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eMERGE I Questions

Technical
 Is the information in the EMR?

 How to get it out?

 Does it work across institutions?

Ethics, Legal, Social (ELSI)
 Recruiting (Purposeful / Opportunistic)

 Consenting (Opt in / Opt out)

 Privacy

 Data Use
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Biorepository Overview

EMR: Custom EPIC/
Cerner CustomEPIC GE/
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Why EHR data for Genome Research?

Data is already there
 Reduced cost

 Increased speed

Possibility for iterative refinement
 Co-morbidities

 Confounders

 Incorporate new knowledge

Evaluate temporal changes

Represents “real-world” experience
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Poly Phenotyping
(Associations between 2+ diseases)
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Obesity 7353
Increased Fasting Gluc 3390 2015
Increased Triglyceride 5864 3258 2263
Low HDL 6232 3443 2220 4198
Hypertension 11671 5510 3071 5122 5137
Diabetes Dx 2592 1614 1789 1778 1800 2442
MI 998 468 436 660 704 939 470
All CAD (includes MI) 2227 1058 934 1383 1431 2094 962 948
Statin Exposure 5173 2605 2080 3597 3340 4642 1843 860 1795
Asthma 2612 1195 555 904 1000 1775 481 144 362 758
All Cancers 3556 1412 1070 1635 1652 2138 905 428 953 1621 506

Phenotype Total

Two Phenotypes

* Based on Dec. 2007 dataset,  
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Ins and Outs of EHR Phenotyping
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Iterative Phenotyping
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EHR Data Challenges:
Data are collected for clinical use
 Clinical treatment may not contribute to genetic or 

research study aims
 “Absence of evidence is not evidence of absence.”

Carl Sagan

Lack of standardized responses
Multiple data points collected
 Single data entry with minimal error checking
 Duplication or disagreement of facts 
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Temporal BMI Patterns
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Population Dose-Response
 (n=2822)
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Phenotyping
GH MC Mayo NWU VU

Primary 
phenotype: Dementia Cataracts PAD 

T2 
Diabetes

QRS 
Duration

Phenotyping Approach:
Billing/Claims: x x x x

Diagnoses: x x x x x
Procedures: x x x x
Medication: x x x x x

Labs: x x x x
NLP: X x x X x

Regular 
Expression:

x x

ICR: x
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Cross-network phenotype:  
Hypothyroidism

GHC Mfld Mayo NU VU Total
Cases 310 592 293 97 185 1,477
Controls 1,223 649 2905 516 1,476 7,669

 Already Genotyped Samples
 Additional Samples Available

2834 Additional Cases
15,062 Additional Controls

9,146



What did I learn from eMERGE?
 EHRs rich source of phenotypic data

 Cost effective

 Successful phenotyping is dependent on 
 Understanding your EMR environment 

 Utilizing a multi-disciplinary team

 Utilizing creative phenotyping approaches

 Terminology
 Coded data is always wrong

 “It’s a dessert topping and a floor wax”

 Workflow
 “Do it in half the time”
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Things NOT to take away

“If everyone used the same system, we 
could combine the data.”

“We need to define new standards for....”
“We need consensus.”
“We could do great research if doctors 

would only…”
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Relationship between Quality Initiatives 
and Personalized Health Care
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True Genomic 
Healthcare

Large Scale
Genotyping

Environmental
Data

Longitudinal
Clinical Data

Semantic Interoperability

Analytics,
Knowledge Discovery

Knowledge
Assimilation

Knowledge-driven 
Electronic Workflow

Clinical Outcomes

Economic Modeling

Genome-Optimized
Health Care

Today
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“We like learning from large, 
noisy data sets”
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--Larry Page, Google

The Economist special report on managing information
Feb. 27, 2010
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We’d now like to open the floor to shorter 
speeches disguised as questions.

©  Mar. 2011- StarrenEHRs NHLBI
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Biorepository Characteristics
Group 
Health Marshfield Mayo Northwestern Vanderbilt

Name GHC 
Biobank

Personalized 
Medicine 

Res Project

Bio-
repository

NUgene BioVU

Overview Disease 
Specific 
Registry

Geographic 
cohort 

recruitment

Disease 
Specific 
Registry

Excess 
sample 

collection

Excess 
sample 

collection

Size 4,000+ 20,000 3,500 8,500 + 70,000 +

Population 96% 
Caucasian

98% 
Caucasian

96% 
Caucasian

12% AA
8% Hispanic

11% AA

Recruit 
Method

Consent Consent w/ 
recontact

Consent Consent w/ 
recontact

Opt-out
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Supplement phenotypes using 
genotyped samples from 

primary phenotypes*

RBC/WBC Diabetic 
Retinopathy

Lipid Levels 
& Height

GFR

GHC 3,579 230 3,114 1,713

Marshfield 3,865 213 3,693 3,929

Mayo 3,346 806 3,175 3,340

NU 2,484 139 2,816 1,485

VU 2,650 1,449 1,631 2,679

*The benefit of data from routine clinical testing results 
recorded in EHR



Open Issues

Supporting personal preferences

Motivation for data sharing

Incorporating research into efficient clinical 
workflow

Resolve the Quality / Business / Research 
privacy disconnect

Standardized IRB / Data Sharing / IP processes

Technology / Policy balance
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The problem with ICD9
 Limited Granularity
 False negatives:

 Outpatient billing limited to 4 diagnoses/visit
 Outpatient billing done by physicians (e.g., takes too long to find the unknown 

ICD9)
 Inpatient billing done by professional coders:

omit codes that don’t pay well 
can only code problems actually explicitly mentioned in documentation

 False positives
 Diagnoses evolve over time -- physicians may initially bill for suspected 

diagnoses that later are determined to be incorrect
 Billing the wrong code (perhaps it is easier to find for a busier clinician)
 Physicians and Patients driven to find billable ICD code.

Example: Anti-TNF biologics (e.g., infliximab) originally not covered for 
psoriatic arthritis, so rheumatologists would code the patient as having 
rheumatoid arthritis

Wisconsin just mandated insurance coverage for Autism
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