## MCB Chapter 11

#### **Topic D**

#### **Post-Transcriptional Controls**

Reading : 404-443

**Topic D** 

Michal Linial

7 Jan 2004

#### **Post-Transcriptional Controls**

All processes following transcription initiation

- •Elongation till the end
- •Transport to cytoplasm
- •Stability of mRNA
- Cellular localization

#### All added to the Regulation of gene expression

7 Jan 2004

## **Transcription termination**

- Several mechanisms in bacteria and eukaryotic cells
- In bacteria two principle mechanisms involve RNA polymerase Requires the termination factor *Rho Rho* independent
- In eukaryotes, the mechanisms for terminating transcription differ for each of the 3 types of RNA polymerase

Pol - I (pre-rRNA) Pol - II Pol - III (tRNA & 5S-rRNA)

## <u>Rho-independent</u> termination occurs at characteristic sequences in *E. coli* DNA



#### Premature termination by attenuation helps regulate expression of some bacterial operons



#### Mutations in the attenuator -leads to excess of tryptophan biosynthesis transcripts



## Mechanism of attenuation of *trp*-operon transcription - a Rho independent



3. This depend on tRNA-trp

2.

7

## A Rho independent mechanism of attenuation valid for Phe, His, Ile, Leu & Val

- The leader seq includes the relevant aa
- The leader seq is rapidly degraded after translation
- For attenuation in different cases RNA binding proteins that stabilize base-pairing are essential.
  - E. coli bgl operon (for glucose containing polysacharadies)

RNA binding protein- stabilize a non-attenuated stem-loop. The protein is activated by glucose phosphorylation Thus, in the presence of glucose - bgl operon is functioning.

Figure 11-4

## Rho-dependent termination sites are present in some $\lambda$ -phage and *E. coli* genes

Rho was discovered after  $\lambda$ -phage infection, How?

- The Rho factor is a hexameric protein around which a 70- to 80-base segment of the growing RNA transcript wraps
- Rho then moves along the RNA in the 3' direction until it eventually unwinds the RNA-DNA hybrid at the active site of RNA polymerase
- Whether transcription is terminated or not depends on whether Rho "catches up" to RNA polymerase
- Rho-dependent sites have no clear consensus sequence and Rho-dependent termination operates at relatively few operons

#### Anti-terminator by $\lambda$ -phage N + E. coli proteins



## Three eukaryotic RNA polymerases employ different termination mechanisms

- **RNA polymerase I** is terminated by a mechanism that requires a polymerase-specific termination factor, which binds downstream of the transcription unit (A **DNA**-binding protein not a **RNA** binding as Rho)
- **RNA polymerase II** is terminated in a region 0.5-2 kb beyond the poly(A) addition site, and termination is coupled to the process that cleaves and polyadenylates the 3' end of a transcript
- RNA polymerase III is terminated after polymerizing a series of U residues (no stem-loop is requested)

## Transcription of HIV genome is regulated by an anti-termination mechanism



# Eukaryotic RNA -pol II transcription termination

**HIV example** 

Drosophila HSP (heat shock) polII pause but stay attached HS activates HSTF that relief pol II from pausing

Rapid response! No assembly time is wasted

### **Processing of eukaryotic mRNA**



#### The 5'-cap is added to nascent RNAs after initiation by RNA polymerase II

~25 nt 7-methylguanosine

5'-5' link

Dimeric capping enzyme - associated with CTD of pol II (only)

Methylation also on the ribose of the 1st





#### MOLECULAR PROCESS POSSIBLE REGULATION



#### Pre-mRNA are associated with hnRNP proteins



#### **Identifying hnRNP proteins**

#### UV high dose - cross linking Poly dT column from nuclear extract

Many proteins 30-120,000 daltons

#### Several proteins are alternatively spliced

Each binds to a 'preferred' site (I.e. 3' of introns)

Mostly modular structure

RNP motif (=RBD) - most common



## hnRNP proteins may assist in processing and transport of mRNAs



## Pre-mRNAs are cleaved at specific 3' sites and rapidly polyadenylated

All (but histones) have 3'-poly A

The 'extra' 3' transcript very rapidly degraded

What are the signals for endonuclease?

5'- AAUAAA -3' (10-35 nt upstream) 5'- AUUAAA -3'

If mutated -rapidly degraded

## Pre-mRNAs are cleaved at specific 3' sites and rapidly polyadenylated



22



![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_27_Figure_0.jpeg)

## Pre-mRNAs are cleaved at specific 3' sites and rapidly polyadenylated

![](_page_28_Figure_1.jpeg)

#### During the final step in formation of mature, functional mRNA, introns are removed and exons are spliced together

![](_page_29_Figure_1.jpeg)

# Splicing occurs at short, conserved sequences

Consensus sequences around 5' and 3' splice sites in vertebrate pre-mRNA

![](_page_30_Figure_2.jpeg)

#### How to determine the borders?? Genomic - cDNA ESTs...

Fusion construct with half introns from genes - perfect product

# Splicing mechanism splicing type I, II, tRNA and mRNA

**Primary transcript** 

Most dramatic processing -mRNA (euk) tRNA (euk+pro)

**The introns -1977 Philip Sharp Richard Roberts** 

Exons <1000 nt (ave. 100-200 nt)

Intron up to 20,000 and more, some are 60 only

# Splicing mechanism splicing type I, II, tRNA and mRNA

![](_page_32_Figure_1.jpeg)

## Self-splicing group I introns were the first examples of catalytic RNA

![](_page_33_Figure_1.jpeg)

### All pre-tRNAs undergo cleavage and base modification

![](_page_34_Figure_1.jpeg)

# Splicing of pre-tRNAs differs from other splicing mechanisms

![](_page_35_Figure_1.jpeg)

36

### The splicing mechanisms type I, II

The introns are Self splicing!! T. Cech, 1982

No proteins are involved

Isolated DNA of protozoa - with intron +RNAp (bacteria) resulted in spliced RNA

In mRNA eukaryotes- with the aid of RNA-protein Complex - small nuclear ribonucleoproteins (snRNPs)

# Splicing proceeds via two sequential transesterfication reactions

![](_page_37_Figure_1.jpeg)

8

![](_page_38_Figure_0.jpeg)

### Analysis of RNA products formed in an in vitro splicing reaction

Lariat Structure

**Branch point** 

![](_page_39_Figure_3.jpeg)

![](_page_39_Figure_4.jpeg)

### Small nuclear RNAs (snRNAs) assist in the splicing reaction

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_0.jpeg)

### The spliceosomal splicing cycle

![](_page_42_Figure_1.jpeg)