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Abstract: Various authors — Cleveland and Tiao (1976), Burridge and Wallis (1984), and

Depoutot and Planas (1998) — have compared weight functions from X-11 versus model-based

seasonal adjustment filters. We suggest a different approach to comparing filters by com-

puting the mean squared error (MSE) when using an X-12-ARIMA filter for estimating the

underlying seasonal component from an ARIMA model-based decomposition, and comparing

this to the MSE of the optimal model-based estimator. This provides a criterion for choosing

an X-12 filter for a given series (model the series and pick the X-12 filter with lowest MSE),

and also provides results on how much MSE increases when using an X-12 filter rather than

the optimal model-based filter. Calculations for monthly time series following the airline

model with various parameter values show little increase in MSE for estimating the canon-

ical seasonal component by using the best X-12 filter instead of the optimal model-based

filter, particularly for concurrent adjustment. The results are much less favorable to the X-

12 filters with a uniform prior distribution on the white noise allocation in the seasonal model

decomposition. Examinations of simulated series show that, for the canonical decomposition,

automatic filter choices of the X-12-ARIMA program sometimes use shorter seasonal moving

averages than is desirable.

Keywords: Census X11, concurrent adjustment, moving averages, seasonal decomposition.

Disclaimer: This paper is released to inform interested parties of ongoing research and

to encourage discussion. The views expressed on statistical, methodological, technical, or

operational issues are those of the authors and not necessarily those of SPSS, the University

of Chicago, or the U.S. Census Bureau.
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1 Introduction

The fixed filtering approach to seasonal adjustment, as implemented in the original Census X-11 program

(Shiskin, Young, and Musgrave 1967) and its successors, X-11-ARIMA (Dagum 1975) and X-12-ARIMA

(Findley, Monsell, Bell, Otto, and Chen 1998), has been widely used by government and industry. This

approach relies on a finite set of empirically developed moving averages. The user can either specify the

particular moving averages used for a time series or let the program choose them automatically according

to some empirical criteria. An advantage to this approach is that it is relatively easy to use even for people

with limited statistical background. A disadvantage is that the reliance on a limited set of filters raises the

possibility of cases arising that are not well-handled by the available filters. Another disadvantage is that the

empirical criteria used by the program to automatically select filters do not follow from standard statistical

principles that would lead to certain optimality properties such as minimum mean squared error (MMSE).

In contrast, a model-based approach to seasonal adjustment specifies stochastic models for the observed

series and underlying components, and derives seasonal adjustment filters from optimal signal extraction

theory. The filters used are thus determined by the model form specified, by assumptions made about

the component decomposition, and by estimates of the model parameters. (See Bell and Hillmer (1984)

for discussion.) The model-based approach offers more flexibility in determining filters than the empirical

filtering approach, as well as providing for determination of filters according to standard statistical principles.

To relate these two approaches, Cleveland and Tiao (1976) and Burridge and Wallis (1984) proposed

stochastic models leading to seasonal adjustment filters close to filters in the Census X-11 program. This line

of work is further extended in Chu, Tiao, and Bell (2002) to provide models for 24 X-12 symmetric filters.1

These results can provide a model-based foundation for use of X-12 filters. However, the models developed

to approximate the X-12 filters are rather complex, more complex than models used in practice, making

this approach rather cumbersome and vague in practice as a means of evaluating and choosing X-12 filters.

Depoutot and Planas (1998), and Planas and Depoutot (2002), avoid complex approximating models by

restricting consideration to the popular “airline” ARIMA model (Box and Jenkins 1976), using the ARIMA

model-based seasonal decomposition approach of Hillmer and Tiao (1982), hereafter HT, and Burman (1980).

They specifically focus on matching the weights of X-12 filters with weights from model-based optimal filters

under the “canonical decomposition.”

In this paper we suggest a different approach to comparing X-12 filters to model-based filters. More

specifically, for a given ARIMA model we compute the mean squared error (MSE) when a specific X-12 filter

is used to estimate the underlying seasonal component from the model-based decomposition. This approach

provides results on how much accuracy is lost (in terms of increased MSE) by using an X-12 filter rather

than the optimal model-based filter. The approach also provides an objective means of choosing an X-12

filter, namely, pick the filter that minimizes the MSE.

An issue that arises in the ARIMA model-based approach concerns uncertainty about the model de-

composition in regard to allocation of white noise between the seasonal and nonseasonal components. We
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consider two options for dealing with this uncertainty. One is to assume a particular white noise allocation,

such as the canonical decomposition of HT and Burman (1980), which allocates all the white noise to the

nonseasonal component. The other option considered is to allow for uncertainty by putting a prior distribu-

tion on the white noise allocation and examining the average MSE over the prior. Here we obtain results for

both the canonical decomposition (which can be viewed as corresponding to a particular degenerate prior)

and for a uniform prior over the admissible range of the white noise allocation. Bell and Otto (1992) also

used these two cases in a Bayesian approach to treating ARIMA model-based seasonal adjustment.

In Section 2, we briefly review the ARIMA model-based approach to seasonal adjustment and the white

noise allocation issue. This sets up the framework for developing our approach to comparing X-12 and

model-based filters in Section 3. Sections 4 and 5 then present results of such comparisons for a monthly

time series following the airline model for various combinations of the airline model parameters. Section

4 presents results for symmetric filters, and Section 5 for concurrent filters. The results show which X-12

filters fare best in this comparison for series following various airline models, and how much accuracy is lost

in terms of increased MSE from using the best X-12 filter instead of the optimal model-based filter. In many

cases little accuracy is lost in estimating the canonical model-based seasonal component by using the best

X-12 filter, particularly for concurrent adjustment. The results are much less favorable to the X-12 filters

when we assume a uniform prior distribution on the white noise allocation. Additional results presented in

Section 4 use simulated series from the airline model to compare our best X-12 filter selections with those

from the automatic filter selection procedure of the X-12-ARIMA program. Finally, Section 6 summarizes

the results and raises some questions for future research.

2 The ARIMA Model-Based Approach and the White Noise Al-

location Issue

In this section, we briefly review the ARIMA model-based approach to seasonal adjustment and the white

noise allocation issue. Following HT and Burman (1980), we suppose that an observable time series, Zt,

where in this paper t denotes the month, can be decomposed as

Zt = St + Nt, (1)

where St and Nt are unobservable seasonal and nonseasonal components that follow the ARIMA models

U(B)St = ηS(B)bt, and (2)

(1 − B)dφN (B)Nt = ηN (B)ct, (3)

respectively. In (2) and (3) B is the backshift operator such that BSt = St−1, U(B) = (1 +B + · · ·+Bs−1),

and s denotes the number of time periods per year (here s = 12). Further, φN (B) is a polynomial in B of
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degree p with its zeros lying outside the unit circle, while ηS(B) and ηN (B) are polynomials of degrees s− 1

and p + d, respectively, with zeros lying on or outside the unit circle. (Note: These assumptions effectively

impose only upper limits on the degrees. If ηS(B) has lower degree than s − 1 we can append additional

terms with zero coefficients to raise its degree to s− 1, and similarly if ηN (B) has lower degree than p + d.)

We also assume that U(B) and ηS(B) have no common zeros, and that (1 − B)dφN (B) and ηN (B) have

no common zeros. The innovation series bt and ct are mutually independent Gaussian white noises with

variances σ2
b and σ2

c , respectively.

Overall model implied by component models: Let AZ(z), AS(z), and AN (z) denote the “pseudo”

autocovariance generating functions (ACGFs) of Zt, St, and Nt, respectively. We then have from (1)–(3)

that

AZ(z) = AS(z) + AN (z) (4)

where

AS(z) =
ηS(z)ηS(z−1)

U(z)U(z−1)
σ2

b and (5)

AN (z) =
ηN (z)ηN (z−1)

(1 − z)d(1 − z−1)dφN (z)φN (z−1)
σ2

c . (6)

It follows that AZ(z) can be written in the form

AZ(z) =
θ(z)θ(z−1)

ϕ(z)ϕ(z−1)
σ2

a (7)

where ϕ(z) = U(z)(1 − z)dφN (z) and θ(z) both have degree p + s + d − 1. Thus, the overall model for Zt is

the ARIMA model

ϕ(B)Zt = θ(B)at, (8)

The innovation series at is Gaussian white noise with variance σ2
a. We assume that all the zeros of θ(B) are

outside of the unit circle.

Decomposition of an overall model: On the other hand, given an overall model in the form of (8), which

can be verified from observable data Zt, we can proceed to use the results in HT and Burman (1980) to

obtain a decomposition of Zt into seasonal and nonseasonal components St and Nt as follows.

Note first that, given the ARIMA model (8) for Zt, any choice of ηS(B), ηN (B), σ2
b , and σ2

c satis-

fying (4)–(7) gives what is termed an “acceptable” decomposition of AZ(z) into seasonal and nonseasonal

component ACGFs, corresponding to an acceptable decomposition of Zt into seasonal and nonseasonal com-

ponent series as in (1). Now if AS(z) and AN (z) represent an acceptable decomposition, then AS(z)+ τ and

AN (z) − τ , where τ is a constant, represent another acceptable decomposition provided that AS(e−iλ) + τ

and AN (e−iλ) − τ are nonnegative for all λ ∈ [0, π]. Thus, in general there are an infinite number of ways

one can decompose a series corresponding to a given overall model.
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Now we can represent the range of acceptable decompositions in terms of one unidentified parameter.

Specifically, writing Φ(B) ≡ ϕ(B)/U(B) = (1−B)dφN (B), and following HT, we perform a (unique) partial

fraction decomposition of AZ(z) in (7) into

AZ(z) = AS(z) + AN (z) + κ

where

AS(z) =
QS(z)

U(z)U(z−1)
with QS(z) = q0S +

s−2
∑

i=1

qiS(zi + z−i),

AN (z) =
QN (z)

Φ(z)Φ(z−1)
with QN (z) = q0N +

p+d−1
∑

i=1

qiN (zi + z−i),

and κ is a constant. Let

ASC(z) =
QS(z)

U(z)U(z−1)
− εs, and

ANC(z) =
QN(z)

Φ(z)Φ(z−1)
− εn

where

εs = min
λ∈[0,π]

QS(e−iλ)

U(e−iλ)U(eiλ)
, and

εn = min
λ∈[0,π]

QN (e−iλ)

Φ(e−iλ)Φ(eiλ)
.

Then, we can write

AZ(z) = ASC(z) + ANC(z) + εs + εn + κ.

As shown in HT, an acceptable decomposition exists if and only if γmax ≡ εs + εn + κ ≥ 0. When this is

so, acceptable decompositions AZ(z) = Aγ
S(z) + Aγ

N (z) can be indexed by γ ∈ [0, γmax], and the range of

acceptable seasonal and nonseasonal components must correspond to

Aγ
S(z) = ASC(z) + γ (9)

Aγ
N (z) = ANC(z) + (γmax − γ). (10)

We shall let Sγ
t denote the seasonal component corresponding to Aγ

S(z) and Nγ
t = Zt − Sγ

t the nonseasonal

component corresponding to Aγ
N (z). The constant γmax, when positive, can be viewed as corresponding

to unobservable white noise in the series Zt. We see from equations (9) and (10) that the value specified

for γ ∈ [0, γmax] thus determines an allocation of this white noise between the unobserved seasonal and

nonseasonal components.
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Canonical Decomposition: In (9) it is easy to see that setting γ = 0 will minimize the innovation

variance σ2
b of the seasonal component. HT call this the “canonical decomposition” and discuss its properties.

Fundamentally, the canonical decomposition provides the most stable seasonal component, i.e., the one that

shows the least variation over time from a fixed seasonal pattern. At the other extreme, setting γ = γmax

will maximize the innovation variance of the seasonal component and provide the most variation over time

from a fixed seasonal pattern. The only information provided about γ by the model (8) for the observed

series Zt, and hence by the data, is the range γ ∈ [0, γmax]. This means that given the ARIMA model for Zt

in (8), unobserved seasonal components for all values of γ ∈ [0, γmax] are equally consistent with the data.

Dealing with uncertainty about γ is discussed next in Section 3.

3 An Approach to Comparing X-12 and Model-Based Seasonal

Filters

In this section we develop an approach to comparing any given linear seasonal filter with the optimal model-

based seasonal filter based on comparing their MSEs when estimating the seasonal component Sγ
t . We then

apply the results to comparing X-12 and optimal model-based seasonal filters. We first discuss the case

where γ is assumed to be known (Section 3.1), and then the case where γ is unknown (Section 3.2).

Let wS(B) =
∑

i wSiB
i be a specific linear filter to be used for estimating any seasonal component St,

i.e., Ŝt = wS(B)Zt, and let wN (B) = 1 − wS(B) be the corresponding linear filter for estimating Nt. For a

given value of γ, the error in estimating Sγ
t by Ŝt, which we shall denote by gγ

t = Sγ
t − Ŝt, is

gγ
t = wN (B)Sγ

t − wS(B)Nγ
t . (11)

Given that Sγ
t and Nγ

t are assumed to follow models of the form of (2) and (3), it is easy to see from (11)

that the error series gγ
t will be stationary if wN (B) contains U(B) as a factor and wS(B) contains (1 − B)d

as a factor. This will be true for all the filters considered here. When this is true the ACGF of gγ
t is

Aγ
g (z) = wN (z)wN (z−1)Aγ

S(z) + wS(z)wS(z−1)Aγ
N (z) (12)

and the corresponding MSE is

MS(gγ
t ) = (2π)−1

∫ π

−π

Aγ
g(e−iλ)dλ. (13)

The above results were given by Pierce (1979). Since (12) shows Aγ
g (z) to be symmetric (coefficients of zk and

z−k are equal for all k) we can compute MS(gγ
t ) by expanding (12) and taking the constant term (coefficient

of z0 in the expansion). Before doing so, however, we must cancel the unit root factors U(z)U(z−1) that

appear in wN (z)wN (z−1) and in the denominator of Aγ
S(z), and similarly cancel (1 − z)d(1 − z−1)d that

appears in wS(z)wS(z−1) and in the denominator of Aγ
N (z).
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We now discuss an interesting and important property of MS(gγ
t ). Watson (1987, eq. (3.9)) showed

that (allowing for differences in notation)

MS(gγ
t ) = MS(g0

t ) + γ(1 − 2wS0) (14)

where g0
t is the estimation error for Sγ

t at γ = 0, i.e., the error in estimating the canonical seasonal S0
t , and

wS0 is the “center weight” of the filter wS(B), that is, the weight that wS(B) applies to Zt (at the time

point at which we are estimating St). In (14) when wS0 < 0.5, MS(gγ
t ) is an increasing linear function of γ

that is thus bounded below by MS(g0
t ) and bounded above by MS(gγmax

t ).

Equations (12)–(14) apply whether wS(B) is a model-based or X-12 filter, symmetric or asymmetric.

When wS(B) is the (symmetric or asymmetric) model-based filter corresponding to the true value of γ we

get the optimal (MMSE) signal extraction estimate, which we shall denote as S̃γ
t . In the symmetric case the

optimal signal extraction filter is wγ
S(B) = Aγ

S(B)/AZ(B) and (12) simplifies to Aγ
g (z) = Aγ

S(z)Aγ
N (z)/AZ(z)

(Bell 1984). Bell and Martin (2004) discuss optimal asymmetric signal extraction, and computation of the

resulting MSE, with ARIMA component models.

3.1 Comparing X-12 and Model-Based Filters When γ Is Known

Now let j index the filters within a relevant set J of X-12 filters, such as the symmetric X-12 seasonal filters.

We write xj
S(B) for a particular X-12 seasonal filter, with corresponding estimated seasonal component

Ŝj
t = xj

S(B)Zt. Letting gγ,j
t = Sγ

t − Ŝj
t be the error series, for each j ∈ J we can expand (12) as discussed

above to compute MS[gγ,j
t ]. We can then pick the best X-12 filter, xj∗

S (B), to achieve the minimum MSE,

i.e.,

MS[gγ,j∗
t ] = min

j∈J
{MS[Sγ

t − Ŝj
t ]}. (15)

Stationarity of the error series gγ,j
t for any γ and any symmetric X-12 filter follows from (11) since, according

to Bell (1992), any symmetric X-12 seasonal filter xj
S(B) contains (1−B)6 and any symmetric X-12 seasonal

adjustment filter, xj
N (B) = 1 − xj

S(B), contains U(B). Asymmetric filters obtained by applying symmetric

X-12 filters to series extended by a sufficient number of forecasts and backcasts from the ARIMA model (8)

will also contain the needed differencing operators.

We remark here that the center weight wj
S0 < 0.5 for all the symmetric X-12 seasonal filters (note, e.g.,

Bell and Monsell 1992). Hence, for X-12 symmetric seasonal filters the minimum of MS(gγ,j
t ) as a function

of γ always occurs at γ = 0, i.e., at the canonical decomposition. Thus, any X-12 symmetric seasonal filter

will better estimate the canonical seasonal component for a given model than any other admissible seasonal

component for that model.
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3.2 Comparing X-12 and Model-Based Filters When γ Is Unknown

When the value of γ in the model-based decomposition is regarded as unknown, we assign to γ a prior

probability density, p(γ), over the acceptable range [0, γmax], and then compute, for a given filter, the

average MSE over p(γ). That is, we compute Eγ MS(gγ
t ) =

∫

MS(gγ
t )p(γ)dγ. Computation of this average

MSE is greatly aided by the linearity of MS(gγ
t ) in γ as shown in (14). We thus have the following lemma.

Lemma: Let Zt = Sγ
t + Nγ

t be an acceptable decomposition of Zt following the model (8), where Sγ
t and

Nγ
t follow models given by (2) and (3) corresponding to ACGFs as given by (5) and (6). Let wS(B) be

a linear seasonal filter such that the error series gγ
t in (11) is stationary. Then the average MSE over the

distribution of γ with density p(γ) for estimating Sγ
t by wS(B)Zt is

Eγ MS(gγ
t ) = MS(g

µ
γ

t )

where µγ =
∫

γp(γ)dγ is the mean of γ.

Proof : The result follows immediately from (14) by noting that

Eγ MS(gγ
t ) = MS(g0

t ) + µγ(1 − 2wS0) = MS(g
µ

γ

t ).

Note: In the special case of a uniform prior for γ, µγ = 1
2γmax. The Lemma also applies to the canonical

decomposition by setting µγ = 0, since the canonical decomposition can be viewed as corresponding to a

degenerate prior of γ = 0 with probability one.

Note that wS(B) could be either a symmetric filter or an asymmetric filter, so the Lemma applies to

both symmetric and concurrent seasonal adjustment. It could also be either a finite or an infinite filter.

The only requirements are that (i) wS(B) and wN (B) contain the needed operators (1 − B)d and U(B),

respectively, so the error series gγ
t is stationary, and (ii) the time point for which we are estimating Sγ

t

lies within the span of the observed data. The second requirement excludes forecasting of Sγ
t , since, for

forecasting, wN (B) 6= 1 − wS(B).

The Lemma can be used to compute the average MSE for a given filter, X-12 or model-based, and in

each case we need only compute the MSE when the filter is used to estimate S
µγ

t . Given a set J of X-12

filters, the best X-12 filter in terms of average MSE is thus the one that achieves the minimum average

MSE over the set. For additional related results and further insights, see Watson (1987) and Bell and Otto

(1992).
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3.3 MSE Comparison Measures

In Sections 4 and 5 we compare MSEs of X-12 and optimal model-based filters. For the case of γ unknown

we compare the average MSEs (over p(γ)) assuming a uniform prior for γ on [0, γmax], which, from the

Lemma, reduces to comparing the MSEs for estimating S
µγ

t with µγ = γmax/2. We can also think of the

canonical decomposition comparisons as “average MSE comparisons” under a degenerate prior of γ = 0 with

probability one, which reduces to comparing the MSEs for estimating S
µγ

t with µγ = 0.

We present the average MSE comparisons as percentage differences, using the average MSE for the best

model-based estimator, S̃
µγ

t = w
µγ

S (B)Zt, as a base value. So the percentage difference for a given X-12

filter xj
s(B) is

100 ×

{

MS[S
µγ

t − xj
S(B)Zt] − MS[S

µγ

t − S̃
µγ

t ]

MS[S
µγ

t − S̃
µγ

t ]

}

. (16)

When xj
s(B) in (16) is xj∗

s (B) satisfying (15) (with the γ in (15) fixed at µγ), then (16) gives the percentage

increase in MSE from using the best X-12 filter instead of the best model-based filter for estimating S
µγ

t .

The denominator of (16) can be computed from standard signal extraction results. In the numerator we can

write

S
µγ

t − xj
S(B)Zt = [S

µγ

t − S̃
µγ

t ] + [(w
µγ

S (B) − xj
S(B))Zt]. (17)

The first term on the right hand side of (17), the error in the optimal estimate S̃γ
t , is orthogonal to all

linear functions of Zt. Thus, the two terms in (17) are orthogonal and the numerator of (16) immediately

reduces to MS[(wγ
S(B) − xj

S(B))Zt], the MS of the difference of the two estimators S̃γ
t and xj

S(B)Zt. For

the airline model, which we use here, w
µγ

S (B)− xj
S(B) always contains U(B)(1 −B)2 = (1−B)(1 −Bs), so

that (w
µγ

S (B)− xj
S(B))Zt is stationary. Thus, the ACGF of (w

µγ

S (B)− xj
S(B))Zt, and hence its MS, can be

calculated.

Use of (16) thus implies that, apart from the normalization by the denominator, we measure the

distance between the X-12 and model-based filters by comparing the mean squared difference of their seasonal

component estimators. In contrast Depoutot and Planas (1998), hereafter DP, directly compared filter

weights from X-12 and (canonical) model-based filters. Their criterion for comparing an X-12 filter, xj
S(B),

with a canonical model-based filter, w0
S(B), can be written

∑

h

(w0
S,h − xj

S,h)2 = (2π)−1

∫ π

−π

∣

∣

∣
w0

S(e−iλ) − xj
S(e−iλ)

∣

∣

∣

2

dλ. (18)

Equation (18) can be thought of as measuring the mean squared difference of two “seasonal component

estimators” obtained by applying the X-12 and canonical model-based filters to a white noise series (with

variance 1). Our criterion measures the mean squared difference of the two estimators of the canonical

seasonal component of the series Zt. This can be written as

MS[(w0
S(B) − xj

S(B))Zt] =

∫ π

−π

∣

∣

∣
w0

S(e−iλ) − xj
S(e−iλ)

∣

∣

∣

2

f(λ)dλ (19)

9



where f(λ) = (2π)−1AZ(e−iλ) is the spectral density of Zt. This weights the squared difference of the

X-12 and canonical model-based filters at each frequency λ by the value of the spectral density f(λ) at that

frequency. (DP actually write their comparison criterion as π−1
∫ π

0

∣

∣

∣
w0

S(e−iλ) − xj
S(e−iλ)

∣

∣

∣

2

dλ, a form that

is equivalent to (18) for symmetric filters but not for asymmetric filters. They also start with dλ replaced by

dm(λ), where m(λ) is a general measure on [0, π], though they explicitly consider only Lebesgue measure, i.e.,

dλ. Note that setting dm(λ) = f(λ)dλ yields our criterion (19). Finally, despite the difference between (18)

and (19), DP’s choices of seasonal moving averages (for symmetric filters and the canonical decomposition),

are essentially in agreement with those that we report in the next section. Our focus here is not just on

the best X-12 filter choices, but also on the MSEs related to the X-12 filters, and particularly on how these

compare, via (16), to the MSEs of the model-based filters.)

4 Symmetric Filter Comparisons

In this and the next section we apply the results of Section 3 to the airline model with various parameter

values for monthly time series Zt,

(1 − B)(1 − B12)Zt = (1 − θ1B)(1 − θ12B
12)at, (20)

where at is a normally distributed white noise series with variance that we set to unity. Our objectives are

to (i) compare the average MSEs for various X-12 filters to the average MSE of the optimal model-based

filter, and (ii) determine which of a set of J X-12 seasonal filters minimizes the average MSE, MS[g
µγ ,j
t ].

We focus on the cases of the canonical decomposition (µγ = 0) and the uniform prior on γ (µγ = γmax/2).

We study the airline model (20) because it is probably the most commonly used model for analyzing

seasonal time series. We restrict consideration to nonnegative values of θ1 and θ12. One reason for this is

that the condition θ12 ≥ 0 is needed for an acceptable decomposition to exist (HT, p 67). A second reason

is that, in practice, estimated models tend to satisfy these constraints. DP modeled over 7000 series with

the airline model and found that about 97 percent of the estimates of the model parameters (θ1, θ12) were

positive.

The symmetric X-12 filters are determined by the choices of seasonal and trend moving averages (MAs)

that are applied in X-12’s iterative filtering calculations. See Bell and Monsell (1992), Findley et al (1998),

or Chu, Tiao and Bell (2002) for details. As notation for the X-12 filters we write, for example, S3335H13 to

denote the X-12 seasonal filter that results when the first seasonal MA is the 3×3 ((1/9)(F 12+1+B12)(F 12+

1 + B12)), the second seasonal MA is the 3×5 ((1/15)(F 12 + 1 + B12)(F 24 + F 12 + 1 + B12 + B24)), and the

trend MA is the 13-term symmetric Henderson MA. Findley et al (1998, pp. 149-151) and Dagum (1985, p.

634) discuss the Henderson trend MAs.

For the set J of X-12 symmetric seasonal filters that we consider here it would be desirable, in principle,

to include all the possibilities, i.e., those resulting from all possible combinations of X-12’s seasonal and trend
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MAs. This would involve, however, a large number of combinations, and would include several sets of filters

not appreciably different from one another. (For example, Bell and Monsell (1992) note that filters with

S3335 versus S3535, and having the same Henderson trend MA, are not appreciably different.) We thus

restrict J to contain the 20 X-12 seasonal filters generated from the combinations of five different seasonal

MAs (S3131, S3333, S3335, S3339, and S315315) and 4 Henderson trend MAs (H9, H13, H17, and H23).

As will be noted in Section 4.3, the S3333, S3335, and S3339 seasonal MAs, as well as the H9, H13, and

H23 Henderson trend MAs, are possibilities that can arise from the X-12-ARIMA automatic filter selection

scheme. The S3131 and S315315 seasonal MAs, and the H17 Henderson trend MA, are available as user-

specified options.2

Section 4.1 following gives MSE comparisons between X-12 and model-based symmetric filters for the

canonical decomposition, while Section 4.2 gives MSE comparisons for the case of the uniform prior on γ.

MSEs for the symmetric model-based filters were computed from standard signal extraction results (Bell

1984), while those for the symmetric X-12 filters were computed by expanding (12) as discussed in the first

part of Section 3. Section 4.3 examines automatic X-12 filter selections for time series simulated from the

airline model and notes how these selections compare to the “best selections” as determined in Sections 4.1

and 4.2. One point to note for practical application of the results in this section is that there is an implicit

assumption that the time series under consideration is “sufficiently long” for the filters being compared.

That is, we implicitly assume the series is long enough and the filter weights die out sufficiently quickly as

they reach forward and backward through the series so that the weights that would be applied before the

beginning and after the end of the observed series are essentially negligible.

4.1 Comparisons for the Canonical Decomposition

We consider first the case where the true seasonal component is from the canonical decomposition (γ = 0)

of the airline model. Table 1 below shows the best X-12 filter, the minimum MSE in (15), and the best

X-12 filter’s MSE percentage difference (16) for the combinations where the parameter θ1 takes one of the

values {0.9, 0.7, 0.5, 0.3, 0.1} and the parameter θ12 takes one of the values {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3,

0.2, 0.1}. We use fewer values of θ1 because the variation in the results across different θ1 values is not that

large. We note the following from the results in the table:

1. The percentage increase in MSE from using the best X-12 symmetric filter rather than the optimal

model-based filter is generally small for estimating the canonical seasonal. It is generally less than or

equal to about 12 percent, except for large values of θ12 (.9) or small values of θ12 (.1, .2).
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Table 1: Symmetric Filter Estimation of the Canonical Seasonal for the Airline Model

(Choices of the best symmetric X-12 filters, their MSE values, and the

percentage increases in MSE over those of the optimal model-based filters)

θ12 = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

θ1 = 0.9 S315315-H9 S315315-H9 S3339-H9 S3335-H9 S3333-H9 S3333-H23 S3333-H23 S3333-H23 S3131-H23

.053235 .079359 .108168 .128642 .142494 .144434 .149712 .158752 .161449

37.10% 10.68% 9.94% 8.48% 8.04% 4.86% 10.59% 28.24% 59.00%

0.7 S315315-H9 S315315-H9 S3339-H9 S3335-H9 S3335-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H23

.045764 .067915 .091772 .108704 .118918 .122222 .125617 .132100 .131979

36.09% 10.45% 9.65% 8.36% 6.69% 4.39% 7.22% 18.42% 31.97%

0.5 S315315-H9 S315315-H9 S3339-H9 S3335-H9 S3335-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.043036 .064493 .086877 .103016 .112077 .117828 .121617 .127458 .126960

33.35% 9.94% 9.27% 8.30% 5.89% 5.25% 6.91% 14.30% 20.42%

0.3 S315315-H9 S315315-H9 S3339-H9 S3335-H9 S3335-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.045520 .070974 .097316 .117043 .130572 .138997 .148252 .157756 .163579

29.12% 9.23% 8.95% 7.95% 6.69% 5.89% 9.77% 18.02% 28.91%

0.1 S315315-H9 S315315-H9 S3339-H9 S3335-H9 S3335-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.052639 .085050 .118390 .144067 .163967 .176238 .192599 .207177 .220763

25.40% 8.63% 8.69% 7.69% 7.37% 6.50% 12.16% 21.22% 36.08%

In each cell, 1st row : the chosen X-12 filter, i.e., j∗ as defined by eq. (15);

2nd row: the MMSE value from eq. (15) when t is in the middle of a sufficiently long series;

3rd row: the percentage increase in MSE (X-12 filter compared to optimal model-based filter) from eq. (16).
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2. Larger values of θ12 imply longer seasonal MAs for the best X-12 filter. This is, of course, to be expected,

because as θ12 approaches 1 the stochastic seasonal component will tend to become deterministic, to

be estimated by the mean for each month. We can roughly summarize the best seasonal MA choices

corresponding to given values of θ12. This is done in Table 2.

Table 2: Best Choices of X-12 Seasonal MAs

for Estimating the Canonical Seasonal

value of θ12 .1 – .2 .3 – .4 .5 – .6 .7 .8 – .9

best seasonal MA S3131 S3333 S3335 S3339 S315315

Exceptions to the above choices occur for (θ1, θ12) = (.9, .2), (.7, .2), and (.9, .5), for which the S3333

seasonal MA is best. Figure 1 below shows, though, that in these cases the MSEs with the seasonal

MAs shown in Table 2 are only slightly higher. (As noted earlier, DP arrived at essentially these same

choices of seasonal MAs.)

3. With one exception the Henderson trend MA chosen is the 9-term for θ12 ≥ .6 and the 23-term for

θ12 ≤ .5. The one exception is that the 9-term Henderson is chosen for (θ1, θ12) = (.9, .5). Figure 1

shows, though, generally little dependence of the MSEs on the choice of Henderson trend MA.

4. We see that the value of θ1 has little effect on the choice of seasonal or trend MA for determining

the best X-12 filter for estimating the canonical seasonal. More effect from the value of θ1 would be

expected for estimation of the canonical trend component.

5. The X-12 MSEs tend to increase as θ1 and θ12 decrease. The largest MSE shown in Table 1 (.220763)

is about five times the smallest (.043036).

The general conclusion from Table 1 is that, except for the largest and smallest values of θ12, little is lost

by using the best X-12 symmetric filter instead of the optimal model-based symmetric filter for estimating

the canonical seasonal from a series that follows the airline model.
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Figure 1 shows how the MSE of the X-12 estimated seasonal varies across different X-12 filters. The

figure consists of two columns with three plots each. The first column of plots shows results for the canonical

decomposition, and the second column of plots, to be discussed later in Section 4.2, shows results for the

uniform prior on γ. The three rows of plots correspond to the values θ12 = .8, .5, and .2, respectively. We

use these three values to generically represent high, medium, and low values of θ12. Within each plot are

sets of results for θ1 values .8, .5, and .2, as noted. For each θ1 value the MSEs as plotted are seen to fall

into five groups of four values, each group corresponding to a particular choice of X-12 seasonal MA (S3131,

S3333, S3335, S3339, and S315315). The four values within each group correspond to the four choices of

Henderson trend MAs considered (9-term, 13-term, 17-term, and 23-term, in that order). Two general results

are evident from the plots of Figure 1 for the canonical decomposition:

• MSEs are generally insensitive to the choice of Henderson trend MA. Some exceptions occur when

a very poor choice is made for the seasonal MA (e.g., with the S3131 seasonal MA when θ12 = .8).

Keep in mind that these results are for estimation of the canonical seasonal (equivalently, the canonical

nonseasonal). We would expect more sensitivity to the choice of Henderson trend MAs in MSEs for

X-12 trend estimates.

• Choice of the best seasonal MA is not crucial. For θ12 = .8 the S3339 seasonal MA does about as well

as the S315315, for θ12 = .5 the S3333 does about as well as the S3335, and for θ12 = .2 the S3333 does

about as well as the S3131. Straying further than this from the best choice of seasonal MA entails a

more substantial increase in MSE.

4.2 Comparisons for the Uniform Prior on γ

We now consider the case where γ is unknown and with a uniform prior distribution over [0, γmax]. From

the Lemma of Section 3.2, the average MSEs, for both the X-12 and model-based filters, are the MSEs of

the filters for estimating S
µγ

t . With the uniform prior, or indeed with any symmetric prior for γ in [0, γmax],

µγ = γmax/2. Table 3 gives MSE results analogous to those in Table 1 except that we include more θ1

values, {0.9, 0.7, 0.6, 0.5, 0.4, 0.3, 0.1}, because the results here depend more on θ1. Comparing the results

of Table 3 with those of Table 1, we observe the following:

1. The average MSE values in Table 3 are higher than the corresponding values in Table 1, as are the

percentage increases. In particular, for large values of θ12 the MSEs are much higher, while for small

values of θ12 the percentage increases are much larger. The higher MSEs in Table 3 could be expected

due to the result noted at the end of Section 3.1 that for X-12 filters the MSE in estimating Sγ
t is an

increasing function of γ.

2. Much shorter seasonal MAs are chosen as best X-12 filters in comparison to the choices in Table 1:

the S3333 seasonal MA is generally best for θ12 ≥ .3, and the S3131 seasonal MA is generally best for

θ12 ≤ .2. Exceptions are that the S3333 seasonal MA is chosen for (θ1, θ12) = (.9, .2) and (.7, .2), the
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Figure 1: The MSEs when using various X-12 symmetric seasonal filters to estimate the seasonal component
of the airline model with various parameter values ((a) canonical decomposition, (b) uniform prior on γ)
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S315315 for (.3, .9) and (.1, .9), and the S3339 for (.1, .8). Apart from the cases where the S315315

and the S3339 seasonal MAs are chosen, we see that for estimating the seasonal component S
µγ

t with

µγ = γmax/2 (which contains half the available white noise), short X-12 seasonal MAs are generally

the best.

3. There is more variation in the best choice of Henderson trend MA in Table 3 than in Table 1. For

θ12 ≤ .5 the 23-term is always chosen, but for θ12 ≥ .6 the Henderson trend MA chosen ranges from

the 9-term to 23-term as θ1 increases from .1 to .9. Figure 1 shows, though, that for a given seasonal

MA the MSEs for estimating S
µγ

t with an X-12 filter over the different choices of Henderson trend MAs

usually don’t vary much.

4. Contrary to the results of Table 1, in Table 3 the X-12 filter MSEs generally increase consistently with

θ12, except for θ1 = .1 or .3.

The second column of 3 plots in Figure 1 shows how the MSEs under the uniform prior on γ vary across

alternative X-12 seasonal filters. As with the canonical decomposition, for a given seasonal MA the MSEs

usually don’t vary much over the different choices of Henderson trend MAs, except in a few cases where the

seasonal MA is badly chosen. Results on the MSEs with alternative choices of the seasonal MAs are more

mixed. For θ12 = .8 and θ1 = .2, MSEs for seasonal MA choices other than the S3131 are not very different,

but for θ1 = .5 or .8 (especially) more is lost by not choosing the best seasonal MA (S3333). For θ12 = .5

and θ1 = .5 or .2, MSEs with the S3131, S3333, and S3335 seasonal MAs are similar, but with other seasonal

MAs the MSEs are higher. For θ12 = .5 and θ1 = .8, the MSEs with the S3333 seasonal MA are lower than

those with the S3131 and much lower than the MSEs with other seasonal MAs. Finally, for θ12 = .2 and any

value of θ1, the MSEs with the S3131 and S3333 seasonal MAs are similar while the MSEs with the other

seasonal MAs are higher.
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Table 3: Symmetric Filter Estimation of the Seasonal Component for the Airline Model with a Uniform Prior on γ

(Choices of the best symmetric X-12 filters, their MSE values, and the
percentage increases in MSE over those of the optimal model-based filters)

θ12 = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

θ1 = 0.9 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H23
.337827 .306658 .279582 .256596 .237706 .222907 .212203 .205590 .192544

51.23% 46.79% 44.57% 45.19% 49.66% 59.76% 78.87% 114.37% 171.27%

0.7 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H23
.282400 .256544 .234234 .215491 .200263 .188600 .180487 .175922 .164770

42.99% 27.40% 34.61% 34.02% 36.62% 43.53% 56.63% 79.50% 106.86%

0.6 S3333-H17 S3333-H17 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.261487 .237973 .217683 .200714 .187153 .177003 .170262 .166434 .156362
41.59% 35.07% 30.66% 28.67% 29.56% 34.04% 43.25% 58.66% 73.28%

0.5 S3333-H13 S3333-H13 S3333-H17 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.244459 .223376 .206016 .191643 .180633 .173212 .169378 .167617 .160713
41.89% 33.46% 27.88% 24.82% 24.83% 28.63% 37.24% 51.07% 65.30%

0.4 S3333-H9 S3333-H9 S3333-H13 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.231099 .212460 .198132 .187121 .178919 .174656 .174335 .175212 .172117
44.00% 32.81% 25.61% 21.69% 17.23% 24.20% 32.77% 46.00% 61.59%

0.3 S315315-H9 S3333-H9 S3333-H9 S3333-H17 S3333-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.213244 .205383 .193803 .186636 .181507 .180613 .184146 .187946 .188966
42.72% 33.29% 23.78% 19.01% 17.29% 20.34% 28.76% 41.44% 58.27%

0.1 S315315-H9 S3339-H9 S3333-H9 S3333-H9 S3333-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.172726 .191630 .197003 .197020 .199585 .206058 .218331 .228835 .238992
32.71% 29.98% 22.10% 14.75% 12.02% 14.21% 22.69% 25.67% 53.28%

In each cell, 1st row : the chosen X-12 filter, i.e., j∗ as defined by eq. (15);

2nd row: the MMSE value from eq. (15) when t is in the middle of a sufficiently long series;

3rd row: the percentage increase in MSE (X-12 filter compared to optimal model-based filter) from eq. (16).
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4.3 Comparisons to X-12-ARIMA Automatic Filter Selections

In this section we compare the previous results on the “best” X-12 filter selections to automatic filter

selections that are made by the X-12-ARIMA program (when the user does not select a specific filter).

According to the X-12-ARIMA reference manual (U.S. Census Bureau, 2002), a 3×3 MA is used to calculate

the initial seasonal estimate, then the program chooses whether to use a 3 × 3, 3 × 5, or 3 × 9 seasonal MA

based on the size of the “moving seasonality ratio.” In our notation, either the S3333, S3335, or S3339

will be selected for the X-12 seasonal MA. Also, for monthly series, either a 9-, 13-, or 23-term Henderson

trend MA will be selected based on the size of the Ī/C̄ ratio, where Ī and C̄ are the average absolute

month-to-month changes (percent changes for a multiplicative decomposition) of the estimated irregular and

trend-cycle components, respectively. In our notation, either H9, H13, or H23 will be selected for the X-12

Henderson trend MA. For further discussion of the automatic filter selection procedure, see Ladiray and

Quenneville (2001).

To examine the automatic filter selection procedure, we simulated 100 time series of length 660 from

the airline model with N(0, 1) innovations for each of various (θ1, θ12) combinations. We used long time

series so that symmetric filters are effectively applied in the middle of the time series. We list the relative

frequency of the seasonal MAs from the automatic selection procedure in the top panel, (I), of Table 4 for

comparison to the best X-12 filters listed in panel (II). The latter are obtained from Tables 1 and 3 for the

canonical decomposition and for the uniform prior on γ, respectively. The values in parentheses are the

proportions of times the various filters were selected over the 100 simulated series. To simplify the table,

only the selections for θ1 and θ12 taking on the values (0.9, 0.7, 0.5, 0.3, 0.1) are listed. (Selections of the

Henderson trend MAs were also examined, but as Figure 1 shows that these choices rarely have much effect

on the MSE, these results are not shown.)

For estimating the canonical seasonal, Table 4 shows that for θ12 = .7 or .9, the automatic selection

procedure tended to select seasonal MAs which are shorter than optimal. For θ12 = .9 the automatic selection

procedure mostly selected the S3335, and occasionally selected the S3339, instead of the best choice S315315,

a choice not considered by the automatic selection procedure. For θ12 = .7 the automatic selection procedure

almost always selected the S3335 instead of the best choice S3339. In Figure 1, for θ12 = .8 we see that

selecting the S3339 instead of the S315315 seasonal MA doesn’t increase the MSE very much, but selecting

the S3335 instead of the S315315 or S3339 does significantly worse. For θ12 ≤ .5 the automatic selection

procedure tends to do a better job of selecting the seasonal MA, and Figure 1 shows in these cases that even

when the best X-12 filter is not chosen the automatic selection procedure generally chooses one with only a

slightly higher MSE.

For the uniform prior on γ (equivalently, for estimating S
µγ

t ), Table 4 shows that the automatic selection

procedure tends to select longer seasonal MAs than the best choices, though Figure 1 shows that sometimes

these choices do not increase the MSEs very much. In particular, for θ12 = .8 or .5, the automatic procedure’s

usual choice of the S3335 does poorly for θ1 = .8, but not as badly for θ1 = .5 or .2. For θ12 = .5 and low
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Table 4: Selections of Seasonal MAs for Series Following the Airline Model:

(I) from the X-12-ARIMA automatic filter selection procedure applied to 100 simulated series;

(II) the choices that minimize the MSE as in eq. (15) for either the canonical decomposition or the uniform prior on γ

Panel θ1 \ θ12 0.9 0.7 0.5 0.3 0.1

0.9 S3339(.29)†
S3335(.71) S3335(1.0) S3335(.96) S3335(.29)

S3333(.04) S3333(.71) S3333(1.0)

0.7 S3339(.23)
S3335(.77) S3335(1.0) S3335(1.0) S3335(.16)

S3333(.84) S3333(1.0)

0.5 S3339(.12)
(I) S3335(.88) S3335(1.0) S3335(.82) S3335(.06)

S3333(.18) S3333(.94) S3333(1.0)

0.3 S3339(.05)
S3335(.95) S3335(1.0) S3335(.52) S3335(.01)

S3333(.48) S3333(.99) S3333(1.0)

0.1
S3335(1.0) S3335(.97) S3335(.22)

S3333(.03) S3333(.78) S3333(1.0) S3333(1.0)

Canonical‡ S315315 S3939 S3335 S3333 S3131
(II)

Uniform‡ S3333→S315315 S3333→S3939 S3333 S3333 S3131

† The values in parentheses are the proportions of times over the 100 simulated series
that the given seasonal MA was chosen.

‡ Canonical means canonical decomposition; Uniform means uniform prior on γ.

values of θ1, the automatic selection procedure frequently makes the best choice of S3333. For θ12 = .2,

the automatic selection procedure’s usual choice of S3333 generally does well, with only slightly higher MSE

than the best choice of S3131, a choice not considered by the automatic selection procedure.

To summarize these results, under either the canonical or uniform priors the automatic filter selection

procedure tends to make better choices for small than for large values of θ12. For θ12 ≥ .7, X-12-ARIMA

tends to pick seasonal MAs shorter than the best for estimating the canonical seasonal, and longer than

the best for estimating under the uniform prior for γ. We must also keep in mind, though, that under the

uniform prior even the best X-12 filter choices usually do not do very well. Thus, the best case for the

automatic selection procedure’s filter choices appears to be estimating the canonical seasonal with a value

of θ12 ≤ .5. One qualification to note is that these results were obtained for time series sufficiently long (660

months) that results for the symmetric X-12 and model-based filters are relevant. It is possible that use

of shorter seasonal MAs may do relatively better for estimating the canonical seasonal with time series of

shorter lengths more typically encountered in practice (e.g., 10-25 years), even for large values of θ12. Study

of this question requires results for finite signal extraction filters and is a topic for future research.
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5 Concurrent Filter Comparisons

In this section we provide results analogous to those of Section 4 but for concurrent filters instead of symmetric

filters. That is, for series Zt following airline models with various parameter values, we show the best X-12

concurrent seasonal filter, its average MSE (over p(γ)), and the percentage increase of this MSE relative to

that of the optimal model-based concurrent filter. We present these results both for p(γ) corresponding to the

canonical decomposition (Table 5) and to the uniform prior (Table 6). MSEs for the model-based concurrent

filters were computed as in Watson (1987, Section A.4), an approach also given by Pierce (1980, pp. 99 and

104). Bell and Martin (2004) give a more general discussion offering several alternative approaches to this

calculation. MSEs for the X-12 concurrent filters were computed by expanding (12) as discussed in Section

3.

The “concurrent X-12 filters” considered here are those obtained by full forecast extension of the

observed series Zt using the airline model, followed by application of the same set of 20 symmetric X-12

filters considered in Section 4. Note that we could not evaluate MSEs for concurrent seasonal filters obtained

from X-12-ARIMA without full forecast extension because without full forecast extension the concurrent X-

12 filters contain only the factor (1 − B), not the factor (1 − B)2 required for the error series in (11) to be

stationary. For both the X-12 and model-based concurrent filters we assume that the series is long enough

so that the filter weights that would be applied prior to the start of the series are negligible, i.e., backcast

extension is unnecessary.

Examining the results for the canonical decomposition presented in Table 5 yields mostly similar con-

clusions to the conclusions drawn for symmetric filters from Table 1. The increases in MSE from using the

best X-12 filter are small (< 11 percent) with one exception ((θ1, θ12) = (.9, .1)). Longer seasonal MAs

are best for larger values of θ12. The 9-term Henderson trend MA is generally best for θ12 ≥ .5 (with two

exceptions) and the 23-term is best otherwise. Finally, the MSEs for the X-12 concurrent seasonal filters

tend to increase with decreasing θ12, although exceptions occur in the upper right of the table (small θ12,

large θ1).

Comparing Tables 1 and 5 we note that, for given values of (θ1, θ12), the MSEs for the best X-12

concurrent filters are larger, often substantially larger, than those for the X-12 symmetric filters. The

increases in MSE come, of course, from error due to forecast extension. The MSEs for the model-based

concurrent filters are similarly larger than those for the model-based symmetric filters, since we use the same

forecast extension for both the X-12 and the model-based filters. An important consequence of this increase

in the MSEs for the X-12 and model-based filters is that the percentage increases in MSE from using the

best X-12 filters rather than the best model-based filters are less for concurrent filters than they are for

symmetric filters. In fact, except for perhaps (θ1, θ12) = (.9, .1), it appears that the increases in MSE from

using the best X-12 concurrent seasonal filters rather than the best model-based concurrent seasonal filters

are small enough to be ignored.

Table 6 presents results for X-12 concurrent filters when there is a uniform prior on γ. The first three
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conclusions reached from Table 3 for the symmetric filters generally hold for the concurrent filters: MSE

values tend to be higher than for the corresponding results with the canonical decomposition (Table 5);

mostly short seasonal MAs are chosen; and the 23-term Henderson trend MA is chosen for θ12 ≤ .5, with

variation in the choice of Henderson trend MAs for other θ12 values. In Table 6 the MSEs tend to increase

with θ12 for θ1 ≥ .6 while the reverse holds for θ1 ≤ .4.

In comparing MSEs between Tables 3 and 6 we generally see an increase in MSE due to error from

forecast extension. This increase is substantial in some cases (particularly in the lower right hand corner

of the table), but not very large in others. Since the forecast extension error similarly inflates the MSEs

for X-12 and model-based concurrent filters, under the uniform prior for γ the increases in MSE from using

the best X-12 concurrent filter rather than the optimal model-based concurrent filter are not as large as are

the corresponding increases for the symmetric filters. In fact, for θ1 ≤ .6 all the increases are less than 20

percent, and for θ1 ≥ .7 most are not much larger than 20 percent.

There are a few cases in Table 6 where the MSEs for the X-12 concurrent filters are slightly lower

than those for the corresponding X-12 symmetric filters (from Table 3). While this cannot happen with

the optimal model-based filters (optimal symmetric filters always have lower MSEs than optimal concurrent

filters), it can happen with the X-12 filters since they are not optimal under the model. This phenomenon

is most likely to occur when the X-12 symmetric filter is short and far from optimal, and when short-run

forecast error is low (which happens with large values of θ1).

Similar to Figure 1 for symmetric filter comparisons, Figure 2 shows how the MSEs vary across alter-

native X-12 seasonal filters for concurrent filter comparisons. The same conclusions drawn from Figure 1

for both the canonical decomposition and the uniform prior on γ still generally apply to Figure 2: choice

of Henderson trend MA has little effect on the MSEs (with only a few exceptions), and choice of the best

seasonal MA is usually not crucial (one or more alternative seasonal MA choices give MSEs close to the

best). One interesting observation in Figure 2 is that MSEs for θ1 = 0.2 in most cases are notably larger

than those for θ1 = 0.5 and = 0.8, except in the uniform prior case with θ12 = 0.8, and for the canonical

decomposition with θ12 = 0.8 when using the S3131 and S3333 seasonal MAs.

An important question is whether it is important to make different choices of X-12 filters for the

symmetric and concurrent cases. That is, does the best X-12 filter for the symmetric case perform well or

poorly in the concurrent case and vice versa? We find that most of the chosen X-12 filters in Table 1 and

Table 5 for given (θ1, θ12) values are the same, and similarly for Table 3 and Table 6. For cases where there

is a difference in the filter choices, if we compare the MSE when the best X-12 filter for concurrent seasonal

adjustment is applied to symmetric adjustment, with the MSE from the best X-12 filter for symmetric

adjustment, or vice versa, we find there is little increase in the MSE from not picking the best X-12 filter for

the given situation. Thus, we believe we can get by with a single choice of X-12 filter as the basis for both

symmetric and concurrent seasonal adjustment (and presumably for everything in between). A fortunate

consequence of taking this approach is that, if the model used for forecast extension is correct, this will

minimize mean squared revisions (Geweke 1978, Pierce 1980).
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Table 5: Concurrent Filter Estimation of the Canonical Seasonal for the Airline Model

(Choices of the best concurrent X-12 filters, their MSE values, and the
percentage increases in MSE over those of the optimal model-based filters)

θ12 = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

θ1 =0.9 S315315-H9 S315315-H9 S3339-H9 S3335-H9 S3333-H9 S3333-H23 S3333-H23 S3333-H23 S3131-H23
.082786 .138064 .182530 .210536 .224784 .224975 .219123 .208031 .186888

10.44% 3.18% 3.09% 2.39% 2.04% 1.42% 3.87% 10.38% 20.52%

0.7 S315315-H9 S315315-H9 S3339-H9 S3335-H9 S3333-H9 S3333-H23 S3333-H23 S3333-H23 S3131-H23
.072343 .121951 .162764 .190721 .208636 .214769 .216230 .214057 .203812

9.90% 2.93% 2.72% 2.07% 1.93% 0.93% 1.94% 5.21% 8.61%

0.5 S315315-H9 S315315-H9 S3339-H9 S3335-H9 S3335-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.069984 .119986 .162464 .194115 .217026 .231001 .240300 .246507 .245520
9.17% 2.59% 2.35% 1.77% 1.44% 0.78% 1.19% 2.92% 3.97%

0.3 S315315-H9 S315315-H9 S3339-H9 S3335-H9 S3333-H9 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.075999 .133932 .185155 .225895 .258629 .281711 .301301 .316547 .325150
8.15% 2.32% 2.15% 1.57% 1.45% 0.81% 1.63% 3.25% 4.79%

0.1 S315315-H9 S315315-H9 S3339-H9 S3335-H9 S3333-H17 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.089834 .161806 .227141 .281296 .326676 .362381 .394746 .421064 .440916
7.25% 2.10% 2.00% 1.43% 1.23% 0.89% 1.99% 3.56% 5.45%

In each cell, 1st row : the chosen X-12 filter, i.e., j∗ as defined by eq. (15);

2nd row: the MMSE value from eq. (15) when t is at the end of a sufficiently long series;

3rd row: the percentage increase in MSE (X-12 filter compared to optimal model-based filter) from eq. (16).
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Table 6: Concurrent Filter Estimation of the Seasonal Component for the Airline Model with a Uniform Prior on γ

(Choices of the best concurrent X-12 filters, their MSE values, and the
percentage increases in MSE over those of the optimal model-based filters)

θ12 = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

θ1 = 0.9 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H9 S3131-H23
.317675 .304292 .289951 .274452 .257931 .240530 .222385 .203146 .179097

29.06% 26.29% 24.89% 24.76% 26.07% 29.18% 34.82% 44.03% 56.24%

0.7 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H23
.283655 .278119 .271240 .263141 .253966 .243916 .233150 .221936 .205134

20.44% 17.47% 15.68% 14.90% 15.11% 16.39% 18.94% 23.06% 26.23%

0.6 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.269679 .268923 .266662 .263057 .258316 .252650 .246267 .239193 .226977
18.37% 14.76% 12.46% 11.18% 10.81% 11.34% 12.80% 15.23% 16.41%

0.5 S3333-H13 S3333-H17 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.257526 .262848 .266514 .268462 .269118 .268658 .267264 .264490 .256699
17.38% 12.97% 10.24% 8.65% 8.08% 8.46% 9.77% 11.79% 12.96%

0.4 S3333-H9 S3333-H13 S3333-H17 S3333-H23 S3333-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.247233 .259567 .270192 .278837 .285688 .291210 .295537 .297664 .294783
17.33% 11.80% 8.59% 6.78% 6.06% 6.39% 7.69% 9.56% 10.95%

0.3 S3333-H9 S3333-H9 S3333-H9 S3333-H17 S3333-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.239179 .259120 .277561 .294016 .307844 .320031 .330762 .338384 .340944
18.22% 11.09% 7.31% 5.38% 4.53% 4.81% 6.14% 7.90% 9.49%

0.1 S315315-H9 S3939-H9 S3333-H9 S3333-H9 S3333-H23 S3333-H23 S3333-H23 S3131-H23 S3131-H23

.210889 .261332 .304870 .338923 .369571 .397021 .422458 .442695 .457558
12.11% 8.05% 5.81% 3.47% 2.60% 2.82% 4.19% 5.83% 7.75%

In each cell, 1st row : the chosen X-12 filter, i.e., j∗ as defined by eq. (15);

2nd row: the MMSE value from eq. (15) when t is at the end of a sufficiently long series;

3rd row: the percentage increase in MSE (X-12 filter compared to optimal model-based filter) from eq. (16).
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Figure 2: The MSEs when using various X-12 concurrent seasonal filters to estimate the seasonal component
of the airline model with various parameter values ((a) canonical decomposition, (b) uniform prior on γ )
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6 Conclusions and Topics for Future Research

In this paper we examined the performance of X-12 symmetric and concurrent filters for estimating the

seasonal component of a model-based decomposition of a time series following the airline model. The

performance was assessed in terms of average MSE for estimating the seasonal component, with these

average MSEs compared to those of the optimal model-based filters. The average MSE was computed over

a prior distribution for the parameter γ that allocates white noise between the seasonal and nonseasonal

components of the model-based decomposition. We considered two priors for γ: the canonical decomposition

(a degenerate prior on the minimum value of 0 for γ), and a uniform prior over the admissible range [0, γmax]

of γ. A Lemma showed that the average MSE over the prior for γ equals the MSE for estimating the seasonal

component, S
µγ

t , corresponding to setting γ equal to its prior mean. For the canonical decomposition the

prior mean is just the minimum value 0; for the uniform prior the mean is µγ = γmax/2.

As a criterion for picking an X-12 filter from among the various possible options, we suggested picking

the X-12 filter that minimizes the average MSE for estimating Sγ
t , i.e., the X-12 filter that minimizes the

MSE for estimating S
µγ

t . Results showed that increases in MSE from using the best X-12 filter rather than

the best model-based filter are generally small for the canonical decomposition, especially for concurrent

filters. Table 2 provided results relating the best choices of seasonal MAs to values of the seasonal moving

average parameter θ12 for the airline model. For the uniform prior on γ the MSE increases from using the

best X-12 filter are much larger, especially for the symmetric filters.

MSE results for X-12 filters other than the best choices were mixed. Choice of the Henderson trend MA

rarely had an appreciable effect on the MSE. Typically, choice of one of the seasonal MAs “close to” the best

did not appreciably increase the MSE, but choice of other seasonal MAs could lead to more substantial MSE

increases. We also noted that the best choices of X-12 symmetric filters were generally the same as or close to

the best choices of X-12 concurrent filters, leading to the conclusion that MSE would not necessarily increase

much if one made the same choice of X-12 filter for both symmetric and concurrent seasonal adjustment.

(Here the “concurrent X-12 filters” were those resulting from full forecast extension of the time series followed

by application of the symmetric X-12 filters. “Same choice” of symmetric and concurrent filters refers to

choosing a single symmetric filter as the basis for both symmetric and concurrent adjustments.)

An experiment with time series simulated from the airline model with various parameter values revealed

that automatic filter choices made by the X-12-ARIMA program tended to yield the best or close to the

best choices of X-12 filters for estimating the canonical seasonal from models with values of θ12 ≤ .5. For

θ12 > .5 the X-12 automatic filter choices tended to use shorter seasonal MAs than were best for estimating

the canonical seasonal. Under the uniform prior even the best X-12 filters don’t do very well, so it appears

that X-12-ARIMA with its automatic filter choices fares best for estimating the canonical seasonal when

θ12 ≤ .5.

Several questions remain for future research. One concerns whether similar results to those shown here

would be obtained with different models than the airline model? The results here suggest that for other
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seasonal ARIMA models the value of the seasonal moving average parameter θ12 would be an important

determining factor in the results. Another question concerns the accuracy of X-12 trend estimates. The

approach presented here extends in a straightforward fashion to estimation of the trend component. Results

of DP suggest that MSEs for X-12 trend filters would depend on the choices of Henderson trend MAs as well

as on the seasonal MAs.

A final question concerns the relative performance of X-12 filters with finite data. The results obtained

here assumed series sufficiently long for the symmetric filters to apply without forecast or backcast extension

of the series, and for application of the concurrent filters to require only forecast (not backcast) extension.

For shorter time series and models with large values of θ12, MSEs will increase both for X-12 and model-

based filters. The increase in MSEs should tend to be greater for the model-based than for the best X-12

filters (since the model-based filters tend to be longer), making the relative accuracy losses from using the

best X-12 filters in finite series even less than in the results shown here. We have some preliminary results

that appear to confirm this.

Notes:

1. We use the term “X-12 filter” to refer to the filters available in the X-12-ARIMA program, though we

could equally well use the term “X-11 filter,” as is done by some authors, such as DP. The basic filtering

approach of X-12-ARIMA (and also of X-11-ARIMA) is that of the original X-11 program, and, in

fact, the seasonal adjustment procedure in the X-12 program is referred to as X11. Also, most of the

filters used in X-12 were available in the X-11 program, though X-12 does provide some additional

choices based on a few seasonal and trend moving averages not available in X-11.

2. There are two minor differences in X-12-ARIMA between automatic selection of a given seasonal MA

and user specification of the same MA. First, automatic selection applies only to the second seasonal

MA in the X-11 filtering; the first seasonal MA under automatic selection is always the 3 × 3. User

specification, in contrast, applies to both seasonal MAs. Thus, automatic selection of the 3×5 seasonal

MA implies, in our notation, the S3335 filter, whereas user specification of the 3×5 seasonal MA implies

S3535. As noted in Section 4, these two filters are quite close. The second minor difference is that

automatic selection affects only the final iteration (D) of the X-11 procedure, while user specification

also determines the filters used in iterations B and C (Ladiray and Quenneville 2001). The B and

C iterations are for preliminary and final estimation (by the X-11 procedure, not via the modeling

capabilities in X-12) of calendar effects and extreme values. Our focus here is on the final seasonal

filtering at iteration D.
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