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Post-Transcriptional Controls

All processes following transcription initiation

*Elongation - till the end
*Transport to cytoplasm
«Stability of mRNA
«Cellular localization

All added to the Regulation of gene expression
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Transcription termination

Several mechanisms in bacteria and eukaryotic cells

In bacteria - two principle mechanisms involve RNA polymerase
Requires the termination factor Rho
Rho independent

In eukaryotes, the mechanisms for terminating transcription differ for
each of the 3 types of RNA polymerase

Pol -1 (pre-rRNA)
Pol - I
Pol - lll (tRNA & 5S-rRNA)
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Premature termination by attenuation helps
regulate expression of some bacterial operons
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Mutations in the attenuator -leads to excess
of tryptophan biosynthesis transcripts
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2.

3.

translation of leader
This depend on tRNA-trP

Mechanism of attenuation of trp-operon
transcription - a Rho independent
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A Rho independent mechanism of attenuation
valid for Phe, His, Ile, Leu & Val

 The leader seq includes the relevant aa
 The leader seq is rapidly degraded after translation

* For attenuation in different cases - RNA binding proteins that
stabilize base-pairing are essential.

E. coli bgl operon (for glucose containing polysacharadies)

RNA binding protein- stabilize a non-attenuated stem-loop.
The protein is activated by glucose phosphorylation
Thus, in the presence of glucose - bgl operon is functioning. Figure 11-4
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Rho-dependent termination sites are present in
some A-phage and E. coli genes

Rho was discovered after A-phage infection, How?

The Rho factor is a hexameric protein around which a 70- to 80-base segment of
the growing RNA transcript wraps

Rho then moves along the RNA in the 3’ direction until it eventually unwinds the
RNA-DNA hybrid at the active site of RNA polymerase

Whether transcription is terminated or not depends on whether Rho “catches up”
to RNA polymerase

Rho-dependent sites have no clear consensus sequence and Rho-dependent
termination operates at relatively few operons



Anti-terminator by A-phage N + E. coli proteins
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Three eukaryotic RNA polymerases employ
different termination mechanisms

RNA polymerase | is terminated by a mechanism that requires a
polymerase-specific termination factor, which binds downstream of the
transcription unit (A DNA-binding protein not a RNA binding as Rho)

RNA polymerase Il is terminated in a region 0.5-2 kb beyond the poly(A)
addition site, and termination is coupled to the process that cleaves and
polyadenylates the 3' end of a transcript

RNA polymerase lll is terminated after polymerizing a series of U
residues (no stem-loop is requested)

11



Transcription of HIV genome is regulated by an
anti-termination mechanism -

Kinase - the substrate CTD of pol 11
5!

Tat (HIV)
RMNA
Spth

Pol || CTD Spt 4

TAR - RNA

HIV DNA Copy sequence for Tat

\

RNA Pol Il
Unexpected similarity to
A-phage

(Spt5 similar to NusG)

Figure 11-6

12



Eukaryotic RNA -pol II transcription
termination

HIV example

Drosophila HSP (heat shock)
polIl pause but stay attached
HS activates HSTF that relief pol II from pausing

Rapid response! No assembly time is wasted
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Processing of eukaryotic mRNA
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The 5'-cap is added to nascent RNAs after
initiation by RNA polymerase 11
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MOLECULAR PROCESS POSSIBLE REGULATION

PRE-mRNA TRANSCRIPTION
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DNA

Pre-mRNA are associated
with hnRNP proteins
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Identifying hnRNP proteins

UV high dose - cross linking
Poly dT column from nuclear extract

Many proteins 30-120,000 daltons

Several proteins are alternatively spliced

Each binds to a ‘preferred’ site (I.e. 3’ of introns)

Mostly modular structure

RNP motif (=RBD) - most common
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(a) RNA recognition (b) Sex-lethal RRM
motif (RRM) domains

Pre-mRNA

KH domain (45 aa), in Fragile X- gene (FMR-1)
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hnRNP proteins may assist In
processing and transport of mRNAs
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Pre-mRNAs are cleaved at specific 3’ sites
and rapidly polyadenylated

All (but histones) have 3'-poly A
The ‘extra’” 3’ transcript very rapidly degraded

What are the signals for endonuclease?

5’- AAUAAA -3’ (10-35 nt upstream)
5'- AUUAAA -3’

If mutated -rapidly degraded
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Pre-mRNAs are cleaved at specific 3’ sites
and rapidly polyadenylated
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Pre-mRNAs are cleaved at specific 3’ sites
and rapidly p])lyadenylated

CPSF.,
h:ﬂ/;ﬁ
_H
' .

Eulh ~CSIF

ATP = Slow pulvaden'.'latlun

T8 P

CFl CFll  CStF \degraded)
@.‘ ----- 2] .-".r’tr".-’tﬂﬂ-if'u:{{:;-h\:l
b
Pﬁ.ﬂll»tl
PABII (in nuclei) : PABII
f.fl.-’l..-’l. .I..l"-.l(:'-_;ﬂ\'
Signal for PAP to @ Na——
Add (A) and to StOp ATF'-\L.-FAEHI Rapid polyadanylation

P (‘[ Figure 11-12

L

-~ 3 i o6 By
Dmmmnﬁnmmm# (RAAAAAAAAA ) f/I;'_A;‘\

. e A 7

29



During the final step in formation of mature,

trons are removed and exons

functional mRNA,
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Splicing occurs at short, conserved
seguences

Consensus sequences around 5" and 3' splice sites in vertebrate pre-mRNA

5" splice site Branch point 3' splice site
5" Exon | Intron l ] 3' Exon
; : Pyr-rich
Pre-mRNA A A G 3 U AG A G U C I AG & TN ntregi.:;jn N C A G[E
Frequency of 70 60 B0 100 100 95 70 B0 45 80 90 8O0 100 80 80 100 100 &0
occurrence (%) : 20-50h ,

How to determine the borders??
Genomic - cDNA ESTs...

Fusion construct with half introns from genes - perfect product



Splicing mechanism
splicing type I, Il, tRNA and mRNA

Primary transcript
Most dramatic processing -mRNA (euk) tRNA (euk+pro)

The introns -1977 Philip Sharp Richard Roberts

Exons <1000 nt (ave. 100-200 nt)

Intron up to 20,000 and more, some are 60 only
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Splicing mechanism
splicing type I, Il, tRNA and mRNA

Typel
Type 1 - Pre-rRNA —TE———
Mitochondria, chloroplast tRNA, rRNA, mRNA " Cloned

Use GMP for ‘creating OH end’
No energy (ie ATP)
Ligation

Type 2 - mitochondria mRNA -
Fungi, algae, plant

Also rare in bacteria
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Self-splicing group I introns were the first
examples of catalytic RNA

Spliceosome-catalyzed splicing

Self-splicing introns of pre-mRNA
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All pre-tRNAs undergo cleavage and base
modification

I

AooooFoFEEE- O w
|
|

SR RERER)

Mature tRNATY

Figure 11-52

35

Pre-tRNATY



Splicing of pre-tRNAs differs from other

splicing mechanisms

Pre-tRNA
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The splicing mechanisms type I, 11

The introns are Self splicing!! T. Cech, 1982
No proteins are involved

Isolated DNA of protozoa - with intron +RNAp
(bacteria) resulted in spliced RNA

In mMRNA eukaryotes- with the aid of RNA-protein
Complex - small nuclear ribonucleoproteins (snRNPs)
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Splicing proceeds via two sequential
transesterfication’féactions

O =3’ oxygen of
exon 1

O =2’ oxygen of
branch-point A

= 3’ oxygen of
intron

2’/A
5 O I 3
O=l|°-—0‘ ‘O—F|’=O
(|)3’ 5r('!)— E oD — 3

First transesterification



O =3’ oxygen of

exon 1
O =2’ oxygen of TN
branch-point A 5 (|) o A
O =3' oxygen of O=P—O/
intron | "
O g 3
|
0
-1 o
3’ o'

l Second transesterification

|
v |+ s ooy
> Q 5 A 5
7\
O=IT—O 3 Spliced exons
O- OH

Excised lariat intron



Analysis of RNA products formed in
an in vitro splicing reaction
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Small nuclear RNAs (snRNAs) assist
in the splicing reaction
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The spliceosomal splicing cycle




