Postdoctoral Research at the CNST

The CNST has a variety of mechanisms for participating in postdoctoral research in one of our nanoscience research areas. CNST postdoctoral researchers must be able to interact with multiple disciplines in a highly-collaborative environment, and be capable of presenting their research results effectively to a variety of audiences. Scientists and engineers interested in postdoctoral research are encouraged to contact CNST Project Leaders in the areas of interest for additional information.

The CNST anticipates there will be opportunities in 2012 to conduct postdoctoral research on the following topics:

  • Nanotribology:  Measurements of friction, adhesion, and wear at the nanoscale are of fundamental importance for micro- and nanomechanical devices and future nanomanufacturing systems.  The CNST is developing measurement technologies for pursuing atomic-level studies of friction on technologically relevant materials and structures as a function of their mechanical and adhesive properties.  This effort requires expertise in atomic force microscopy or a related technique, and a background in physics/applied physics, physical chemistry, materials science or a related field.  Additional experience with Raman spectroscopy is a plus.  Projects focus on nanoscale friction measurements using probe-based techniques, with the potential for contributing to instrumentation development and construction. 

  • Focused ion beam sources based on laser-cooled atoms: Focused ion beams are one of the most important tools for nanoscale fabrication and characterization. The CNST is developing new sources of ions that have the requisite high brightness and low emittance needed to create nanoscale probes. Extensive use is made of laser cooling techniques such as magneto-optical trapping and optical molasses to cool and trap neutral atoms to extremely low temperatures. Upon ionization, these cold atoms are formed into very bright, highly collimated ion beams that are ideally suited for microscopy applications. This work requires experience with laser cooling techniques and charged particle optics, as well as an interest in cross-disciplinary research in atomic physics and condensed matter physics/materials science.
  • Nanomagnetism: The CNST is developing measurement techniques to prepare and image magnetic nanostructures and then applying these techniques to investigate the novel properties of technologically relevant nanoscale magnetic structures and devices.  This effort requires experience with some combination of nanolithography (especially e-beam and FIB), magnetic thin film and multilayer growth, surface analysis, electron microscopy (e.g. SEM, SEMPA, and Lorentz-TEM), MFM, MOKE, and spin-polarized STM.
  • Micro- and nanomechanics:  The CNST is designing and fabricating MEMS and NEMS sensors and probes enabled by cavity optomechanics that operate near their quantum limit for use in experiments with novel nanoscale metrology applications.  This multi-disciplinary effort requires experience with some combination of microfabrication, micro- or nanomechanical sensing and actuating, scanning probe microscopy, feedback control, fiber optic measurement, photonics, and nanophotonics finite element modeling.  A broad physics background, particularly in optics and quantum mechanics is a strong plus.

  • Multifunctional nanoprobes: The CNST is developing new modalities of nanoscale sensing, imaging, and manipulation for nanomanufacturing, including nanoprobes and devices combining mechanical motion and force sensing with photonic and plasmonic functionality.  This multidisciplinary effort requires experience with some combination of microfabrication, plasmonics, photonics, optical microscopy, optical tweezers, scanning probe microscopy (i.e. NSOM and AFM), and finite element modeling.  A solid background in physics and optics is a strong plus.

  • Nanocomposite Characterization:  As part of a collaborative NIST-wide program involving structural characterization, modeling and high-throughput microwave measurement the Center for Nanoscale Science and Technology is developing new methods for imaging the nanoscale structure in carbon-based nanocomposites and anticipates that there will be postdoctoral research opportunities in the following areas:

    • Nanocomposite Characterization via Scanning Confocal Raman Spectroscopy:  the CNST is developing methods for characterizing the microstructure in carbon-based nanocomposite materials.  This effort requires expertise in Raman spectroscopy and confocal imaging.  A solid background in materials and Raman techniques is a strong plus. 

    • Nanocomposite Characterization via Transmission Electron Microscopy:  the CNST is developing methods for characterizing the complex three-dimensional microstructure in carbon-based nanocomposite materials.  This effort requires expertise in transmission electron microscopy, including tomography.  A solid background in materials and electron microscopy is a strong plus.

Postdoctoral research in the CNST typically lasts for two years, and is managed through one of three different mechanisms:

1.  National Research Council (NRC) Postdoctoral Research Associateship

NRC Postdoctoral Research Associates in the CNST are selected through NIST as part of a competition run by the NRC. NIST participates in two NRC competitions per year, with applications due February 1 and August 1, and notifications in March and September, respectively. This program is open to U.S. citizens only. See the NIST/NRC web page for administrative details. As with any other postdoctoral research, interested scientists and engineers are encouraged to first contact the Project Leader listed on the Research Opportunity.

2.  CNST Postdoctoral Researcher

CNST Postdoctoral Researchers are temporary employees of NIST, and must be U.S. citizens. When such positions are available, they are posted at USAJobs (Keyword: CNST).

3.  CNST/University of Maryland Postdoctoral Researcher

The CNST has a Cooperative Agreement with the University of Maryland Nanocenter that enables postdoctoral researchers employed by the University of Maryland to work at NIST under the mentorship of CNST Project Leaders. These positions, which do not require U.S. citizenship, are offered continuously throughout the year.

*
Bookmark and Share

PostDocThumbnail