

SCD: Sequencing Options

Richard K. Wilson, Ph.D. Professor of Genetics Director, The Genome Institute

SCD: WU proposals (2010-11)

- Ley & Townes (NHLBI RFA: triaged)
 - Clinical phenotyping, banking (skin) of ~25 patients. Initial focus on families with sibs having dramatically different outcomes.
 - Perform WGS on all patients, correlate phenome:genome findings to establish genes/markers associated with severe disease.
 - Generate iPS lines for all patients, perform WGS before & after gene correction with homologous recombination (i.e. determine effectiveness, safety of an iPS approach to SCD).
- Ley, Townes & Wilson (NHGRI grant: CIP pending)
 - Clinical phenotyping, banking (skin) of ~1000 patients.
 - Phase 1: WGS of families with sibs of dramatically different outcomes, correlate phenome:genome findings to establish genes/markers associated with severe disease.
 - Phase 2: WGS of up to 1000 SCD patients.

Sequencing a human genome...

"Old technology" Applied Biosystems 3730xl (2004)

> \$15,000,000 2-3 years

"Next-gen technology" Illumina HiSeq (Dec 2011)

> \$10,000 2-3 weeks

"AML1"

- Caucasian female, mid-50s at diagnosis
- De novo M1 AML
- Family history of AML and lymphoma
- 100% blasts in initial BM sample
- Relapsed and died at 23 months
- Normal cytogenetics
- Informed consent for whole genome sequencing
- Solexa sequencer, 32 bp unpaired reads
- 10 somatic mutations detected

Ley et al., Nature 2008

Sequencing and analyzing a human genome...

Analysis and Discovery - The MuSiC Suite

- MuSiC (Mutational Significance in Cancer) is a suite of statistical tools that can also run as a fully automated downstream analysis pipeline.
- Available at: http://gmt.genome.wustl.edu/genome-music/

Genome-wide somatic mutations in 50 AML patients

The emerging genomic landscape of AML

Structural Variation: WGS in a clinical case (AML52)

JAMA. 2011;305(15):1577-1584. doi: 10.1001/jama.2011.497

Use of Whole-Genome Sequencing to Diagnose a Cryptic Fusion Oncogene

A Breakpoints in chromosomes 15 and 17 resulting in PML-RARA fusion

Welch et al., JAMA April 20, 2011

Focal deletion: WGS in a clinical case (tAML1)

- 37 y.o. female presented with T2N1 breast cancer ER/PR/Her2+. Rx with MRM, ACE chemotherapy and local radiotherapy. BRCA1 and BRCA2 status normal.
- At age 39: Stage III-C ovarian cancer diagnosed. Rx with TAHBSO, carboplatinum and Taxol.
- At age 43: locally recurrent ovarian CA. Rx with 5 cycles of carboplatinum and Taxol.
- 2 months after completing chemotherapy, presented with t-AML/respiratory failure. Expired 9 days after presentation.
- Detailed family history did not suggest inherited cancer susceptibility. Patient has three minor children.

JAMA. 2011;305(15):1568-1576. doi: 10.1001/jama.2011.473

Identification of a Novel TP53 Cancer Susceptibility Mutation Through Whole-Genome Sequencing of a Patient With Therapy-Related AML

Link et al., JAMA April 20, 2011

Genomic opportunities in Sickle Cell Disease

• Sequencing options...

Targeted sequencing (hybrid capture)

list of candidate genes/regions of interest (e.g. GWAS peaks)

large collection of patient samples

Exome sequencing (hybrid capture)

Ideally all CCDS exons & selected RNA genes

large collection of patient samples

Whole genome sequencing

complete genome sequences aligned to reference HGS

large collection of patient samples

Whole Genome or Exome sequencing?

- Exome sequencing costs less (~1/6 WGS)
- Simplified analysis (50 Mbp)
- Sequence more samples
- "Low-hanging fruit"

- Non-exonic variants ("tier 2/3") may play a role in human disease
- WGS resolves SV, CNV, indels not detected by SNP arrays
- WGS resolves fine structure around lost genes/exons
- WGS covers exons not/poorly covered by exome reagents

Exome sequencing reagents (relative to TCGA CCDS)

	% Product Unique	% Product Shared	% CDS Not Targeted	% CDS Targeted
NimbleGen v2 (35.9 Mb)	11.0%	89.0%	2.9%	97.1%
<mark>Mystery reagent</mark> (63.6 Mb)	48.2%	51.8%	. 0.1%	99.9%
Agilent SS 50Mb (51.5 Mb)	37.0%	63.0%	₀ 1.4%	98.6%
Illumina TruSeq v1 (62.1 Mb)	49.8%	50.2%	5.4%	94.6%

• TCGA CCDS (34 Mbp) is an intersection of the Agilent SSv2 target space and CDS exons. Currently the agreed-upon comparator for exome data produced by the TCGA GSCs.

T. Wylie, J. Walker

Exome sequencing reagents (relative to "WuSpace")

	% Product Unique	% Product Shared	% CDS Not Targeted	% CDS Targeted
NimbleGen v2 (35.9 Mb)	8.3%	91.7%	30.1%	69.9%
Mystery reagent (63.6 Mb)	42.2%	57.8%	22.2%	77.8%
Agilent SS 50Mb (51.5 Mb)	32.1%	67.9%	25.9%	74.1%
Illumina TruSeq v1 (62.1 Mb)	42.5%	57.5%	24.4%	75.6%

• WuSpace (47 Mbp) consists of all CDS exons and RNA annotations from NCBI GenBank 37c and Ensembl v58. Includes: 38,551 gene names, 120,141 transcript names, 27,062 RNAs, 941,210 CDS exons. A/K/A "tier 1" for WGS analysis.

© R.K.Wilson

T. Wylie, J. Walker

FLT3 coverage in an AML tumor sample

Multiplexed libraries for targeted sequencing

De-Multiplexing Indexed Reads in Hybrid Selection and Coverage Evaluation

coverage							alignment		
 depth 40 depth 30 depth 20 depth 15 depth 10 							 unique on target duplicate on target unique off target unique off target (wing duplicate off target) 	gspan 500)	
depth 5		coverage (%)			unaligned	sequenc	e (Gb)		
depth 1	0 (2L) (2L) (2L) (2L)	20	40	60 74	80 .3 82.5 79.6 80.2	100	0.5 0.49 0.62 0.55 0.49		1.5

V. Magrini

Targeted sequencing for Metabolic Syndrome

- Targeted capture of 79 ROIs* in 6,965 samples
 - 5,127 North Finland Birth Cohort (NFBC)
 - 1,838 Finnish-U.S. Investigation of NIDDM Genetics (FUSION)
- First-pass data complete for 6,188 samples (89%)
 - >95% genotype goncordance vs. SNP array data
 - >80% ROI coverage >20x
- Full exome sequencing also completed
 - 600 NFBC, 400 FUSION sequenced, analysis in progress...

Collaborators: N. Freimer & M. Boehnke * Total of ~0.5 Mbp

Targeted sequencing for Metabolic Syndrome

How many samples do we need to sequence?

- Definitions:
 - Discovery: detecting at least one occurrence of the variant
 - Recurrency: detecting occurrence in two or more samples
- Given a study size of 1,000:
 - At 1% frequency, a variant is detected essentially with 100% power (discovery and recurrency), as are discovery events at 0.5%
 - At 0.5% frequency, recurrency is detected with ~96% power
 - Very rare events at 0.1% can still be discovered with ~63% power
- Actual power for disease will be somewhat lower, assuming the underlying disease mechanisms act through combinations of events, e.g. in pathways

M. Wendl

What can we do for \$10M? (Data production/analysis)

- Targeted sequencing (custom hybrid capture)
 - 0.5 Mbp/100 genes: 33,000 samples
 - 3.0 Mbp/600 genes: 32,000 samples
 - 6.0 Mbp/1200 genes: 29,000 samples
- Exome sequencing (commercial reagents, 60 Mbp)
 - 6,300 samples (~\$1,500/sample)
- Whole genome sequencing (~30x coverage)
 - 1,000 samples (~\$9,600/sample)
- Costs include library production, capture & reagents, sequence production, data processing & variant detection.
- Sequencing costs will continue to decrease...