistenc . N _ _
detector for all the outputs. In addition it can generate tem‘_f"—.‘quwalence[46 50. Let S=(Vs,E) be a subgraph. An au

oral orders of outbut gene expressidol. tomorphism is a one—to-ong mappmg,from V, to Vg, such
P A different FFL pgengeralizatiF())n, trEe lnulti-input FFL, is that(vi,v)) e Esif and only if (7(vj), 7(v])) € Es. Two nodes
found in the neuronal synaptic wiring . elegans This Vi @hdv; are automorphically equivalent if and only if there
network is found to chiefly display the multi-input FFEig. IS Some automorphism that maps one of the nodes to the
2(c)]. The multi-input FFL has a number of input nodes other [#{vj)=v;]. For each subgrapls, we classify itsn
X1, ... Xy a single internal nod¥ (secondary inpytand a  hodes into roles by examining structural equivalence of all
single output nod&. As an example we have mentioned the Possible pairs of the nodes. By the transitivity of automor-
backward locomotion control circuit of the worm. This cir- phic equivalence, one is guaranteed to partition the nodes
cuit is governed by two ventral-cord command interneurondnto distinct roles. This concept can be readily generalized
AVD and AVA [41,42. These two neurons are linked in a for networks with weights on the edges or with different
multi-input FFL with several input neurons, such as ASH andtypes of nodes.
FLP [Fig. 4(b)], which are head sensory neurons sensitive to
nose touch and noxious Chemicaﬂ41,4a. This circuit APPENDIX B: SUBGRAPH GENERALIZATION—A
implements an avoidance reflex, eliciting backward motion FORMAL DEFINITION
in response to head stimulation. We find that the multi-input
FFL can serve as a persistence detector for each input. In Let Sbe the basic subgraph wherg ... r_ are the set of
addition, it can serve as coincidence detector for weak inroles of S with muiltiplicity (d,,...,d,), respectively. A
puts, firing only if short stimuli from two or more different simple generalization db is a subgraph which is formed by
inputs occur within a certain time of each other. replication of a single role; and its edges to preserve the

A different FFL generalization, with two inputs and two role connectivity ofS. Note that in a simple generalization

outputs, appears in a class of electronic circuits. This motiPnly a single role is replicated. A generalized form of a sub-
generalization functions within aorR gate. This demon- graph is defined by a pafM, V') whereM is anL X L image
strates that network motifs and their generalizations can bmatrix, which describes the connectivity between roles.
used to detect basic functional building blocks of a networkM[i,j]=1 if there is an edge between ralendj (i is not
without prior knowledgg54]. equal toj) andM[i,j]=0 otherwiseM[i,i]=0 if there is no
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TABLE II. Feedforward loops in th&. coli transcription networi15] classified into multizZ complexes. Complex size is the number of
operons(Z-role nodes in the FFL generalization.

Complex size Id. X Y z Function
1 1 arcA appY appCBA Anaerobic/stationary phase
2 crp fucPIKUR fucAO Fucose utilization
3 crp fur CirA Iron citrate uptake
4 crp gals mgIBAC Carbon utilization
5 crp mall malXyY Maltose utilization
6 crp melR melAB Melibiose utilization
7 hns flnDC fliIAZY Flagella regulation
8 metJ metR metA Methionine biosynthesis
9 ompR-envZ csgDEFG csgBA Osmotic stress response
2 10 crp caiF caiTABCDE Carnitine metabolism
fixABCX
11 crp nagBACD manXYZ Carbon utilization
nagE
12 himA ompR-envZ ompC Osmotic stress response
ompF
13 rpoN fhlA fdhF Formate hydrogen lyase system
hycABCDEFGH
14 rpoN gInALG ginHPQ Nitrogen utilization
nac
3 15 crp malT malEFG Maltose utilization
malK-lamB-malM
malS
4 16 crp araC araBAD Arabinose utilization
arakE
araFGH
araJ
17 rob marRAB fumC Drug resistance
nfo
sodA
zwf
5 18 flhDC fliAZY flgBCDEFGHIJK Flagella system
flnBAE
fliE
fiIFGHIJK
fiLMNOPQR
7 19 fnr arcA cydAB Anaerobic metabolism
cyoABCDE
focA-pflB
glpACB
icdA

nuoABCDEFGHIJKLMN
sdhCDAB-b0725-sucABCD
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TABLE lll. Feedforward loops in theS. cerevisiadranscription networl14] classified into multiZ complexes. Complex size is the
number of genegZ-role nodes in the FFL generalization.

Complex size Id. X Y z Function
1 1 TUP1 RME1 IME1 Meiosis
2 RIM101 IME1 DIT1 Sporulation
3 MIG1 HAP2-3-4-5 CYC1 Formation of apocytochromes
4 MIG1 GAL4 GAL1 Galactokinase
5 MIG1 CAT8 JEN1 Lactate uptake
6 MIG2 CAT8 JEN1 Lactate uptake
7 GAT1 DAL80-GZF3 GAP1 Nitrogen utilization
8 TUP1 ALPHA1 MFALPHA1 Mating
9 GAL11 ALPHA1 MFALPHA1 Mating
2 10 TUP1 ROX1 ANB1 Anaerobic metabolism
Ccyc7
11 GLN3 GAT1 GAP1 Nitrogen utilization
GLN1 Glutamate synthetase
12 GLN3 GAT1 DAL80 Nitrogen utilization
GLN1 Glutamate synthetase
13 GLN3 DAL80-GZF3 GAP1 Nitrogen utilization
UGA4
14 PDR1 YRR1 SNQ2 Drug resistance
YOR1
15 GCN4 MET4 MET16 Methionine biosynthesis
MET17
3 16 HAP1 ROX1 ERG11 Anaerobic metabolism
HEM13
cyc7
17 SPT16 SWI4-SW16 CLN1 Cell cycle and
CLN2 mating type switch
HO
4 18 GCN4 LEU3 ILV1 Leucine and branched amino
ILV2 acid biosynthesis
ILV5
LEU4
19 UME6 INO2-INO4 CHO1 Phospholipid biosynthesis
CHO2
INO1
OPI3
6 20 PDR1 PDR3 HXT11 Drug resistance
HXT9
IPT1
PDR5
SNQ2
YOR1
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TABLE lll.  (Continued)

Complex size Id. X Y z Function

15 21 GLN3 DAL8O CAN1 Nitrogen utilization
DAL1
DAL2
DAL3
DAL4
DAL5
DALY
DCG1
DUR1
DUR3
GDH1
PUT1
PUT2
PUT4
UGA1

edge between every two nodes of rald[i,i]=1 if there is  basic rnode sef{Fig. 2d)]. Note that weak generalization

a single edge, anM[i,i]=2 if there is a mutual edga/t can represent more than one unique structure of a given size.
e Nt is anL-dimensional vector which defines the multiplic-

ity of each role. The FFL which is an example of a basic

subgraph, is represented Byler,,(1,1,1) where APPENDIX C: ALGORITHM FOR DETECTING MOTIF
GENERALIZATIONS
011 We begin by finding the network motiisignificant sub-
Mee =[0 0 1 graphg of size n (usually n=3-4) in the network as de-
00 0 scribed in[14,15,27 (application and source code are avail-

able at http://www.weizmann.ac.il/mcb/UriAlgn/For each

. o motif, for each of its roles, we prepare a list of all the nodes
and the vectof1,1,1) describes the role multiplicity: in the  tnat play that role. We perform a search for all of the gener-
basic FFL each of the three rol¥sY,Z appears once. AFFL jjizations of each motif using its appearances in the network
with two output nodes is represented by the pairgs starting point. This search reduces computation time and
(MgeL,(1,1,2). A FFL with m output nodes(m Zrole  epaples the detection of significant generalization forms of
nodes is represented b{Mer, ,(1,1,m)) [Fig. 2c)]. Such a  the basic motifs, which are beyond reach using algorithms
generalization has only one degree of freedom—the multithat attempt to enumerate all subgraphs of a given size.
plicity of the Z role in the structure. There are cases, such as |n order to compute the statistical significance of a certain
the multiplicity of more than one role, where we need addi-generalization of a moti§, we first find for each appearance
tional definitions in order to distinguish between different of Sin the network the maximal size generalization in which
types of structures. For this we define the generalization rulét appears. Then we count the cumulative number of tiGies
We define two possible generalization rules: a strong genegppears in the union of all the maximal generalizati@msto
alization rule and a weak generalization rule. An example okizek). In order to verify that the generalization significance
a strong and weakMgg,(2,1,2) generalization is illus- is not due to many stand-alone appearances of the basic sub-
trated in Fig. 2d). If Sis the basian-node subgraph with a graph(e.g., a singleZ FFL in the case of multgZ FFL gen-

set of L roles represented by the multiplicity vector eralization, we subtract the number of tim&appears as a
(dq,...,d,), then abasic nrnode sets every set oh nodes in  stand-alone structure in the network from the cumulative re-
the structure that consists df nodes of role (for all 1<i sults(note that in Fig. 3 we show the results before subtrac-
<L). For example every set of three nodes in the multi-tions). We compare these numbers to the corresponding num-
output FFL, consisting of th& node,Y node, and one of the bers in randomized networkbere we use@go>2). It is
Z-role nodes, is &asic nnode setA strong generalization important to note that the randomized networks preserve the
rule requires that everyasic nnode setn the structure form incoming, outgoing and mutual edge degrees for each node.
the basic subgrap. A weak generalization rule requires The networks are not constrained to have the same number
that every node in the structure participate in at least onef three-node or higher subgraphs as in the real netiark
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[14] in contrast, four-node motifs were detected based orstep is to find all maximal chque@l] (a group of nodes in

randomized networks that preserved three-node subgrapinicn every two are connectgéh G. Each maximal clique
counts.

. . . . . represents a maximal generalization typef S (i.e., the
G_E(‘/eget\\l’vvﬁgéf/?sestﬁgbggt bg; ﬁodd';es(:t:r?ﬂ'?;e{ﬁgt?; %;aprbenerallzatmn with maximal number of appearances of the
ed_ es' AH edgéy;.v:) e E represents a directed link between basic subgraphWe store the size and the membg@rades in
n0(glles.- and g IIZ(;)rJ ef/er nF-)node subarapls which is de- the original network of all maximal generalizations. Com-

Ui Uj- y grap plex generalizationéwhere more than one role is replicated

tected as a network motjfl4,19 we search for its simple ere detected in a similar wav by anoropriatelv chanaing the
generalizationgmultiplicity of one of the roles We begin w : imilar way by appropriately ging

by building an induced grapB’=(V’,E’). The nodes irG’  rules for setting the edges (@.
are only those that act as memb@nsde$ of S appearances
in G, and the edges are only the edgesGrbetween these

nodes.G’ is usually a much smaller graph th& but it APPENDIX D: NETWORK DATABASES
contains all the information we need for our purpose. For o ] )
each simple generalization typgmultiplicity of the jth role Transcription network ofE.coli [15], version 1.1(N

of the subgraphthe following is performed: A nondirected =423 E=519), available at http://www.weizmann.ac.il/meb/
grath (V E) is built where each node represents a SpeUrlAIon/ was based on selected data fr¢&2] and litera-
cific basic subgrapin G (a specific set of nodes i@ that ~ ture. Transcription network of yea$. cerevisiae)14], ver-

form a subgraph of typ8). The number of nodes 6 equals sion 1.'3 (N= 68.5’E 105.2)’ available ~ at http://
the number of times appears in the original grap®. Two www.weizmann.ac.il/mcb/UriAlon/, was based on selected

. . . data from[53] (N=number of nodesE=number of edges
nodes |_nG. are co.nnected if and OT"Y .'f they follow the Self-edges were excluded. The neuronal synaptic connection
generalization typg and tpe generalization rulgtrong or network of C. elegans(N=280,E=400 was based 0i30]
weak. Setting the edges iB is done efficiently by using the a5 arranged ifi31]. The network was compiled with a cutoff
appearances of the basic subgraptGinas starting points. of at least five synapses for connections between neurons.
For each specific “starting point” subgragfiin G" we pass  Target muscle cells were excluded. Electronic forward-logic
through all the “neighboring” subgraps (“neighboring™in - chips [14] were obtained by parsing the ISCAS89 bench-
the sense that they share all node roles exclugihgrode  mark data set [33] available at www.chl.ncsu.edu/
roleg and check if the joint subgrapii, US,) in G’ forms @ cBL_Docs/iscasg9.html. Bi-fan generalizations défable
generalization typg. After setting all edges iiG, the next I) are shown for chip S15850N=10383 E=14240.
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