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Biological and technological networks contain patterns, termed network motifs, which occur far more often
than in randomized networks. Network motifs were suggested to be elementary building blocks that carry out
key functions in the network. It is of interest to understand how network motifs combine to form larger
structures. To address this, we present a systematic approach to define “motif generalizations”: families of
motifs of different sizes that share a common architectural theme. To define motif generalizations, we first
define “roles” in a subgraph according to structural equivalence. For example, the feedforward loop triad—a
motif in transcription, neuronal, and some electronic networks—has three roles: an input node, an output node,
and an internal node. The roles are used to define possible generalizations of the motif. The feedforward loop
can have three simple generalizations, based on replicating each of the three roles and their connections. We
present algorithms for efficiently detecting motif generalizations. We find that the transcription networks of
bacteria and yeast display only one of the three generalizations, the multi-output feedforward generalization. In
contrast, the neuronal network ofC. elegansmainly displays the multi-input generalization. Forward-logic
electronic circuits display a multi-input, multi-output hybrid. Thus, networks which share a common motif can
have very different generalizations of that motif. Using mathematical modeling, we describe the information
processing functions of the different motif generalizations in transcription, neuronal, and electronic networks.

DOI: 10.1103/PhysRevE.70.031909 PACS number(s): 87.10.1e, 89.75.2k

I. INTRODUCTION

A major current challenge is to understand the function of
biological information-processing networks[1–13]. These
networks, as well as networks from engineering, ecology,
and other fields, were recently found to containnetwork mo-
tifs: small subgraphs that occur in the network far more often
than in randomized networks[15,14]. Each class of networks
was found to have a characteristic set of network motifs[16].
Information-processing networks, such as gene regulation
networks[15,17], neuron networks, and some electronic cir-
cuits, were found to share many of the same network motifs
[14,16]. Recently, in the case of the transcription network of
the bacteriumE. coli, network motifs were shown theoreti-
cally and experimentally to function as elementary building
blocks of the network, each performing specific information-
processing tasks[15,18,19]. For example, one of the most
significant motifs shared by biological information process-
ing networks is the feedforward loop(FFL). In transcription
networks, the feedforward loop with positive regulations was
shown to act as a “persistence detector” circuit that rejects
transient activation signals yet allows rapid response to inac-
tivation signals[15,18,19]. A second motif, the single-input
module, was shown to generate a temporal order of gene
expression, which correlates with the functional order of the
genes in the pathway[15,21,22]. A third major motif, the
bifan, which is the building block of dense arrays of over-
lapping regulation, performs hard-wired combinatorial deci-
sions governed by the input functions of the output genes
[23–25].

Network motifs can, in some cases, also be used as build-
ing blocks of a coarse-grained version of the network[54].
Here, we address the question of whether a given network

motif appears independently in the network or whether in-
stances of the motif combine to form larger structures
[15,20,55,56]. If the latter occurs, what is the function of
these larger structures? Do different networks that share a
certain network motif also share the same structural combi-
nations of that motif? These questions require analysis of
large subgraphs, a computationally difficult problem
[26–29]. Recently, efficient algorithms for counting sub-
graphs based on sampling have been introduced[27]. These
algorithms can at present be effectively used to detect motifs
of up to six to seven nodes. To go beyond this requires an
approach to efficiently define and detect large structures
whose architecture is based on a given motif.

To address these issues, we present an approach for unit-
ing related groups of motifs of different sizes into families
termedmotif generalizations. This allows generalizing from
small motifs to the larger complexes in which they appear.
We present an efficient algorithm to detect motif generaliza-
tions. We find that networks that share the same motif can
have different generalizations of that motif. For example, we
find different generalizations of the FFL motif in transcrip-
tion, neuronal and electronic networks. Using mathematical
models we analyze the information-processing functions
of the FFL generalization that is selected in each of these
networks.

II. RESULTS

A. Node roles in a subgraph

We begin by definingroles of nodes in a subgraph. A
group of nodes in a subgraph share the same role if there is a
permutation of these nodes, together with their correspond-
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ing edges, that preserves the subgraph structure(see Appen-
dix A for formal definitions). For example, in theV-shaped
subgraph in Fig. 1(a), nodes(b) and (c) can be permuted,
leaving the structure intact, whereas nodes(a) and (b) can-
not. Thus, this subgraph has two roles, role 1 and role 2[Fig.
1(b)]. The FFL has three roles[Fig. 1(c), triad 6], whereas
the three-loop[Fig. 1(c), triad 7] has only one role(because
a cyclic permutation of the three nodes preserves its struc-
ture). The 13 possible connected directed triads have be-
tween one and three roles each[Fig. 1(c)].

B. Subgraph topological generalizations

We now define subgraph topological generalizations
based on node roles. Subgraph topological generalizations
are extensions of a subgraph to a family of larger subgraphs
which share its basic structure. Consider the FFL[Fig. 2(a)].
For this three-node subgraph we define three simple gener-
alizations to the level of four nodes[Fig. 2(b)]. In each
simple generalization a single role and its connections are
duplicated. In the first simple generalization, theX role and
its connections are duplicated. This generalization is termed
double-X FFL or double-input FFL. The other two generali-
zations are obtained by duplicating theY or Z roles. This
replication process can be continued, leading to higher-order
motif generalizations, the multi-X (multi-input), multi-Y, and
multi-Z (multi-output) FFL generalizations[Fig. 2(c)].

More complex generalizations can be obtained by repli-
cating more than one of the roles. For example, duplicating
both theX andZ roles yields five-node generalizations[Fig.
2(d)]. When replicating more than one role(and in some
cases replicating even a single role), one can define two
kinds of generalizations: in strong generalizations, every
X,Y,Z triplet forms a FFL. In weak generalizations, every
node participates in at least one FFL, but not all possible
FFLs are formed[Fig. 2(d)].

This procedure of generalization can be applied to any
subgraph(see formal definition in Appendix B). For example
simple generalizations of the four-node bi-fan are shown in

FIG. 1. (a) A directed three-node subgraph.(b) This triad has
two roles.(c) Roles in all 13 types of connected triads. In each triad
there are between one and three roles.

FIG. 2. (a) The feedforward loop triad has three roles:X (input
node), Y (internal, secondary input) node, andZ (output node). (b)
Four-node simple generalizations of the feedforward loop. TheX
node is duplicated to form the double-X generalization. TheY andZ
nodes are duplicated to form the double-Y and double-Z generali-
zations, respectively.(c) Simple multi-node generalizations of the
FFL. (d) Strong and weak generalization rules. A five-node gener-
alization of the FFL with twoX nodes, oneY node, and twoZ
nodes. In the strong generalization every combination of aX,Y,Z
triplet of nodes forms a FFL.(e) The bi-fan, a four-node motif with
two rolesX (input role) and Y (output role). (f) Five-node simple
generalizations of the bi-fan. In each of the two generalizations one
of the two roles is duplicated.(g) Simple multi-node generalization
of the bi-fan: anX or Y node is replicated to form the multi-input or
multi-output bi-fan generalization, respectively.
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Figs. 2(e)–2(g). We now describe the statistical significance
of the generalizations of the motifs found in various net-
works.

C. Network motif topological generalizations

While enumerating all subgraphs of a given size is a dif-
ficult task, enumerating generalizations of a given subgraph
can be performed efficiently by an algorithm described in
Appendix C. The algorithm is based on using the appear-
ances of the basic subgraph as nucleation points for a search
for its generalizations. As an example, we applied this algo-
rithm to networks in which the FFL and bi-fan are motifs, to
ask whether any of the possible FFL or bi-fan generalizations
occur significantly in the networks(Appendix C). In the tran-
scription networks ofE. coli [15] andS. cerevisiae[14] we
find that the multi-Z FFL generalization is highly significant
[Figs. 3(a) and 3(b)]. The other two possible simple gener-
alizations are not significant(in the E. coli network, multi-
X’s and multi-Y’s do not occur at all, in theS. cerevisiae
network both appear only twice). An example of a multi-Z
FFL in theE. coli transcription network, the maltose utiliza-
tion system, is shown in Fig. 4(a). In each multi-Z FFL, the
different genes(Z roles) share a common biological function
(as shown in Tables II and III which list all multi-Z FFL
complexes in theE. coli andS. cerevisiaenetworks).

In the network of synaptic connections between neurons
in C. elegans[14,30,31], we find a different FFL generaliza-
tion: the multi-X FFL [Fig. 3(c)]. This structure occurs 29
times in the network, with up to four inputs. Multi-Y and
multi-Z FFL’s are found in far smaller numbers(double-X
and double-Y FFLs appear 3 times each) [32]. An example of
a multi-X FFL in the locomotion control circuit ofC. elegans
is shown in Fig. 4(b).

In networks of connections between logic gates in
forward-logic electronic chips[14,33,34] we find no simple
generalization of the FFL. These electronic circuits do, how-
ever, show a complex FFL generalization—a structure with
two X’s, a singleY, and twoZ’s [a weak generalization, Fig.
4(c)]. In the five forward-logic electronic chips we have ana-
lyzed, 70% –100% of the FFLs are embedded in instances of
this five-node structure.

The most prominent four-node network motif in these net-
works is the bi-fan[14] [Fig. 2(e)]. The bi-fan has two roles
and therefore two simple generalizations[Fig. 2(g)]. We find
that both simple generalizations of the bi-fan(multi-output
and multi-input) are significant in the transcription, neuronal,
and electronic networks(Table I). The multi-output bi-fan
generalizations are more significant and the maximalY mul-
tiplicity is higher than the maximalX multiplicity in all these
networks. In these networks we find structures of multi-
output bi-fan with tenY’s and more, while multi-input bi-
fans do not exceed six inputX nodes.

D. Functions of multi-output FFL generalization
in transcription networks

The function of the FFL depends on the signs of the in-
teractions (positive or negative regulation), on their
strengths, and on the functions that integrate multiple inputs

into each node. In the case of positive regulation and AND-
logic, the three-node FFL has been shown to function as a
persistence detector[15]: it filters out short input stimuli toX
and responds only to persistent signals. On the other hand, it
responds quickly to OFF steps in the input toX [15,18]. With
an OR-gate the FFL filters OFF pulses and reponds rapidly to
ON pulses[18]. With other sign combinations, the three-
node FFL can function as a pulse generator or response ac-
celerator[18,35]. These functions apply to a wide range of
interaction strengths and to bothAND andOR-like input func-
tions.

Here, we study the functions of the generalizations of the
FFL. We begin with the multi-output FFL, which is the gen-
eralization that is significant in transcription networks. The
multi-output FFL has a single input nodeX, a single internal
node Y (secondary input), and a number of output nodes
Z1, . . . ,Zm [Figs. 2(c) and 4(a)]. The arrows in the FFL dia-
gram should be assigned numbers representing the strength
of the interaction of the transcription factors(TF’s) X andY
with the promoters of the variousZ genes[21]. These num-
bers correspond to the activation or repression coefficients of
each gene(the concentration of the TF required for 50%
effect [5,21,36]). Here, we consider for simplicity the most
common case, that of FFLs with positive regulation and
AND-logic [18]. We employ a simple model of the dynamics
of this circuit [15]. Xstd is the activity of the transcription
factorX, Ystd of Y, andZjstd is the concentration of the gene
productZj. The dynamics of transcription factorY and the
output gene productsZj is given by

dY/dt = FsX,Tyxd − aY,

dZj/dt = FsX,Tzjx
dFsY,Tzjy

d − aZj ,

where a is the protein lifetime[37,38] and Tyx, Tz1x, Tz2x,
Tz1y, and Tz2y are the activation thresholds of the various
genes[Fig. 5(a)]. For simplicity we use a sharp activation
function, FsU ,Td=1 if U.T and 0 otherwise. The qualita-
tive results apply also to Michaelis-type activation functions.
These equations can be solved analytically, yielding piece-
wise exponential dynamics in response to steplike activation
profiles ofX. We find that the multi-output FFL can encode a
temporal order of expression of theZ genes, by means of
different activation thresholdsTzjy

for each of the output
genes[Figs. 5(a) and 5(b)]. This temporal ordering feature is
shared with another common network motif, the single-input
module[15,21,22]. Indeed, high-resolution expression mea-
surements on the flagella multi-output FFL(in E. coli)
showed that the class-2 flagella genes, which are regulated
by a feedforward loop, are activated in a temporal order that
corresponds to the functional order of the gene product in the
assembly of the flagellar motor[39,40].

The timing of activation of genej following a step acti-
vation of X is

t j = − a−1lns1 − Tzjy
/Ymaxd.

The rise time of the different genes can be tuned by
Tzjy

/Ymax, where Ymax is the maximal concentration ofY.
Note thatTzjy

can be easily tuned during evolution—for ex-
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ample, by mutations in the binding site ofY in the Zj pro-
moters[25,40]. TheZ gene with the lowest activation thresh-
old is turned on first after the stimulation ofX.

In addition to generating temporal order, the multi-Z FFL
can act as a persistence detector for all of its output genes
[Fig. 5(b)]: theZ genes are expressed only if the input stimu-

FIG. 3. Statistical significance of motif generalizations. The cu-
mulative number of multi-Z FFLs in the real network(black) and
randomized networks-mean ± SD(gray) in (a) E. coli transcription
network.(b) S. cerevisiaetranscription network.(c) The cumulative
number of multi-X FFL’s in the real and randomized networks
(mean ± SD) in the C. elegansneuronal network.

FIG. 4. The FFL generalizations found in biological and tech-
nological networks.(a) An example of a three-Z FFL in the tran-
scription network ofE. coli, maltose utilization system. The activa-
tor CRP senses glucose starvation, MalT senses maltotriose, and
malEFG, malK, and malS participate in maltose metabolism and
transport.(b) An example of a double-X FFL in the locomotion
neuronal circuit ofC. elegans. AVA and AVD are ventral cord com-
mand interneurons. AVD functions as modulator for backward lo-
comotion. AVA functions as driver cell for backward locomotion.
ASH and FLP are head sensory neurons sensitive to noxious chemi-
cals and nose touch.(c) A generalized form of the FFLs2X,Y,2Zd
found in forward-logic electronic chips. This five-node structure
appears as a part of a six-node module, which implementsXOR

(exclusiveOR) using fourNAND gates.(d) Truth table of the circuit
described in(c) [a s2X,Y,2Zd FFL generalization with additional
NAND gate at the output]. There are two input bitsX1 andX2 and a
single output bit which is equal to(X1 XOR X2).
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lus toX is present for a long enough time. The minimal time
that a saturatingX stimulus needs to be present to activate
genej is equal tot j. Thus this FFL generalization preserves
the functionality of the original FFL motif.

The turn-off order of theZ genes upon a gradual decay of
X activity can be separately controlled by the activation co-
efficients of theX TF, Tzjx

[40]. Thus different turn-on and
turn-off orders of theZj genes can in principle be achieved.
In summary, the multi-output FFL preserves the functionality
of the simple FFL and in addition can encode temporal ex-
pression programs among the differentZ genes.

E. Functions of multi-input FFL generalization
in neuronal networks

A different FFL generalization, multi-input FFL, is found
in the neuronal network ofC. elegans. In general, the func-
tion of this circuit depends on the signs on the arrows and on
two input functions(gates): one input function integrates the
multiple X inputs to Y, and the other integrates the inputs
from Y andX1, . . . ,Xm to Z [Fig. 6(a)].

We analyzed the dynamics of one possible two-input FFL,
where the input function governing theY node is anOR gate,
X1 OR X2, and the input function of theZ node isY AND sX1

OR X2d [Figs. 6(a)–6(c)]. This choice of input functions en-
sures that bothY and eitherX1 or X2 are needed forZ to be
activated to a level that allows activation of its downstream
(post synaptic) neurons or muscle cells[as is the case, for
example, in the circuit of Fig. 4(b), in which ablation of the
neuron AVD results in loss of sensory input to the neuron
AVA [41]]. These input functions could in principle be
implemented by simple neurons which integrate weighted
inputs. The input function ofZ, for example, represents
strong synapses fromY and weaker ones fromX1 andX2.

It is important to note that the simplest equations that
describe transcription networks also describe neurons with
graded potential and no spiking(as C. elegansneurons are
thought to be[42,43]). In the case of neurons,Xistd, Ystd, and
Zstd represent neuron membrane potentials. The activation
dynamics of the circuit in Fig. 6(a) are

dY/dt = FsX1 + X2,Tyxd − aY,

dZ/dt = FsY,TzydFsX1 + X2,Tzxd − aZ.

Here a is the relaxation rate of the neurons’ membrane
potential, and the synaptic activation thresholds areTyx, Tzx,
andTzy.

This model shows that the circuit can act as a persistence
detector for bothX1 and X2 [Fig. 6(b)]. In the locomotion
neuronal circuit example[Fig. 4(b)], the FFL circuit could
elicit backward motion only if the stimulation of one of the
sensory neurons is longer than a threshold durationt deter-
mined by the parameters of the circuit:

t = − a−1lns1 − Tzy/Ymaxd.

A transient stimulation would not be enough to elicit
backward motion. Furthermore, we find that sufficiently
closely spaced short pulses ofX1 and X2 can elicit a re-
sponse,even if each pulse alone cannot[Fig. 6(c)]. This
highlights a “memory” function ofY, which can store infor-
mation from recent stimulations over its relaxation time. In
the basic three-node FFL,Y can store information about re-
curring pulses ofX. In the multi-input FFL,Y can store in-
formation from multiple inputs[Fig. 6(c) gives an example]
and increase sensitivity to one input if the other input has
recently been detected. Generally, if the summed input of the
input nodesXj to nodeY is Sstd=FsX1+X2,Tyxd, Z is acti-
vated whenY activity exceeds the thresholdTzy:

Ystd =E
0

t

Sst8de−ast−t8ddt8 . Tzy,

whereYst=0d=0, showing that nodeY effectively integrates
the inputs over a time scale of 1/a.

F. Function of FFL generalization in electronic chips

Forward-logic electronic chips are networks in which
nodes represent logic gates. These circuits are optimized to
perform a hard-wired logical function between input and out-
put nodes. Forward-logic chips, taken from an engineering
database(ISCAS89), were previously found to display the
FFL network motif [14]. Here we find that they display a
specific generalization of the FFL, with two input and two
output nodes[Fig. 4(c)]. Analyzing the appearances of this
pattern, we find that this five-node generalized FFL motif is
part of a commonly used module built of fourNAND gates,
which implementsXOR (exclusiveOR) logic on the two in-
puts [44] [see truth table in Fig. 4(d)].

TABLE I. Bi-fan generalizations in different networks.saX,bYd represents the multiplicity of each of the
roles in the generalization[Fig. 2(g)]. “+”: statistically significant generalizations. “−”: nonsignificant gen-
eralizations. Number of appearancessNd or concentrations310−3d sCd [27] are listed.

Transcriptional Networks Neurons Electronic chips

Generalization Subgraph size E. coli Yeast C. elegans S15850

Basic bi-fan 4s2X,2Yd +sN=209d +sN=1812d +sN=126d +sN=1040d
Multi-output 5s2X,3Yd +sN=264d +sN=14857d +sN=152d +sN=1990d

6s2X,4Yd +sC=0.015d +sC=3.5d +sC=0.17d +sC=0.28d
Multi-input 5s3X,2Yd +sN=20d +sN=81d +sN=25d +sN=226d

6s4X,2Yd −sN=0d +sN=14d +sC=0.015d +sC=0.001d
Equal multi-input and -output 6s3X,3Yd +sN=6d +sN=21d −sN=0d +sN=301d
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III. DISCUSSION

This study presented a systematic approach for defining
and detecting topological generalizations of network motifs.
Motif generalizations are families of subgraphs of different
sizes which share a common structural theme and which ap-
pear significantly more often in the network than in random-
ized networks. The generalizations are produced by replicat-
ing nodes in a basic motif structure. The generalizations
often preserve the functionality of the network motif on

FIG. 5. Kinetics of a double-output FFL generalization follow-
ing pulses of stimuli.(a) A double-output FFL with positive regu-
lation andAND-logic input function forZ1 andZ2. Numbers on the
arrows are activation thresholds.(b) Simulated kinetics of the
double-output FFL in response to a short pulse and a long pulse of
X activity. The dashed and dotted horizontal lines represent the
activation thresholdsTz1y andTz2y. a=1 was used.

FIG. 6. Kinetics of a double-input FFL generalization following
pulses of stimuli.(a) A double-input FFL. Input functions forY and
Z, and the activation thresholds, are shown as gates and numbers on
the arrows.(b) Simulated kinetics of the two-input FFL, with short
well-separated stimuli pulses ofX1 andX2, followed by a persistent
X1 stimulus.(c) Simulated kinetics of the double-input FFL, with
shortX1 stimulus followed rapidly by a shortX2 stimulus pulse. The
dashed horizontal line corresponds to the activation threshold forY,
Tzy. a=1 was used.
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which they are based, because they preserve the roles of
nodes in the motif(for example, by replicating input or out-
put nodes). We presented an efficient algorithm for detecting
motif generalizations. We find that different networks which
display the same motifs can show very different generaliza-
tions of these motifs. We also demonstrated using simple
models that these generalized motifs can carry out specific
information processing functions. These functions can in
principle be tested experimentally in transcription and neu-
ronal systems.

The two sensory transcription networks, from a prokary-
ote(E. coli) and a eukaryote(S. cerevisiae), showed the same
generalization of the FFL: both networks display the multi-
output FFL generalization[15,20]. The other two generaliza-
tions, multi-input and multi-Y, are not found significantly in
these transcription networks. Multi-output FFL complexes
are found throughout the transcription networks in diverse
systems(Tables II and III). The X role is usually a global
transcription factor which controls many genes, theY role is
usually a “local” transcription factor which controls specific
gene systems, and theZ nodes are the regulated genes which
share a specific function. Often, multi-output FFL’s inE. coli
that respond to specific stimuli have a nonhomologous multi-
output FFL counterpart in yeast which responds to similar
stimuli. The fact that the genes in these circuits are not evo-
lutionary related, whereas their connectivity patterns are the
same in the two organisms, suggests convergent evolution to
the same regulation pattern[14,45]. Examples include sys-
tems that respond to carbon limitation, drugs, and nitrogen
starvation in both organisms(Tables II and III). Multi-output
FFL’s can also appear in systems that make up a protein
machine; for example, a multi-output FFL inE. coli controls
genes whose products make up the flagellar basal-body mo-
tor [39] (X=flhDC, Y=fliA, Z=class-2 flagella genes). We
find that the multi-output FFL can serve as a persistence
detector for all the outputs. In addition it can generate tem-
poral orders of output gene expression[40].

A different FFL generalization, the multi-input FFL, is
found in the neuronal synaptic wiring ofC. elegans. This
network is found to chiefly display the multi-input FFL[Fig.
2(c)]. The multi-input FFL has a number of input nodes
X1, . . . ,Xm, a single internal nodeY (secondary input) and a
single output nodeZ. As an example we have mentioned the
backward locomotion control circuit of the worm. This cir-
cuit is governed by two ventral-cord command interneurons
AVD and AVA [41,42]. These two neurons are linked in a
multi-input FFL with several input neurons, such as ASH and
FLP [Fig. 4(b)], which are head sensory neurons sensitive to
nose touch and noxious chemicals[41,42]. This circuit
implements an avoidance reflex, eliciting backward motion
in response to head stimulation. We find that the multi-input
FFL can serve as a persistence detector for each input. In
addition, it can serve as coincidence detector for weak in-
puts, firing only if short stimuli from two or more different
inputs occur within a certain time of each other.

A different FFL generalization, with two inputs and two
outputs, appears in a class of electronic circuits. This motif
generalization functions within aXOR gate. This demon-
strates that network motifs and their generalizations can be
used to detect basic functional building blocks of a network
without prior knowledge[54].

Motif generalizations cover a substantial portion of the
high-order motifs in various biological and technological
networks we have studied. However, motifs generalizations
in the present form do not cover all possible types of families
of structures that share similar architectural themes. It would
be important to find additional rules for defining families of
motifs beyond the current notion of motif generalization by
role replication. Motifs and their generalizations can help us
understand the design principles of complex networks by
defining functional building blocks whose function can be
tested experimentally.

To summarize, this study presented topological generali-
zations of network motifs and an efficient algorithm to detect
them. We found motif generalizations in several real-world
networks. Networks that share the same motif were found to
exhibit different generalizations of that motif. The general-
ized motifs in biological networks were demonstrated theo-
retically to carry out information-processing functions.
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APPENDIX A: ROLES IN A SUBGRAPH—A FORMAL
DEFINITION

We classify nodes in a subgraph into structurally equiva-
lent classes. Each class represents a role. The measure of
structural equivalence that we use here is automorphic
equivalence[46–50]. Let S=sVs,Esd be a subgraph. An au-
tomorphism is a one-to-one mapping,t, from Vs to Vs, such
that svi ,v jdPEs if and only if (tsvid ,tsv jd)PEs. Two nodes
vi andv j are automorphically equivalent if and only if there
is some automorphismt that maps one of the nodes to the
other ftsvid=v jg. For each subgraphS, we classify itsn
nodes into roles by examining structural equivalence of all
possible pairs of the nodes. By the transitivity of automor-
phic equivalence, one is guaranteed to partition the nodes
into distinct roles. This concept can be readily generalized
for networks with weights on the edges or with different
types of nodes.

APPENDIX B: SUBGRAPH GENERALIZATION—A
FORMAL DEFINITION

Let S be the basic subgraph wherer1, . . . ,rL are the set of
roles of S with multiplicity sd1, . . . ,dLd, respectively. A
simple generalization ofS is a subgraph which is formed by
replication of a single roler i and its edges to preserve the
role connectivity ofS. Note that in a simple generalization
only a single role is replicated. A generalized form of a sub-
graph is defined by a pairsM ,VLd whereM is anL3L image
matrix, which describes the connectivity between roles.
Mfi , jg=1 if there is an edge between rolei and j (i is not
equal toj) andMfi , jg=0 otherwise.Mfi , ig=0 if there is no

TOPOLOGICAL GENERALIZATIONS OF NETWORK MOTIFS PHYSICAL REVIEW E70, 031909(2004)

031909-7



TABLE II. Feedforward loops in theE. coli transcription network[15] classified into multi-Z complexes. Complex size is the number of
operons(Z-role nodes) in the FFL generalization.

Complex size Id. X Y Z Function

1 1 arcA appY appCBA Anaerobic/stationary phase

2 crp fucPIKUR fucAO Fucose utilization

3 crp fur cirA Iron citrate uptake

4 crp galS mglBAC Carbon utilization

5 crp malI malXY Maltose utilization

6 crp melR melAB Melibiose utilization

7 hns flhDC fliAZY Flagella regulation

8 metJ metR metA Methionine biosynthesis

9 ompR-envZ csgDEFG csgBA Osmotic stress response

2 10 crp caiF caiTABCDE Carnitine metabolism

fixABCX

11 crp nagBACD manXYZ Carbon utilization

nagE

12 himA ompR-envZ ompC Osmotic stress response

ompF

13 rpoN fhlA fdhF Formate hydrogen lyase system

hycABCDEFGH

14 rpoN glnALG glnHPQ Nitrogen utilization

nac

3 15 crp malT malEFG Maltose utilization

malK-lamB-malM

malS

4 16 crp araC araBAD Arabinose utilization

araE

araFGH

araJ

17 rob marRAB fumC Drug resistance

nfo

sodA

zwf

5 18 flhDC fliAZY flgBCDEFGHIJK Flagella system

flhBAE

fliE

fliFGHIJK

fliLMNOPQR

7 19 fnr arcA cydAB Anaerobic metabolism

cyoABCDE

focA-pflB

glpACB

icdA

nuoABCDEFGHIJKLMN

sdhCDAB-b0725-sucABCD

KASHTAN et al. PHYSICAL REVIEW E 70, 031909(2004)

031909-8



TABLE III. Feedforward loops in theS. cerevisiaetranscription network[14] classified into multi-Z complexes. Complex size is the
number of genes(Z-role nodes) in the FFL generalization.

Complex size Id. X Y Z Function

1 1 TUP1 RME1 IME1 Meiosis

2 RIM101 IME1 DIT1 Sporulation

3 MIG1 HAP2-3-4-5 CYC1 Formation of apocytochromes

4 MIG1 GAL4 GAL1 Galactokinase

5 MIG1 CAT8 JEN1 Lactate uptake

6 MIG2 CAT8 JEN1 Lactate uptake

7 GAT1 DAL80-GZF3 GAP1 Nitrogen utilization

8 TUP1 ALPHA1 MFALPHA1 Mating

9 GAL11 ALPHA1 MFALPHA1 Mating

2 10 TUP1 ROX1 ANB1 Anaerobic metabolism

CYC7

11 GLN3 GAT1 GAP1 Nitrogen utilization

GLN1 Glutamate synthetase

12 GLN3 GAT1 DAL80 Nitrogen utilization

GLN1 Glutamate synthetase

13 GLN3 DAL80-GZF3 GAP1 Nitrogen utilization

UGA4

14 PDR1 YRR1 SNQ2 Drug resistance

YOR1

15 GCN4 MET4 MET16 Methionine biosynthesis

MET17

3 16 HAP1 ROX1 ERG11 Anaerobic metabolism

HEM13

CYC7

17 SPT16 SWI4-SWI6 CLN1 Cell cycle and

CLN2 mating type switch

HO

4 18 GCN4 LEU3 ILV1 Leucine and branched amino

ILV2 acid biosynthesis

ILV5

LEU4

19 UME6 INO2-INO4 CHO1 Phospholipid biosynthesis

CHO2

INO1

OPI3

6 20 PDR1 PDR3 HXT11 Drug resistance

HXT9

IPT1

PDR5

SNQ2

YOR1
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edge between every two nodes of rolei, Mfi , ig=1 if there is
a single edge, andMfi , ig=2 if there is a mutual edge.VL

PNL is anL-dimensional vector which defines the multiplic-
ity of each role. The FFL which is an example of a basic
subgraph, is represented by(MFFL ,s1,1,1d) where

M FFL = 10 1 1

0 0 1

0 0 0
2

and the vectors1,1,1d describes the role multiplicity: in the
basic FFL each of the three rolesX,Y,Z appears once. A FFL
with two output nodes is represented by the pair
(MFFL ,s1,1,2d). A FFL with m output nodes(m Z-role
nodes) is represented by(MFFL ,s1,1,md) [Fig. 2(c)]. Such a
generalization has only one degree of freedom—the multi-
plicity of the Z role in the structure. There are cases, such as
the multiplicity of more than one role, where we need addi-
tional definitions in order to distinguish between different
types of structures. For this we define the generalization rule.
We define two possible generalization rules: a strong gener-
alization rule and a weak generalization rule. An example of
a strong and weak(MFFL ,s2,1,2d) generalization is illus-
trated in Fig. 2(d). If S is the basicn-node subgraph with a
set of L roles represented by the multiplicity vector
sd1, . . . ,dLd, then abasic n-node setis every set ofn nodes in
the structure that consists ofdi nodes of rolei (for all 1ø i
øL). For example every set of three nodes in the multi-
output FFL, consisting of theX node,Y node, and one of the
Z-role nodes, is abasic n-node set. A strong generalization
rule requires that everybasic n-node setin the structure form
the basic subgraphS. A weak generalization rule requires
that every node in the structure participate in at least one

basic n-node set[Fig. 2(d)]. Note that weak generalization
can represent more than one unique structure of a given size.

APPENDIX C: ALGORITHM FOR DETECTING MOTIF
GENERALIZATIONS

We begin by finding the network motifs(significant sub-
graphs) of size n (usually n=3–4) in the network as de-
scribed in[14,15,27] (application and source code are avail-
able at http://www.weizmann.ac.il/mcb/UriAlon/). For each
motif, for each of its roles, we prepare a list of all the nodes
that play that role. We perform a search for all of the gener-
alizations of each motif using its appearances in the network
as starting point. This search reduces computation time and
enables the detection of significant generalization forms of
the basic motifs, which are beyond reach using algorithms
that attempt to enumerate all subgraphs of a given size.

In order to compute the statistical significance of a certain
generalization of a motifS, we first find for each appearance
of S in the network the maximal size generalization in which
it appears. Then we count the cumulative number of timesS
appears in the union of all the maximal generalizations(up to
sizek). In order to verify that the generalization significance
is not due to many stand-alone appearances of the basic sub-
graph(e.g., a single-Z FFL in the case of multi-Z FFL gen-
eralization), we subtract the number of timesS appears as a
stand-alone structure in the network from the cumulative re-
sults(note that in Fig. 3 we show the results before subtrac-
tions). We compare these numbers to the corresponding num-
bers in randomized networks(here we usedZscore.2). It is
important to note that the randomized networks preserve the
incoming, outgoing and mutual edge degrees for each node.
The networks are not constrained to have the same number
of three-node or higher subgraphs as in the real network(in

TABLE III. (Continued.)

Complex size Id. X Y Z Function

15 21 GLN3 DAL80 CAN1 Nitrogen utilization

DAL1

DAL2

DAL3

DAL4

DAL5

DAL7

DCG1

DUR1

DUR3

GDH1

PUT1

PUT2

PUT4

UGA1
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[14] in contrast, four-node motifs were detected based on
randomized networks that preserved three-node subgraph
counts).

The network is described by a directed interaction graph
G=sV,Ed, whereV is the set of nodes andE is the set of
edges. An edgesvi ,v jdPE represents a directed link between
nodesvi and v j. For everyn-node subgraphS which is de-
tected as a network motif[14,15] we search for its simple
generalizations(multiplicity of one of the roles). We begin
by building an induced graphG8=sV8 ,E8d. The nodes inG8
are only those that act as members(nodes) of S appearances
in G, and the edges are only the edges inG between these
nodes.G8 is usually a much smaller graph thanG, but it
contains all the information we need for our purpose. For
each simple generalization typej (multiplicity of the j th role
of the subgraph) the following is performed: A nondirected
graphĜ=sV̂,Êd is built where each node represents a spe-
cific basic subgraphS in G (a specific set of nodes inG that
form a subgraph of typeS). The number of nodes inĜ equals
the number of timesS appears in the original graphG. Two

nodes inĜ are connected if and only if they follow the
generalization typej and the generalization rule(strong or

weak). Setting the edges inĜ is done efficiently by using the
appearances of the basic subgraph inG8 as starting points.
For each specific “starting point” subgraphS1 in G8 we pass
through all the “neighboring” subgraphsS2 (“neighboring” in
the sense that they share all node roles excludingj th node
roles) and check if the joint subgraphsS1øS2d in G8 forms a

generalization typej . After setting all edges inĜ, the next

step is to find all maximal cliques[51] (a group of nodes in

which every two are connected) in Ĝ. Each maximal clique
represents a maximal generalization typej of S (i.e., the
generalization with maximal number of appearances of the
basic subgraph). We store the size and the members(nodes in
the original network) of all maximal generalizations. Com-
plex generalizations(where more than one role is replicated)
were detected in a similar way by appropriately changing the

rules for setting the edges inĜ.

APPENDIX D: NETWORK DATABASES

Transcription network ofE.coli [15], version 1.1 sN
=423,E=519d, available at http://www.weizmann.ac.il/mcb/
UriAlon/, was based on selected data from[52] and litera-
ture. Transcription network of yeast(S. cerevisiae)[14], ver-
sion 1.3 sN=685,E=1052d, available at http://
www.weizmann.ac.il/mcb/UriAlon/, was based on selected
data from[53] (N=number of nodes,E=number of edges).
Self-edges were excluded. The neuronal synaptic connection
network of C. eleganssN=280,E=400d was based on[30]
as arranged in[31]. The network was compiled with a cutoff
of at least five synapses for connections between neurons.
Target muscle cells were excluded. Electronic forward-logic
chips [14] were obtained by parsing the ISCAS89 bench-
mark data set [33] available at www.cbl.ncsu.edu/
CBL_Docs/iscas89.html. Bi-fan generalizations data(Table
I) are shown for chip S15850sN=10383,E=14240d.
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