

Genomics and Therapeutics in SCD

BOM Baylor College of Medicine Russell E. Ware MD PhD Jonathan M. Flanagan PhD 9 December 2011

Therapeutics: Relevant Issues

Limited therapeutic options and indications Transfusion (cerebrovascular disease) Hydroxyurea (acute vaso-occlusive events) Other agents typically have small sample sizes Few cohorts with accurate phenotypes Qualitative, subjective endpoints Source documentation may be lacking Problem with negative phenotypes

Therapeutics: Role of Genomics Prediction of at-risk individuals (selection) Children who are likely to develop stroke Patients likely to have increased clinical severity Variable treatment responses (mechanisms) HbF response to hydroxyurea, MTD Fast versus Slow oral absorption Adverse effects (safety) Alloimmunization, drug toxicity, genotoxicity

Cerebrovascular Disease in SCA

5-10% of patients with sickle cell anemia (SCA) will develop an infarctive stroke during childhood

Peak incidence at 6-8 years of age Substantial neurocognitive deficits Transfusions for primary and secondary stroke prevention

Previous genetic studies have selected genes that are presumed to affect stroke risk

Candidate gene approach, biased Without subsequent validation studies

Genes "Associated" with Stroke

Gene	Gene Function
BAI1	Angiogenesis
ADRB2	Blood Pressure regulation
AGT	Blood Pressure regulation
MET	Cell Survival
CSF2	Cellular Adhesion
ECE1	Cellular Adhesion
SELP	Cellular Adhesion
TEK	Cellular Adhesion
NINJ2	Cellular Adhesion
AIMP3	DNA repair
ANXA2	Hypercoagulability

Gene	Gene Function
IL4R	Inflammation
BMP6	Inflammation
CCL2	Inflammation
TGFBR3	Inflammation
TNF-α	Inflammation
LTC4S	Inflammation
MMP3	Inflammation
LPL	Lipid Metabolism
ADCY9	Neuronal Signaling
ERG	Transcriptional regulator
GPx-3	Vascular Tone

DNA Samples for Stroke Analysis

Study	Sample Size	Stroke	Control
HUSTLE	108	5	103
SWITCH	130	130	-
CSSCD	176	21	155
C-DNA	105	20	85
Total	519	176	343

- All studies have appropriate IRB approval
- Each sample has documented phenotypes
- All DNA samples passed stringent quality controls

Validation of Candidate SNPs

- Genotyped 38 SNP's in 22 genes
 Also determined α-thalassemia, beta-globin haplotype, G6PD
- Only 4 SNP's had validated association with stroke
- α-thalassemia was protective against stroke

Gene	SNP ID	Minor Allele	Control (n=206)	Stroke (n=260)	Genetic model	Odds Ratio	95% CI	p-value
ADCY9	rs2238432	А	33.0%	22.3%	Dominant	0.47	0.28 - 0.79	0.003
ANXA2	rs11853426	Т	34.9%	44.6%	Recessive	2.70	1.25 - 5.84	0.007
TEK	rs489347	G	35.9%	46.9%	Recessive	2.16	1.11 - 4.23	0.016
TGFBR3	rs284875	Т	7.8%	13.5%	Dominant	2.53	1.28 - 4.99	0.005
HbA2	rs63751476	Δ3.7	17.0%	8.8%	Dominant	0.45	0.24 - 0.84	0.009

(Flanagan *et al.,* Blood 2011)

Genome Wide Association Study of Genetic Modifiers of Stroke Risk

DNA samples: SWiTCH, HUSTLE, plus the pediatric CSSCD and C-DNA cohorts

176 stroke samples343 control samples

An unbiased genome wide search Affymetrix SNP6.0 platform Genotyped all 519 DNA samples Golden Helix to perform quality control checks and association study

GWAS in Patients with SCA Principal Component Analysis

Outliers were removed from subsequent analyses

Stroke GWAS Results

- Tested >700,000 SNPs for association
- Compared

Control Stroke

343 patients 155 patients

Overall Stroke GWAS Results

Genetic Model	Pass Threshold (p <1x10 ⁻⁴)	Pass Threshold (p <1x10 ⁻⁵)	Pass Threshold (p <1x10 ⁻⁶)
Recessive	56	3	1
Dominant	83	9	4
Total	139	12	5

139 SNP's have p-values less than 0.0001

All represent good targets for further in depth study

Examination of the genomic location and function of related genes for all SNPs

Whole Exome Sequencing

Created four random DNA pools:

Group A ControlGroup B ControlGroup C StrokeGroup D Stroke

n = 52 DNA samples (HUSTLE)

- n = 52 DNA samples (HUSTLE)
- n = 60 DNA samples (SWiTCH)
- n = 60 DNA samples (SWiTCH)

Captured and sequenced every exon in the genome using Illumina Next Generation Sequencing technology

Identified all non-synonymous and insertion/deletion mutations present in the SCA cohort Identify mutations near genomic areas found by GWAS Identify mutations found by exon sequencing only

Whole Exome Results

Identified a total of 28,562 mutations in SCA cohort Used PolyPhen2 and SIFT algorithms to predict effects of mutation on encoded proteins

Mutation predicted to be probably damaging with score of 0.975 (sensitivity 0.68; specificity 0.94)

294 mutations are significantly associated with stroke [using Fishers exact testing and corrected for FDR (p<0.0001)] Compared to the GWAS results (139 SNPs), there are 135 mutations that are located within 500kb of a GWAS SNP and have association with stroke (p<0.05)

Genomics: Cerebrovascular Disease GWAS for stroke may be feasible Cohort size, phenotypes, quality, validation Selection criteria (at-risk patients) Stroke, silent infarcts, abnormal TCD Mechanisms and Safety Pathogenesis Treatment responses, adverse events

Hydroxyurea Treatment

Before Hydroxyurea

Taking Hydroxyurea

 H_2N

NH

Clinical Outcomes: Infants compared to Adults

	BABY HUG			MSH		
	<u>HU</u>	<u>PL</u>	<u>p-value</u>	<u>HU</u>	<u>PL</u>	<u>p-value</u>
Patients	96	97		152	147	
Pain	177	372	0.002	2 . 5/y	4 . 5/y	<0.001
Acute Chest	8	27	0.017	25	51	<0.001
Dactylitis	24	123	<0.001	—	—	—
Hospitalization	232	321	0.050	1.0/y	2 . 4/y	—
Transfusion	35	60	0.033	48	73	0.001

Hydroxyurea Laboratory Effects (N=111, therapy for 3.2 ± 2.7 years)

	Baseline Values	Hydroxyurea MTD	p value
Age (years)	7.6 ± 4.6	10.7 ± 4.3	
Hb (gm/dL)	8.6 ± 1.3	9.7 ± 1.1	<.001
MCV (fL)	85 ± 6	107 ± 13	<.001
HbF (%)	10.6 ± 6.6	23.2 ± 7.8	<.001
ARC (x 10 ⁹ /L)	264 ± 123	130 ± 52	<.001
WBC (x 10 ⁹ /L)	13.6 ± 4.3	7.5 ± 3.0	<.001
ANC (x 10 ⁹ /L)	6.7 ± 2.9	3.8 ± 2.2	<.001
T Bili (mg/dL)	3.0 ± 1.7	1.8 ± 1.4	<.001
LDH (IU/L)	662 ± 326	453 ± 220	<.001

Hydroxyurea in Sickle Cell Anemia Multiple Potential Mechanisms of Action Ware, Blood 2010; 115:5300-5311

Hydroxyurea: Variable HbF Response

Kinney, et al. Blood 1999; Ware, et al. Blood 2002

Median HbF values

Pre-treatment: 5.5%

At hydroxyurea MTD: 17.6%

Predictors of MTD HbF Baseline %HbF MTD dose WBC, reticulocytes Medication adherence

Texas Children's Hospital Baylor College of Medicine

Hydroxyurea PK, PD, PGx HUSTLE: NCTC00305175

New Cohort Old Cohort

First-dose PK MTD PK

Predictors of Response %HbF, MTD

Pharmacogenetics Candidate genes

HbF GWAS in SCA

Study sample size (HUSTLE)

	Baseline %HbF	Delta %HbF (MTD)
Patients	174	155
%HbF	7.9 ± 5.2	19.7 ± 6.9

%HbF levels as a quantitative trait Testing SNPs for any association Additive genetic model: [AA] > [Ab] > [bb] vs HbF 252 SNPs associated with any phenotype (p<1x10⁻⁴) 35 SNPs are below 1 X10⁻⁵

Genomics: Hydroxyurea Response GWAS for hydroxyurea may be feasible Cohort size, phenotypes, quality, validation Whole exome sequencing is feasible **Correlation of exonic mutations with GWAS** Selection, Mechanisms, and Safety Responses – high versus low responders Adverse events – genotoxicity

Hydroxyurea: Global Setting

Vast global burden must be addressed

Only available disease-modifying therapy

Can impact both morbidity and mortality

Pilot data will be forthcoming

Enormous opportunity for genomics analyses

