
Lessons Learned from Sequencing and Genomics

Richard Gibbs, Baylor College of Medicine

Human Genome Sequencing Center

COI: Co-investment with Life Technology; Co-Founder SeqWright

Lessons (and outline):

- TECHNOLOGY: Mind-boggling (quality not what is used to be)
- 2. BACKGROUND VARIATION: Enormous

(hard to find *important* variation)

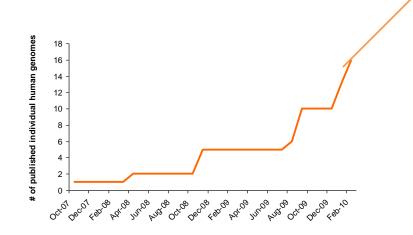
- 3. GENETICS *RULES*: Sequencing does not solve everything (genetics and functional studies most important)
- 4. ANALYSIS: Building robust pipelines (It takes a village....)
- 4. UBIQUITY: Social trend will be for ubiquitous sequencing (cohorts replaced by medical records?)
- 5. THIS PROJECT: How it might look?

(a strawman....)

So Far:

SCD a 'monogenic disorder' **but**:

- 1. Exceptions to the primary mutation
- 2. Modifiers of severity
- 3. Differential response to primary therapy
- 4. Different predisposition to other effectors e.g. pain, infection etc
- 5. Other

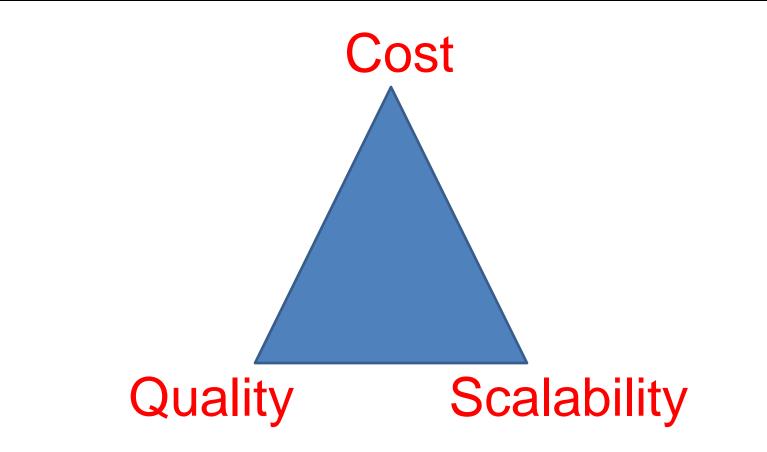

Each of these 'secondary genetic' influences represents the same challenge as more complex phenotypes!

Raw sequence production.....<< \$50/Gb!!

Wild guess – today 4,000 genomes

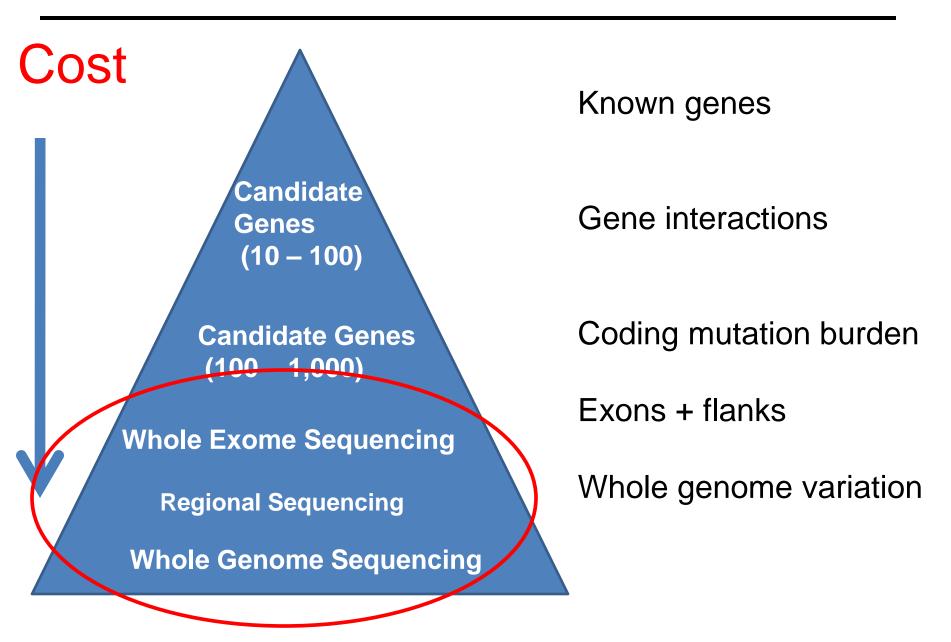
Mind boggling!!

5,000 2011 Genomes? 30,000 2012 Genomes?



1. TECHNOLOGY

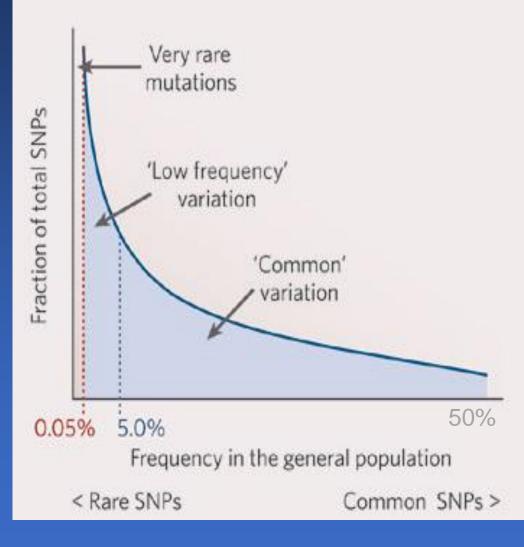
EXOMES INSTEAD OF GENOMES??.


	Whole-Genome Sequencing (WGS)	Exome Sequencing
Cost	Still costly, but decreasing rapidly	2011, 'The CORE'
Technical	No capture step, automatable	With Supplements:
Variation	Uncovers ALL genetic and genomic variation (SNVs + CNVs) Discovery of functional coding and non-coding variation ~3.5 Million variants	Aim >99% of exons Limited to coding and splice-site variants in annotated genes ~20,000 variants
Disease	Suitable for mendelian and complex trait gene identification, as well as sporadic phenotypes caused by de novo SNVs or CNVs	Good for highly penetrant mendelian disease gene identification

THE SEQUENCING TRIAD

Current methods have lower quality.....

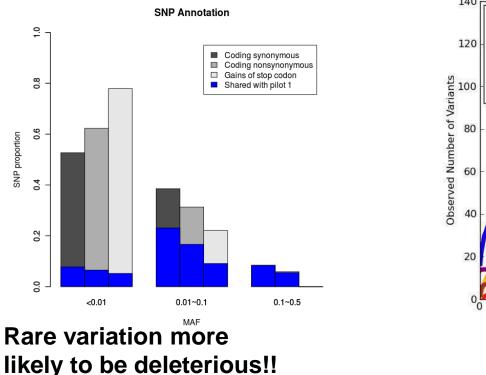
Sequencing for discovery:

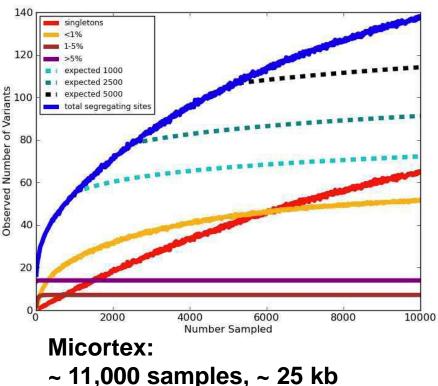


The Site Frequency Spectrum (SFS) What does our knowledge of population variation tell us about the challenges for generally solving the challenges of common diseases?

What is the nature of BACKGROUND rare variation?

GENETIC VARIATION IN HUMANS


Variation is measured by single nucleotide polymorphisms (SNPs).



2. BACKGROUND VARIATION

Rare Variants in the Site-Frequency – Spectrum

- ~10,000 ns vs reference
- 1 300 novel ns variants per person
- More *novel* functional variants than *previously* expected
- Huge impact on assessing functional significance

3: GENETICS Vignette I: NIMH/NHGRI Autism Sequencing

1,000 Autism cases from NIMH Collection

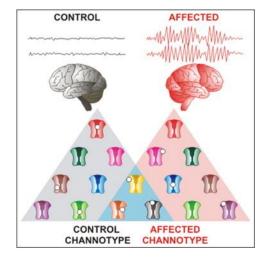
1,000 Matched controls

-Collaboration BI and BCM (Sequencing)

- Multiple analysis centers
- Aimed for all exonic variation

-Statistical differences between mutation burden?

New 'Autism Genes'?


Two years later.....a lot of data!!:

	Case		Control			Total	
	Male	Female	Sum	Male	Female	Sum	
BCM	440	65	505	240	251	491	996
BI	344	86	430	177	202	379	809
			935			870	

> 500,000 variant sites
 Large QA/QC effort
 Battery of tests
 No new loci (yet)
Testing for *de novo* mutations..

3: GENETICS Vignette II: Epilepsy Candidate Gene Sequencing

- •237 ion channel genes
- •Case vs control study'
- Few familys
- •No definitive 'hits'
- •Lots of hypotheses!

Jeff Noebels Cell,145:1036-1048 (2011),

3: GENETICS Vignette III: Autism Candidate Gene Sequencing

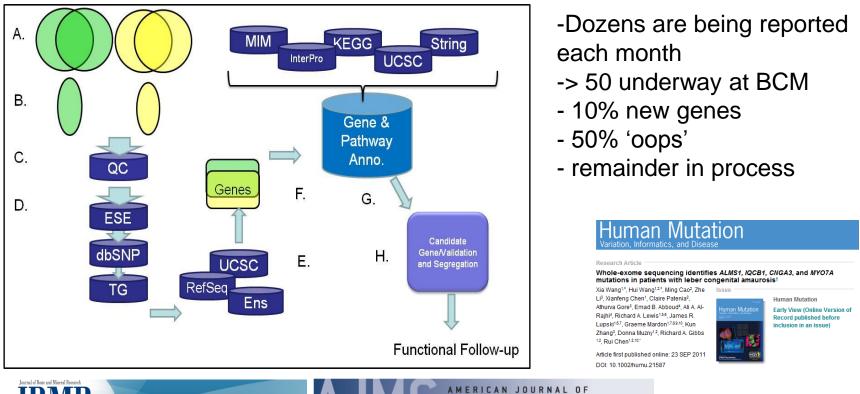
Human Molecular Genetics, 2011 1–10 doi:10.1093/hmg/ddr243

Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders

Christian P. Schaaf^{1,†}, Aniko Sabo^{2,†}, Yasunari Sakai^{1,4}, Jacy Crosby⁵, Donna Muzny², Alicia Hawes², Lora Lewis², Humeira Akbar², Robin Varghese², Eric Boerwinkle⁵, Richard A. Gibbs^{1,2,*} and Huda Y. Zoghbi^{1,3,4,6,*}

Observed	Case	Control	Total
Oligogenic event	18	6	24
No oligogenic event	321	370	691
Total	339	376	715

Christian


Schaaf

Aniko Sabo

Huda Zoghbi

Contrast to: Solving Mendelian diseases:

AJNG AMERICAN JOURNAL OF medical genetics

JOURNAL INFORMATION Home > Current Issue > Article

Home

News

Aims and Scope

Editorial Board

Accepted Articles

Current Issue

Virtual Tssues

INFORMATION FOR

CONTRIBUTORS

All Issue

Mutations in SERPINF1 cause Osteogenesis imperfecta Type VI

Erica P. Homan, Frank Rauch, Ingo Grafe, Caressa Lietman, Jennifer A. Doll, Brian Dawson, Terry Bertin, Dobrawa Napierala, Roy Morello, Richard Gibbs, Lisa White, Rika Miki, Daniel H. Cohn, Susan Crawford, Rose Travers, Francis H. Glorieux, Brendan Lee

Abstract

Osteogenesis imperfecta (OI) is a spectrum of genetic disorders characterized by bone fragility. It is caused by dominant mutations affecting the synthesis and/or structure of type I

Research Article

Whole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria[†] David R Murdock¹ Gary D Clark²³ Matthew Issue

David R. Murdock¹, Gary D. Clark²³, Matthew N. Bainbridge¹, Irene Newsham¹, Yuan-Qing Wu¹, Donna M. Muzny¹, Sau Wai Cheung⁴, Richard A. Gibbs¹, Melissa B. Ramock³.²

Article first published online: 10 AUG 2011 DOI: 10.1002/ajmg.a.34165 Copyright © 2011 Wiley-Liss, Inc.

American Journal of Medical Genetics Part A

Volume 155, Issue 9, pages 2071–2077, September 2011

Mendelian Disease Score Card:

(Approximately; n~30):10% 'new' genes50% 'retrospective 'insight'40% unsolved so far!

Invited Comment

Editorial comment on "Whole Exome Sequencing Identifies Compound Heterozygous Mutations in WDR62 in Siblings With Recurrent Polymicrogyria"[†]

Leslie G. Biesecker

5

Article first published online: 10 AUG 2011

DOI: 10.1002/ajmg.a.34183 Copyright © 2011 Wiley-Liss, Inc.

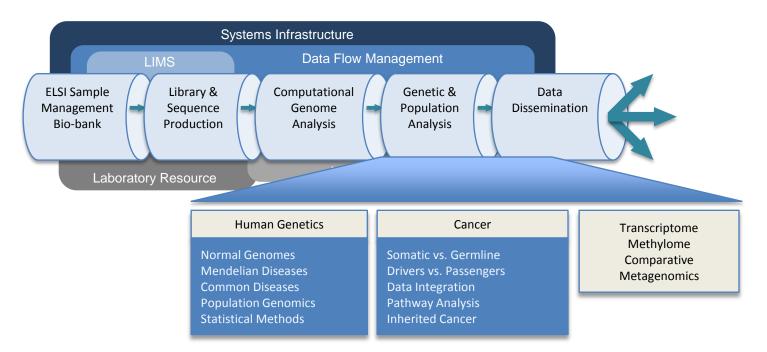
American Journal of Medical Genetics Part A

Volume 155, Issue 9, pages 2069–2070, September 2011

Nice Editorial: Les Biesecker

- 1. Unambiguous
- 2. Less expensive
- 3. Tackles de novo's
- 4. Better use of physician time...

5. SCALABLE!!!

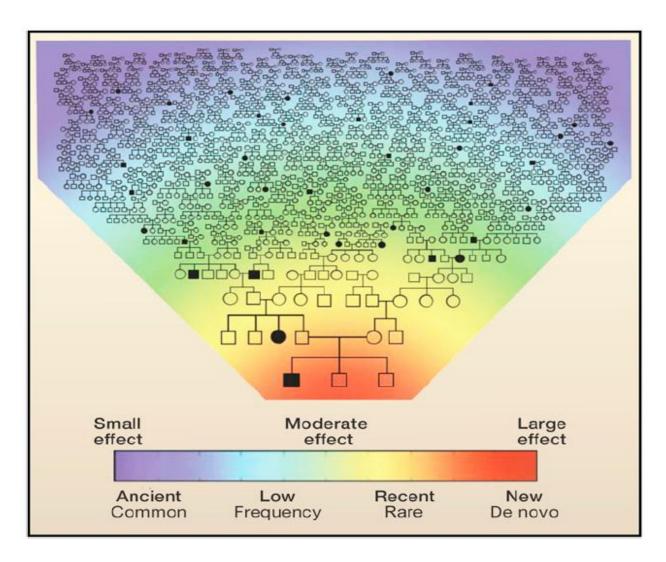

Conclusions from Genetic Discovery so far:

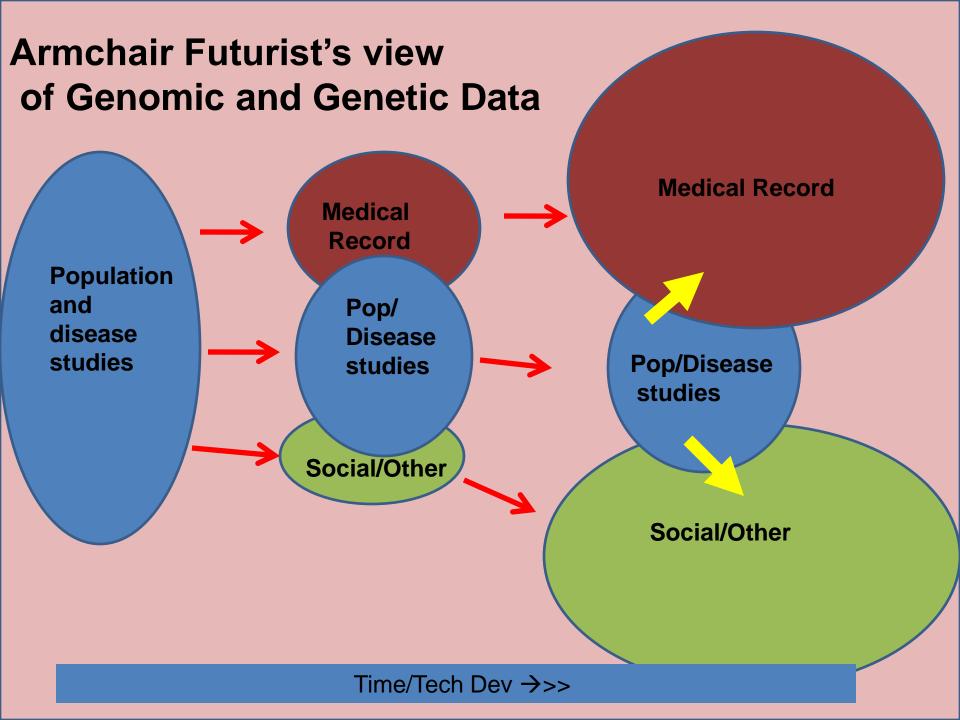
New methods make simple genetic problems easy to solve!!

AND

Family studies most tractable....

LESSON IV: Analysis Networks: Many participants, group efforts:


Dozens of conference calls, multiple centers and individuals, redundancy as well as single dedicated individuals.


e.g. the '1000 Phone Calls Project'

Approximately equal resources are needed post-data accumulation, as needed for sequencing.

LESSON V: UBIQUITY

Clan Genomics: Interest in Family Genetic Health will drive diagnostics:

How might this project look:

Thought 'project': \$5M:

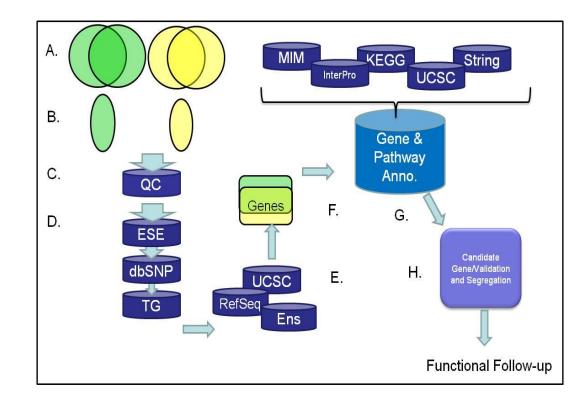
- 5,000 genomes? / 20,000 exomes?

Programs:

- 1. Rare non-HbS cases?
- 2. Variable HU responders
- 3. Other 'variant phenotype' issues?

How might this project look:

Thought 'project': \$5M:


- 5,000 genomes? / 20,000 exomes?

Programs:

- 1. Rare non-HbS cases? (25%)
- 2. Variable HU responders (25%?)
- 3. Other 'variant phenotype' issues? (50%)

DESIGN:

- 1. Rare non-HbS cases? (25%)
- Sequence probands, parents, sibs etc

DESIGN: Variable therapeutic response?

Whole exomes of low and high segments of distribution?

DESIGN: Other 'variant phenotype' issues?

- •Multiple designs
- Phenotyping critical
- Family studies optional
- Power calculations needed (>1,000 cases)
- •GWAS data to be considered

WORK PLAN:

- Complete design
- Identify samples, data generators, analysts
- Revisit ELSI/Consent issues
- Power calculations needed (>1,000 cases)
- GWAS data to be considered
- BUT.....
- Devise central data management/sharing protocols
- Establish management structure, mission milestones
- Manage timelines, integrate and respond to other efforts
- etc

For Meeting:

- Do we need a 'centralized effort'
- Can we establish community-led 'buy in' to a mission objective.
- Will this compromise distributed science approach
- Is it the time to think BIG, challenge the status quo?

James Lupski*

Jeff Reid David Deiros M Donna Muzny E Lynne Nazareth C Christie Kovar A Aniko Sabo A Matthew Bainbridge L Claudia Gonzaga-Jauregui David Wheeler E

Zogbhi Lab: Huda Zoghbi Christian Schaaf

454/James Watson – Watson Project

Llfe

Linh Hoang* Kevin McKernan Francisco de la Vega Tim Hunkapiller Michael Rodes Gina Costa Guynh Dong Fiona Hyland Heather Peckham Yutao Fu

All HGSC Staff

Micortex Team Eric Boerwinkle Charlie Sing Aleks Coventry Andy Clark Lara Bull

ENCODE/HapMap3 Fuli Yu

Other HGSC Steve Scherer Lynne Nazareth Mike Metzker Rui Chen

MHG

David Nelson Art Beaudet

1000 Genomes

Lisa Brooks Richard Durbin David Altshuler Etc

African Genomes Stephan Schuster

Vanessa Hayes Desmond Tutu

Acknowledgements

Sequencing Discovery Huda Zoghbi Jeff Noebels Melissa Ramocki Rui Chen Shalini Jhangiani

ARRA AUTISM Joe Buxbaum Bernie Devlin Jerry Schellenberg Jim Sutcliffe Kathryn Roeder Benjamin Neale Eric Boerwinkle Aniko Sabo

Jeff Reid Donna Muzny

Yuan-Qing Wu

Fuli Yu

Aniko Sabo

Lisa Trevino

Eric Boerwinkle

James Lupski

Claudia Gonzaga-Jauregui