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Abstract

We consider the modeling of time series that have an asymptotically stationary au-
tocovariance structure and a mean function of linear regression form in which the re-
gression vector satis�es a weakened version of Grenander�s conditions, one that allows
transitory regression variables of the sort used for outlier and intervention e¤ect model-
ing. Neither the model�s regression vector sequence nor its parametric family of invert-
ible, short/intermediate-memory autocovariances need be correct. Convergence of both
likelihood maximizing and squared-forecast-error minimizing parameter estimates are es-
tablished as a consequence of uniform strong laws for sample second moments of forecast
errors. Both OLS and GLS estimates of the mean function are considered. We show that
GLS has an optimal one-step-ahead forecasting property relative to OLS when the model
omits a regression variable of the true mean function that is asymptotically correlated with
a modeled regression variable. Some inherent ambiguity in the concept of bias for regression
coe¢ cient estimators in this situation is discussed.

1. Introduction

Models for most economic indicator series and many other time series require a time-varying
mean function as well as an autocovariance structure speci�cation. Suppose that, after making
any needed variance stabilizing transformations (such as taking logarithms and then di¤erenc-
ings), one has observations Yt; 1 � t � T of a time series of the form

Yt = ��t + yt; (1.1)

where �t is a sequence of column vectors that we shall usually regard as nonstochastic (but
see Remark 1), and yt is a process whose autocovariance structure is only required to be as-
ymptotically stationary in a sense to be de�ned. With monthly or quarterly economic data
for example, the regressor sequence �t might describe moving holiday e¤ects (Bell and Hillmer,
1983) and trading day e¤ects (Findley, Monsell, Bell, Otto, and Chen, 1998) as well as local-
ized e¤ects such as a shift of the level of the series or other intervention e¤ect (Box and Tiao,



1975). Such data are candidates for regARMA modeling: The modeler considers a regressor
�Mt that might not be able to produce ��t for all t, due to omissions, approximations, over-
simpli�cations, etc., and proceeds as though, for a coe¢ cient vector �M to be estimated, the
residual process yMt = Yt��M�Mt has the autocovariance sequence of an autoregressive moving
average (ARMA) model, or some alternative parametric model such as the exponential model
of (Bloom�eld, 1973), although this autocovariance assumption might be incorrect,.
Given a family of covariance stationary models for yMt with parameter (or index) set �, for

each � 2 �, let (�j)j�0 denote the �-model�s one-step-ahead linear forecast error (�autoregressive
representation�) coe¢ cient sequence. Thus �0 = 1 and �

P1
j=1 �jy

M
t�j is the model�s linear

forecast of yMt from yMs ;�1 < s � t� 1. With observations Yt; 1 � t � T , if we set

Yt [�] =
t�1X
j=0

�jYt�j ; �
M
t [�] =

t�1X
j=0

�j�
M
t�j ; (t � 1) ;

then a Generalized Least Squares (GLS) estimate of �M for the �-model can be de�ned by

�MT (�) =
TX
t=1

Yt [�] �
M
t [�]

0
 

TX
t=1

�Mt [�] �
M
t [�]

0
!�1

;

where 0 denotes transpose, see Pierce (1975), for example. With �MT (�) �
M
t providing a candi-

date model for the mean function, � can be estimated by conditional or unconditional Gaussian
maximum likelihood estimation. For the conditional estimates, with which we start for simplic-
ity, for given 1 � t � T � 1, one de�nes the �-model�s forecast of Yt+1 from Ys; 1 � s � t to
be

YMt+1jt (�; T ) = �
M
T (�) �

M
t+1 +

t�1X
j=0

(��j)
�
Yt�j � �MT (�) �Mt�j

�
;

and estimates � with a minimizer �T of

1

T

T�1X
t=1

�
Yt+1 � YMt+1jt (�; T )

�2
(1.2)

over �.
Starting from the assumption that the sample moments T�1

PT�k
t=1 yt+kyt converge for all

k � 0 (almost surely (a.s.) or in probability (i.p.)) as T ! 1, our �rst step toward proving
the convergence of the sequence �T ; T � 1 is to show that (1.2) converges uniformly to a
continuous limit over all compact sets � of invertible time series models whose autocovariance
sequences 
k (�) satisfy

P
k j
k (�)j < 1 (short memory models). For any h � 1, such uniform

convergence is established for the h-step-ahead forecast error analogue of (1.2) and also for
all lagged sample second moments of forecast errors in Theorem 7.1 (and in Theorem 8.1 for
models that require di¤erencing, e.g. regARIMA models). The mode of convergence obtained,
a.s. or i.p., is always the mode of convergence of the sample moments T�1

PT�k
t=1 yt+kyt, k � 0.

These results generalize the time series special case of Theorem 4.1 of Findley, Pötscher and
Wei (2003) (hereafter FPW 2003) which only covers situations in which either there is no mean
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function, i.e. � = 0 in (1.1), or the correct regressor �t is known and is estimated by Ordinary
Least Squares (OLS). In the present article, the regressor �t is assumed to satisfy a slightly
weakened version of the well-known conditions of Grenander (1954), so that not only periodic
functions e.g. those used to model trading day and moving holiday e¤ects, and polynomials are
encompassed, but also the widely used intervention regressors of Box and Tiao (1975). These
intervention regressors are transitory in the sense that they decay to zero so rapidly that their
coe¢ cients cannot be consistently estimated even when �t is fully known. The model�s regressor
�Mt is taken to be a subvector of �t. The remaining coordinates of �t can be taken to be those
of any vector sequence �Nt whose coordinate variables compensate for the inadequacies of �Mt ,
so that ��t = �

M�Mt +�
N�Nt for subvectors �

M and �N of �. When �Nt contains nontransitory
regressors that are not asymptotically orthogonal to the sequence �Mt , we describe in Corollary
7.3 how GLS estimates of �M generally result in smaller asymptotic average squared one-step-
ahead forecast error than OLS estimates, thereby establishing an optimality property of GLS.
Subsection 7.3 provides instances of a number of our general formulas for the special case of �rst
order autoregressive modeling.
Our basic data and regressor assumptions are given in Section 3, together with Proposition

3.1, which establishes asymptotic orthogonality property needed of transitory regressors. Section
4 provides speci�cs about �Mt and �Nt and the OLS estimate of �M , and, in Subsection 4.2,
some consequences of the ambiguity in the de�nition of �Nt . The invertible, short memory
autocovariance models for yt that we consider and their in�nite-past forecast functions are
discussed in Section 5, where Theorem 6.2 describes uniform limiting properties of the bias
�MT (�)� �M over compact �.
The results of Sections 4�8 apply to "conditional" variates de�ned by truncated sums likePt�1
j=0 �jYt�j that are de�ned as though the in�nite-past prediction error �lter (�j)j�0 were being

applied to data subject to the "condition" that Ys = 0 when s < 0. Analogous results involving
the models� time-varying "�nite-past" prediction and prediction error �lters are obtained in
Theorem 9.2 under slightly stronger assumptions on the model set �. Theorem 10.1 describes
convergence properties of estimators of � obtained by maximizing Gaussian likelihood functions
or by minimizing sums of squared h-step-ahead forecast errors, using OLS, GLS, or an h-step-
ahead forecasting generalization of GLS to estimate the coe¢ cient of �Mt .
Most proofs are presented in Appendix B and utilize a Proposition obtained mainly from

Findley, Pötscher and Wei (2001) (hereafter FPW 2001) and two related Lemmas. These aux-
iliary results are collected in Appendix A.

2. Joint Scalable Asymptotic Stationarity

Under the data assumptions made in the next Section, �t and yt in (1.1) together form a
multivariate sequence with the asymptotic stationarity property we now de�ne. Let Vt; t � 1
be an real-valued column vector sequence, some of whose entries might be stochastic with others
nonstochastic, and let IV denote the identity matrix whose order is the dimension dimV of
Vt. This sequence is said to be scalably asymptotically stationary (S.A.S.) if there exists a
decreasing scaling sequence DV;1 � DV;2 � : : : of positive de�nite diagonal matrices DV;T =
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diag
�
d�11;T ; : : : ; d

�1
dimV;T

�
satisfying

lim
T!1

D�1
V;T+kDV;T = IV (k = 0; 1; : : :) (2.1)

(coordinatewise convergence) and such that for all k � 0 the scaled sample second moments
DV;T

PT�k
t=1 Vt+kV

0
tDV;T converge as T !1, almost surely or in probability, i.e. the limits

�Vk = lim
T!1

DV;T

T�kX
t=1

Vt+kV
0
tDV;T a:s: [i:p:] (2.2)

exist (�nitely), the mode of convergence, a.s. or i.p., being the same for all k. For example, for
an entry of Vt, of the form tn; n � 0, the corresponding diagonal entry of DV;T can be taken to
be the reciprocal of Tn+

1
2 (assuming �V0 > 0).

Under (2.1)-(2.2), negatively lagged scaled sample second moments also converge: for k > 0,

�V�k = lim
T!1

DV;T

TX
t=k+1

Vt�kV
0
tDV;T =

�
�Vk
�0
a:s: [i:p:]:

and the matrix sequence �Vk , k = 0;�1; : : : is positive semide�nite. (Here and subsequently,
the mode of convergence, a.s. or i.p., is to be taken as the mode that applies in (2.2). Due to
this property, there is a nondecreasing, positive semide�nite matrix valued function GV (�) such
that

�Vk =

Z �

��
e�ik�dGV (�) ;

see Grenander (1954) or Chapter II of Hannan (1970). The �Vk are the asymptotic second
moment matrices of the sequence Vt, and GV (�) is its asymptotic spectral distribution matrix.
We say that the entries of Vt are jointly S.A.S. We use the term asymptotically stationary (A.S.)
when DV;T = T�1=2IV , i.e., when the sample second moments T�1

PT�k
t=1 Vt+kV

0
t converge a.s.

[i.p.].
The properties (2.1)�(2.2) yield

lim
T!1

DV;TVT�j = 0 a:s: [i:p:]; j � 0: (2.3)

For example,

DV;TV
0
TVTDV;T

= DV;T

TX
t=1

V 0t VtDV;T �
�
DV;TD

�1
V;T�1

�
DV;T�1

T�1X
t=1

Vt+kVtDV;T�1

�
D�1
V;T�1DV;T

�
! �V0 � �V0 = 0 a:s: [i:p:]:

If
lim
T!1

DV;T = 0; (2.4)

holds, then also limT!1DV;TV1+j = 0 a:s: [i:p:] for all j � 0.
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2.1. Array reformulation

To connect with the results of FPW (2001, 2003) and to facilitate interpretation, we reformulate
the basic properties of interest as follows. Under (2.1)�(2.2), the array

Vt (T ) = T
1=2DV;TV; 1 � t � T; T = 1; 2; : : : (2.5)

is asymptotically stationary in the sense that the limits

�Vk = lim
T!1

1

T

T�kX
t=1

Vt+k (T )Vt (T )
0
a:s: [i:p:] (k = 0; 1; : : :) (2.6)

exist (with �Vk as in (2.2)), and it also has the property

lim
T!1

T�1=2VT�j (T ) = 0 a:s: [i:p:]; for �xed j � 0: (2.7)

When (2.4) holds, then we further have

lim
T!1

T�1=2V1+j (T ) = 0 a:s: [i:p:] ; j � 0: (2.8)

Following FPW (2001, 2003), we call (2.7) and (2.8) negligibility properties.
Two A.S. arrays Vt (T ) ;Wt (T ) ; 1 � t � T; T = 1; 2; : : : are said to be asymptotically

orthogonal if

lim
T!1

1

T

T�kX
t=1

Vt+k (T )Wt (T )
0
= 0 a:s: [i:p:] (k = 0; 1; : : :) ,

the mode of convergence being that of (2.6).

3. Data and Regressor Assumptions

For data of the form (1.1), we require yt to be A.S., i.e. the limits


yk = lim
T!1

1

T

T�kX
t=1

yt+kyt a:s: [i:p:] (3.1)

exist for k = 0; 1; : : :. The associated asymptotic spectral distribution is denoted Gy(�).
The regressor sequence �t; t � 1 in (1.1) is required to be S.A.S. and to have two additional

properties. First, the two series yt and �t must be asymptotically orthogonal,

lim
T!1

T�
1
2

T�kX
t=k+1

yt�
0
t�kD�;T = 0 a:s: [i:p:]; (k = 0; 1; : : :) : (3.2)

(In statements like this, the applicable mode of convergence is the mode assumed in (3.1)).
Second, for

��k = lim
T!1

D�;T

T�kX
t=1

�t+k�
0
tD�;T (k = 0; 1; : : :) ; (3.3)
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we require
��0 > 0: (3.4)

Note that if �t contains a coordinate that is constant, e.g. equal to 1 for all t, then the corre-
sponding scaling factor inD�;T can be taken to be T�1=2, and (3.2) yields limT!1 T

�1PT
t=1 yt =

0 a.s. [i.p.]. In this sense, yt in (1.1) can be thought of as an asymptotically mean zero process.
If �t contains a coordinate whose scaling sequence does not decrease to zero, then its scaling

scaling sequence can be taken to be a positive constant, for example 1.0. Thus we can arrange
the coordinates of �t so that

�t =

�
Xt
xt

�
; (3.5)

where

D�;T = diag

�
DX;T 0
0 Ix

�
;

with Ix denoting the identity matrix of order dimxt and with DX;T decreasing to 0,

DX;T & 0: (3.6)

Our �nal basic regressor assumption is

1X
t=1

(x0txt)
1=2

<1; (3.7)

( 0 denotes transpose) to guarantee that Xt and xt are asymptotically orthogonal,

lim
T!1

TX
t=1+k

xtX
0
t�kDX;T = 0 (k = 0; 1; : : :) ; (3.8)

see Proposition 3.1.below which also shows that asymptotic orthogonality with yt,

lim
T!1

T�
1
2

TX
t=1+k

xtyt�k = 0 (k = 0; 1; : : :) ;

follow from (3.7) and the A.S. property of yt. Hereafter, we refer to (3.1)�(3.4) and (3.7) as the
assumptions of this subsection.
Any sequence xt satisfying (3.7) (or the weaker condition

P1
t=1 x

0
txt < 1) is S.A.S. with

Dx;T = Ix for T � 1 and �xk =
P1

t=1 xtx
0
t+k for k � 0. By virtue of (3.8), the S.A.S. property of

�t reduces to the S.A.S. property of Xt. Following Grenander (1954), Hannan (1970, pp. 78�79)
veri�es the latter for regressors Xt whose components Xit are cosinusoids, cos�t and sin�t, with
0 < � � � or linear combinations thereof, e.g. periodic functions, or are polynomials. Anderson
(1971, pp. 581�582) does this also for products of polynomials and cosinusoids.
The property (3.2) holds quite generally. For example, under (3.4) it is equivalent to

lim
T!1

T�1
T�kX
t=k+1

yt�
0
t�k

 
T�kX
t=k+1

�t�k�
0
t�k

!�1 T�kX
t=k+1

�t�kyt = 0; a:s: [i:p:] (k = 0; 1; : : :) ; (3.9)
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because the l.h.s. of (3.9) is equal to 
1

T
1
2

T�kX
t=k+1

yt�
0
t�kD�;T

! 
D�;T

T�kX
t=k+1

�t�k�
0
t�kD�;T

!�1 
1

T
1
2

T�kX
t=k+1

yt�
0
t�kD�;T

!0
:

Section 3 of FPW (2001) shows that (3.9) holds a.s. (for arbitrary �t if Moore-Penrose inverses
are used) when yt is a weakly stationary linear processes, yt =

P
bj"t�j , with independent white

noise process "t such that suptE j"tj
r
< 1, for some r > 2 when the spectral density of yt is

bounded, or for some r > 4 when the spectral density is unbounded but square integrable.

Remark 1. All of the results of the paper continue to hold for stochastic regressors �t
satisfying (3.2) if convergence in (3.3) holds a.s. and convergence statements involving the
sample second moment matrices of regressors are interpreted throughout the paper as holding a.s.
However, the interpretation changes. In the stochastic regressor case, ��t is no longer interpreted
as the mean function of Yt, and the functions described as log-likelihood functions below could
more properly be called log-quasilikehihood functions. For simplicity, outside this remark, we
shall only refer to the case of nonstochastic regressors (some of which can be realizations of
stochastic processes).

3.1. On transitory regressors

The assumption (3.7) implies that xt models transitory e¤ects whose coe¢ cients cannot be
consistently estimated. (

P1
t=1 x

0
txt = 1 is a necessary condition for consistent estimation, see

Lai and Wei, 1984, whose argument for the OLS case extends to the GLS cases we consider by
virtue of the inequalities of Lemma 12.3 and Proposition 9.1 below.) The usual examples of xt,
namely additive outlier regressors, level-shift regressors, and the other intervention regressors
of Box and Tiao (1975), decay at least exponentially to zero and therefore satisfy the much
stronger summability condition

P1
t=1 (1 + ")

t
(x0txt)

1=2
<1 for some " > 0.

The next result, whose proof is in Appendix B, shows that (3.2) and (3.8) are automatically
satis�ed under (3.6) and (3.7). For later use, we give a result that applies uniformly to families
of sequences. For a column vector v, de�ne kvk = (v0v)1=2, and, for a matrix M whose column
dimension is the dimension of v, de�ne kMk = supkvk=1 kMvk = �1=2max (M

0M). We use �max (�)
resp. �min (�) to denote the maximal resp. minimal eigenvalue.

Proposition 3.1. For a given index set H, suppose the family of sequences xt (�) ; t � 1; � 2 H
satis�es

sup
�2H

1X
t=1

kxt (�)k <1: (3.10)

Let Vt (�) ; t � 1; � 2 Z be a family of asymptotically S.A.S. sequences with a common scaling
matrix sequence DV;T that satis�es (2.4). Then under

sup
t�1;�2Z

kDV;tVt (�)k <1 a:s: [i:p:] (3.11)

and
lim
t!1

sup
�2Z

kDV;tVt (�)k = 0 a:s: [i:p:]; (3.12)
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it holds that

lim
T!1

sup
�2H;�2Z

TX
t=1+k



xt (�)V 0t�k (�)DV;T

 = 0 a:s: [i:p:] (k = 0; 1; : : :) : (3.13)

Consequently, the families of sequences xt (�) and V 0t�k (�) are uniformly asymptotically orthog-

onal, sup�2H;�2Z



PT

t=1+k xt (�)V
0
t�k (�)DV;T




! 0 a:s: [i:p:] (k = 0; 1; : : :).

Remark 2. Our later results will show that the transitory regressors xt make no contri-
bution to the limiting second moments of out-of-sample forecast errors, a result that is neither
surprising nor completely obvious. We have included them in our analysis because of their
importance. Such regressors (primarily for additive outliers and level shifts and exponentially
decaying intervention variables) occur in the majority of regARIMA models �t to thousands of
time series by statistical o¢ ces and central banks around the world.

3.2. OLS estimation of �

We now consider convergence properties of the ordinary least squares (OLS) estimator

�T =
TX
t=1

Yt�
0
t

"
TX
t=1

�t�
0
t

#�1
: (3.14)

of � in (1.1). Because

�T � � =
TX
t=1

yt�
0
t

"
TX
t=1

�t�
0
t

#�1
=

TX
t=1

yt�
0
tD�;T

"
D�;T

TX
t=1

�t�
0
tD�;T

#�1
D�;T ;

under (3.4) we have the equivalence of (3.2) and

T�1=2 (�T � �)D�1
�;T ! O a:s: [i:p:]: (3.15)

Remark 3. Let � =
�
A a

�
and �T =

�
AT aT

�
be the partitions of � and �T

corresponding to the partition (3.5) of �t. It follows from (3.15) that AT is a consistent estimator
of A when the entries of the matrices T

1
2DX;T ; T � 1 are bounded, i.e.,

T
1
2DX;T � KIX (3.16)

holds for some K > 0, as Hannan (1970) observed for the case in which �t = Xt, i.e. no
transitory regressors occur. For example, if all regressors of Xt are periodic, then T 1=2DX;T =
IX . More generally, (3.16) is satis�ed when Xt consists of periodic functions, polynomials, and
their products. We do not require (3.16) or consistency for our main results.
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3.3. Array reformulation of the basic properties

The following reformulation of the properties required of �t will enable us to make use of the
results of FPW (2001, 2003). Together, (3.8) and (3.2) yield that the array

Vt (T ) =

24 yt
T 1=2DX;TXt
T 1=2xt

35 ; 1 � t � T; T = 1; 2; : : : ; (3.17)

has the following A.S. property:

�Vk = lim
T!1

1

T

T�kX
t=1

Vt+k (T )Vt (T )
0

=

24 
yk 0 0
0 �Xk 0
0 0 �xk

35 ; a:s: [i:p:] (k = 0; 1; : : :) ; (3.18)

with �xk =
P1

t=1 xt+kx
0
t, and �

X
k = limT!1DX;T

PT
t=1+kXt+kX

0
tDX;T for each k � 0 and

�x0 > 0 and �
X
0 > 0. The negligibility property (2.3) becomes

lim
T!1

T�1=2VT�j (T ) = 0 a:s: [i:p:] ; j � 0:

Due to (3.6), the subvector array,

Ut (T ) =

�
yt

T 1=2DX;TXt

�
; 1 � t � T; T = 1; 2; : : : ; (3.19)

whose asymptotic second moments are �Uk = diag (

y
k;�k), has the additional negligibility prop-

erty
lim
T!1

T�1=2U1+j (T ) = 0 a:s: [i:p:] ; j � 0; (3.20)

because the scaling matrices diag
�
T�1=2; DX;T

�
of
�
yt X

0

t

�0
decrease to 0.

The asymptotic spectral distribution matrices of Vt (T ) and Ut (T ) thus have block diagonal
forms GV (�) = diag (Gy (�) ; GX (�) ; Gx (�)) and GU (�) = diag (Gy (�) ; GX (�)), respectively.

4. Regressor Misspeci�cation and Some Consequences

Because the regression vector �Mt =
�
XM 0
t xM 0

t

�0
used by the modeler is subvector of �t, we

can arrange for the components xt and Xt in (3.5) to be partitioned as

xt =

�
xMt
xNt

�
; Xt =

�
XM

XN
t

�
; (4.1)

where the superscript N designates the regressors not included in the model. Let the corre-
sponding partition of � in (1.1) be � =

�
AM AN aM aN

�
and those of DX;T ; �Xk and

GX (�) be

DX;T =

�
DM;T 0
0 DN;T

�
;
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�Xk =

�
�MM
k �MN

k

�NMk �NNk

�
; (4.2)

and

GX (�) =

�
GMM (�) GMN (�)
GNM (�) GNN (�)

�
;

respectively. Setting �Mt =
h
XM 0
t xM

0

t

i0
, �Nt =

h
XN 0
t x

N 0

t

i0
, �M =

�
AMaM

�
, �N =

�
ANaN

�
and

yMt = �N�Nt + yt = a
NxNt +A

NXN
t + yt; (4.3)

the data decomposition being modeled is

Yt = �
M�Mt + yMt : (4.4)

We require the omitted regressor XN
t to be asymptotically stationary, i.e.

DN;T = T
�1=2IN ; (4.5)

with IN being the identity matrix of appropriate dimension. Omitted regressor variables of
larger order would give rise to model residuals that would become in�nite in magnitude as T
increases and would therefore be recognized as not A.S. with large enough samples. Under (4.5),
it follows from (3.18) that yMt is A.S. For each k � 0,


Mk = lim
T!1

1

T

T�kX
t=1

yMt+ky
M
t a:s: [i:p:]

= AN�NNk AN 0 + 
yk =

Z �

��
e�ik�dGyM (�);

with GyM (�) = ANGNN (�)AN 0 + Gy(�). (We note that by setting AN = 0 in this limiting
formula and those of the propositions and theorems below, the formulas that apply when the
correct regressor is used in the model, �Mt = �t, can be obtained.)
If AN 6= 0, then yMt and �Mt will not usually be asymptotically orthogonal. Speci�cally,

lim
T!1

T�1=2
T�kX
t=1

yMt+kX
M 0
t DM;T

= lim
T!1

T�1=2
T�kX
t=1

ANXN
t+kX

M 0
t DM;T = A

N�NMk a:s: [i:p:] (4.6)

will generally be non-zero for some k unless the sequences XM
t and XN

t are asymptotically
orthogonal.
Only slight modi�cations would be needed to (4.6) and the related limiting formulas obtained

below if we replaced (4.5) with the weaker condition limT!1 T
1=2DN;T = ~DN with ~DN �nite

and possibly singular, in order to cover the situation in which, for example, XN
t includes a

regression variable of the form tq, �:5 � q < 0.

10



4.1. OLS estimation of �M

Given data Yt; 1 � t � T , the OLS estimator of �M for the model (4.4) is

�MT =
TX
t=1

Yt�
M 0
t

"
TX
t=1

�Mt �
M 0
t

#�1
: (4.7)

With Ix;M denoting the identity matrix of order dimxt, de�ne

D�;M;T =

�
Ix;M 0
0 DM;T

�
:

Let �MT =
�
AMT aMT

�
be the partition of �MT corresponding to the partition

�M =
�
AM aM

�
. Clearly

�MT � �M =
TX
t=1

yt�
M 0
t

"
TX
t=1

�Mt �
M 0
t

#�1
+ �N

TX
t=1

�Nt �
M 0
t

"
TX
t=1

�Mt �
M 0
t

#�1
:

So if we de�ne
CNM = �NM0

�
�MM
0

��1
; (4.8)

it follows from (3.2), (4.5), and (4.6) that�
�MT � �M

�
T�1=2D�1

�;M;T !
�
ANCNM 0

�
a:s: [i:p:]; (4.9)

i.e., T�1=2
�
AMT �AM

�
D�1
M;T ! ANCNM a.s. [i.p.], and T�1=2

�
aMT � aM

�
! O a.s. [i.p.].

4.2. Ambiguity concerning XN
t and asymptotic "bias"

With �Mt (T ) = T 1=2DM;T �
M
t ; 1 � t � T , the result (4.9) can be interpreted as showing that

the OLS estimate �MT T
�1=2D�1

M;T of the coe¢ cient �
MT�1=2D�1

M;T in the relation

Yt =
n
�MT�1=2D�1

M;T

o
�Mt (T ) + y

M
t ; 1 � t � T

has the asymptotic bias
�
ANCNM 0

�
. If ANCNM 6= 0, this bias has the desirable conse-

quence that �MT �
M
t is, asymptotically, a better predictor than �M�Mt of ��t, see �

�7.2 below,
where a more general result applicable to GLS estimates is presented. More often than not, con-
siderations of simplicity or parsimony give rise to regressors in �Mt that are clearly incomplete
approximations to the e¤ects being modeled. In particular, if a �xed de�nition of the regressor
sequence XN

t is maintained, one can have �NM0 6= 0; and therefore CNM 6= 0. However, when
DM;T = T

�1=2, if ambiguity in the de�nition of XN
t (and therefore in the de�nitions of �Nt and

�t) is accepted, then the subvector A
M
T of �MT that provides the OLS coe¢ cient estimates of XM

t

can be assumed to be consistent (asymptotically unbiased) with no loss of generality: Indeed, if
ANCNM 6= 0, the identity

AXt = AMXM
t +ANXN

t

=
�
AM +ANCNM

�
XM
t +AN

�
XN
t � CNMXM

t

�
= �AMXM

t +AN �XN
t

11



shows that XN
t can replaced by �XN

t = XN
t �CNMXM

t , which results in �A
M = AM +ANCNM ,

the limit of AMT , as the coe¢ cient to be estimated. (Because A
M
T does not depend on the

de�nition of XN
t , neither does its limit �A

M .) The subvector AM of A provides unambiguously
"natural" coe¢ cients for the entries of XM

t from the asymptotic perspective only when the
sequence XN

t is asymptotically orthogonal to XM
t .

In Section 7.2, it will be made clear that optimal one-step ahead forecasting of Yt does not
require an optimal estimate of ��t or AXt. Instead it requires a GLS estimate of the coe¢ cient
vector of XM

t whose limiting value when DM;T = T�1=2 di¤ers from �AM except in special
situations.
A formula for the asymptotic bias of estimators of the transitory regression coe¢ cient vector

aM , including the limit of aMT � aM , is obtained in Remark 7 of Section 9 for a broad class of
transitory regressors.

4.3. Examples of Asymptotically Orthogonal Regressors

Let Gij (�) denote the (i; j)-entry of GXX (�). The the regressors de�ned by the i-th and j-th
coordinates of Xt are asymptotically orthogonal if and only if Gij (�) is constant on [��; �], or,
equivalently, all di¤erences �Gij = Gij

�
�00
�
�Gij

�
�0
�
with �� � �0 < �00 � � have the value

zero. Because the positive semide�nitenenss of �GXX (�) yields
�
�Gij

�2 � �Gii�Gjj , this
happens whenever Gii (�) is constant except at a sequence of frequencies �k where a jump occurs,
Gii (�k+)�Gii (�k�) > 0, andGjj is continuous at these frequencies, Gjj (�k+)�Gjj (�k�) = 0.
Anderson (1971, p. 581�582) shows that a regressor of the form

c0 +
HX
k=1

(ck cos�kt+ dk sin�kt) + cH+1 (�1)H+1 ; (4.10)

for example, a periodic regressor, has a spectral distribution function that has jumps at each
frequency �k, assuming c2k + d

2
k 6= 0, and also at the frequency 0, resp. �, if c0 6= 0, resp.

cH+1 6= 0. Elsewhere, its spectral distribution function is constant. It is also shown that the
same conclusions apply to a regressor of this form multiplied by a polynomial in t. It follows that
two regressors of the types mentioned are asymptotically orthogonal if and only if they have no
common frequency components. In particular, polynomials in t are asymptotically orthogonal
to periodic regressors with mean zero (c0 = 0). For the same reason, deseasonalized regressors of
the sort used to model trading day and holiday e¤ects (see Findley et al. (1998) and Findley and
Soukup (2001)) are asymptotically orthogonal to seasonal regressors. Similarly, a regressor that
is a realization of a second moment stationary time series whose second moments are determined
by a spectral density (i.e. whose spectral measure is absolutely continuous) is asymptotically
orthogonal to polynomials, to regressors of the form (4.10), and to their products.
In the misspeci�ed regressor situation, if some coordinate XM

i;t of X
M
t is constant, e.g. XM

i;t =

1 for all t, then XN
t can be assumed to be asymptotically orthogonal to this constant regressor,

i.e. to have �XN = limT!1 T
�1PT

t=1X
N
t a.s. [i.p.] equal to 0, because the e¤ect of replacing

XN
t byX

N
t � �XN is balanced by changingAMi toAMi +A

N �XN . As a consequence, one can usually
assume that GNN (�) is continuous at � = 0, from which it follows that XN

t is asymptotically
orthogonal to any polynomial regressors in XM

t , because the asymptotic spectral measures of
polynomial regressors increase only at � = 0, as we indicated above.

12



5. Invertible, Short-Memory Modeling and Forecasting for yt and yMt

Because of their asymptotic stationarity, it is natural to assume that yt and yMt will be modeled
as weakly stationary time series. As in FPW (2003), the models we consider are those that have
spectral densities of the form

f�;� (�) =
�2

2�

������1 +
1X
j=1

�je
ij�

������
�2

; (5.1)

with � > 0 and with the real-valued coe¢ cient sequence � = (1; �1, �2; : : : ) belonging to the set

�is =

8<:� :
1X
j=0

j�j j <1, and �(z) 6= 0 if jzj � 1

9=; ; (5.2)

where �(z) denotes the coe¢ cient generating function,
P1

j=0 �jz
j , and �0 = 1: Invertible ARMA

models and the exponential models of Bloom�eld (1973) are the familiar examples of model
families with spectral densities of the form (5.1) with � 2 �is.
It follows from (5.1) and (5.2) that each f�;� (�) is strictly positive and is continuous as

a function of � (in fact, jointly continuous in �; �; � when distance in �is is measured with
the l1-norm k�k1 =

P1
j=0 j�j j). The subscripts i and s are used to indicate that the � in �is

"parameterize" the autoregressive representations of all invertible, short-memory time series
models. (By de�nition, these are the models with a strictly positive spectral density and an
absolutely summable autocovariance sequence. Theorem 3.8.4 of Brillinger (1975, p.78) shows
that each such model has a spectral density of the form (5.1) with � 2 �is and � > 0. This class
includes what Brockwell and Davis (1991, Section 13.2) call (invertible) intermediate-memory
models, meaning models whose lag k autocovariance is of order jkj�� with 1 < � < 2 ) While the
models considered are short-memory, the data assumptions (Section 3.1) permit long-memory
behavior,

P
k j


y
kj =1. The parameter � determines the autocorrelation structure speci�ed by

the model, and � determines the scale.
To express the various forecast functions of the model de�ned by a given � 2 �is, we

utilize the associated sequence ~� = (1; ~�1; ~�2; : : : ) of moving average (or innovations) repre-
sentation coe¢ cients whose entries are de�ned by the power series relation 1 +

P1
j=1

~�jz
j =

(1 +
P1

j=1 �jz
j)�1. With ~�0 = 1, the ~�j ; j � 1; can be calculated recursively,

~�j = �
jX
i=1

�i~�j�i ; j = 1; 2; : : : : (5.3)

For � 2 �is, a well-known result of Wiener a¢ rms that



~�




1
=
P1

j=0

���~�j��� < 1. Moreover, the
mapping � 7! ~� is a one-to-one mapping of �is onto itself that is its own inverse, and it is
k�k1-continuous, see 10.12 and the proof of 11.6 of Rudin (1973).

5.1. The �-model�s forecast and forecast error �lters

Let y�t denote a zero mean, weakly stationary time series with spectral density (5.1) for some
� 2 �is and � > 0. Then for any h � 1; the optimal linear h-step-ahead predictor of y�t+h from
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the in�nite past y�s ;�1 < s � t; has the form
P1

j=0 �j(h; �)y
�
t�j with coe¢ cients �j(h; �); j =

0; 1; : : : that minimize
R �
��

���1�P1
j=0 �je

i(h+j)�
���2 f�;� (�) d�. The minimizing coe¢ cients can be

calculated from the identity

1X
j=0

�j(h; �)z
j+h =

1X
i=h

~�iz
i(

1X
i=0

�iz
i) = 1� (

h�1X
i=0

~�iz
i)(

1X
i=0

�iz
i); (5.4)

see, for example, Theorem III.2.6 of Hannan (1970 p. 147). Thus, for j � 0,
�j(h; �) = �

Ph�1
i=0

~�i�j+h�i. Consequently, the prediction �lter �(h; �) = (�j(h; �))j�0 is ab-

solutely summable, k�(h; �)k1 � 1 + k�k1
Ph�1

j=0

���~�j��� < 1. The associated prediction error has
the formula

P1
j=0 �j(h; �)y

�
t+h�j , with absolutely summable coe¢ cients given by

�j(h; �) =

8<:
1 ; j = 0
0 ; 1 � j � h� 1
��j�h(h; �) =

Ph�1
i=0

~�i�j�i ; j � h
:

In view of (5.4), the corresponding generating function �(h; �)(z) =
P1

j=0 �j(h; �)z
j is given by

�(h; �)(z) = �(z)
h�1X
i=0

~�i z
i: (5.5)

Of course, �(1; �)(z) = �(z).
In certain incorrect model situations, it can happen that the linear predictor that is optimal

in the sense of minimizing mean squared one-step-ahead forecast error based on an in�nite past
has a prediction error �lter � with the property that �(z) has a zero of magnitude one. Such a
� belongs to

��is =

8<:� :
1X
j=0

j�j j <1, and �(z) 6= 0 if jzj < 1

9=; ; (5.6)

but not to �is, see Appendix A of Pötscher (1991), which shows how such � arise from the
large sample limit properties of standard parameter estimates. Each � 2 ��is de�nes a one-
step-ahead in�nite-past (prediction and) prediction error �lter that is applicable to any weakly
stationary time series. We shall regard each � 2 ��is as a model for yMt in (4.3) that can provide a
generalized least squares estimate of �M . For these models, in the next Sections and Subsections
we derive limiting properties of average squared errors of "truncated" (or "conditional") forecasts
of the sort we now de�ne. Later we shall establish limiting properties of parameter estimates
determined by minimizing sample mean squared forecast error.
Suppose �nitely many observations are available of a possibly multivariate time series Vt; 1 �

t � T or time series array Vt (T ) ; 1 � t � T; T = 1; 2; : : : . Given any �lter � = (�0; �1; : : :), we
de�ne

Vt [�] (T ) =

� Pt�1
j=0 �jVt�j;T ; 1 � t � T;

0 t < 0:
: (5.7)
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Because the �lter coe¢ cients �j are scalars, when Vt (T ) is de�ned by (2.5), then

Vt [�] (T ) = T
1=2DV;TVt [�] ; 1 � t � T:

For forecasting, with any � 2 �is and �nite data span, Vt (T ) ; 1 � t � T , we de�ne the �-
model�s truncated in�nite-past forecast functions h-step-ahead forecasts to be Vt [�(h; �)] (T ) ; 1�
h � t � T . Then the observable forecast errors are given by Vt (T ) � Vt�h [�(h; �)] (T ) =
Vt [�(h; �)] (T ) ; 1 � t � T . The time-varying "�nite-past" forecast and forecast error functions
de�ned each � 2 �is will be considered in Section 9.
To understand the role of ��is it is helpful to know the following fact, which is established in

Appendix B.

Lemma 5.1. If a sequence �T , T = 1; 2; : : : in ��is converges to some � in absolute sum norm,


�T � �



1
! 0, then � (z) has no zeros in fjzj < 1g, i.e. � 2 ��is. Further, every � 2 ��is not in

�is is the limit in this sense of a sequence �
T , T = 1; 2; : : : in �is. Thus ��is is the k�k1-closure

of �is.

6. GLS estimation of � and �M

In the situation in which yt in (1.1) is a Gaussian process that is de�ned for all �1 < t <1, the
one-step-ahead forecast error process � (1; �) (B) yt = � (B) yt is uncorrelated and therefore i.i.d.
when the �-model�s spectral density function correctly describes the autocorrelation structure
of yt. Then, application of � (B) to both sides of (1.1) produces data for which OLS estimation
of � is e¢ cient. To implement this idea with �nite data Yt; 1 � t � T , one can, as in Pierce
(1971), use the truncated in�nite-past one-step-ahead forecast error �lters to de�ne Generalized
Least Squares (GLS) estimates for any �-model of interest. In the notation of (5.7), wherewith
Yt [�] =

Pt�1
j=0 �jYt�j and �t [�] =

Pt�1
j=0 �j�t�j , this GLS estimator of � in (1.1) is

�T (�) =

TX
t=1

Yt [�] �t [�]
0
 

TX
t=1

�t [�] �t [�]
0
!�1

: (6.1)

Note that �T (�) reduces to the OLS estimator (3.14) when � is the parameter for white noise,
� = (1; 0; 0; : : : ). In (6.1) and elsewhere, a generalized inverse is to be understood whenever an
inverse matrix fails to exist. For � 2 �is, this can only happen for a �xed �nite number of T
values, due to (3.3)�(3.4) and (e) of Proposition 12.1 in Appendix A below.
An alternative GLS estimator will be discussed in Section 9.
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6.1. The k�k1-compact subsets of ��is
Henceforth, we consider only model families � � ��is whose absolute coordinate sums

P1
j=0 j�j j

converge uniformly on �, i.e., the pair of conditions

sup
�2�

1X
j=0

j�j j < 1;

lim
j0!1

sup
�2�

1X
j=j0

j�j j = 0: (6.2)

holds. This property characterizes the relatively k�k1-compact subsets of ��is, meaning the
subsets with the property that every sequence �T , T = 1; 2; : : : in� has a convergent subsequence

�T
0
such that




�T 0 � �



1
! 0, for some � with k�k1 < 1, see Theorem IV.8.9 and IV.8.3 of

Dunford and Schwartz (1957). Under (6.2), coordinatewise convergence of a sequence �T in
�, i.e. �Tj ! �j for all j � 0, is equivalent to convergence in mean absolute sum norm,


�T � �




1
! 0. So for these �, compactness in the sense of coordinatewise convergence is

equivalent to k�k1-compactness.
Because

max
������

����T �ei��� � �ei����� � 


�T � �



1
; (6.3)

it is clear that for any � � �is, in order to guarantee that the compact set �� consisting of (�
and) all such limits � is a subset of �is, it su¢ ces to require the obviously necessary condition,

m� = inf
������
�2�

������
1X
j=0

�je
ij�

������ > 0; (6.4)

in addition to (6.2).
In Appendix B we derive the following alternative condition to (6.4):

Lemma 6.1. If � � �is is such that (6.2) holds, then (6.4) holds if and only if
P1

j=0

���~�j���
converges uniformly on ~� =

n
~� : � 2 �

o
.

Remark 4 . When � de�nes a family of invertible ARMA (r, s) models, (6.2) is equivalent
to the requirement that the zeros of the moving average polynomials belong to fjzj � 1 + "g
for some " > 0 (in which case

P1
j=0(1 + "0)

j j�j j converges uniformly on � for any 0 � "0 <
"). Then (6.4) also holds if and only if the same is true of the zeros of the autoregressive
polynomials, for some possibly di¤erent " > 0. Model parameterization by � avoids problems
that a­ ict parameterization by means of ARMA coe¢ cients at coe¢ cient values that yield
AR and MA polynomials with a common zero: see the Appendix of Pötscher (1991) for an
elementary discussion of alternative parameterizations of ARMA models and their properties.
Convergence of a sequence of ARMA coe¢ cients implies coordinatewise convergence to the
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model�s �-parameters. The converse implication holds when the degrees of the AR and MA
polynomials remain constant through the limit and the limiting AR and MA polynomials have
no common zero.

6.2. A uniform convergence property

Partition �X0 (�) =
R �
��
��� �ei����2 dGX (�) analogously to (4.2), i.e.

�X0 (�) =

�
�MM
0 (�) �MN

0 (�)
�NM0 (�) �NN0 (�)

�
;

with �MM
0 (�) =

R �
��
��� �ei����2 dGMM (�), etc. For any � 2 ��is, de�ne

CNM (�) = �NM0 (�) �MM
0 (�)

�1
: (6.5)

(If � 2 �is, then �X0 (�) is nonsingular and therefore also �
NM
0 (�), see Proposition 12.1(c).

If � (z) has a unit root, i.e. if � 2 ��is n �is, then �MM
0 (�) can be singular, but we exclude

nonsingularity below.) For the GLS estimators of �M de�ned by

�MT (�) =
TX
t=1

Yt [�] �
M
t [�]

0
 

TX
t=1

�Mt [�] �
M
t [�]

0
!�1

; (6.6)

here is a uniform generalization of (4.9) whose proof in Appendix B follows from a uniform
generalization of (3.18) obtained from Proposition 12.1 in Appendix A.

Theorem 6.2. Suppose the assumptions of Section 3and (4.5) apply. Let �� � ��is be such
that (6.2) and

inf
��2��

�min
�
�MM
0 (��)

�
> 0 (6.7)

hold. Then

sup
��2��




��MT (��)� �M�T�1=2D�1
�;M;T �

�
ANCNM (��) 0

�


! 0 a:s: [i:p:]: (6.8)

Also, the matrix function CNM (��) is continuous on �� as well as bounded,

sup
��2��



CNM (��)

 <1: (6.9)

When �� � �is, the condition (6.7) is a consequence of (6.4).

7. Uniform Asymptotic Stationarity of Forecast Errors from a Misspec-
i�ed Model with GLS Estimates of �M

7.1. Forecasting with GLS estimates of �M

We analyze errors of forecasts obtained with GLS estimates of �M . If the OLS estimates
of �M are used instead, one need only replace any instances of CNM (��) with CNM in the
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asymptotic formulas below to obtain the OLS results. For h � 1 and 1 � h � t � T and any
�; �� 2 �is, we consider the forecast functions

YMt+hjt (�; �
�; T ) = �MT (�

�) �Mt+h + y
M
t+hjt (�; �

�; T ) (7.1)

with

yMt+hjt (�; �
�; T ) =

( Pt�1
j=0 �j (h; �)

�
Yt � �MT (�

�) �Mt�j

�
; 1 � t � T;

0 1� h � t � 0
.

Thus
YMt+hjt (�; �

�; T ) = Yt [� (h; �)] + �
M
T (�

�) �Mt+h [� (h; �)] ; (7.2)

so that

Yt+h � YMt+hjt (�; �
�; T ) = Yt+h [� (h; �)]� �MT (��) �Mt+h [� (h; �)]

= yt+h [� (h; �)]

+
n
��t+h [� (h; �)]� �MT (��) �Mt+h [� (h; �)]

o
; (7.3)

where �ltered quantities are truncated as in (5.7), e.g. �Mt+h [� (h; �)] =
Pt+h�1

j=0 �l (h; �) �
M
t+h�j ,

even when values XM
t+h�j are known for t+ h� j < 0. Partition the array (3.17) as

Vt (T ) =

266664
yt

T
1
2DM;TX

M
t

XN
t

T 1=2xMt
T 1=2xNt

377775 ; 1 � t � T; (7.4)

and partition �MT (�
�) as

�
AMT (�

�) aMT (�
�)
�
, corresponding to the partition�

AM aM
�
of �M . Then with

�T (�
�) =

h
1
�
AM �AMT (��)

�
T�1=2D�1

M;T A
N T�1=2

�
aM � aMT (��)

�
T�1=2�N

i
; (7.5)

the observable forecast errors are given by

Yt � YMtjt�h (�; �
�; T ) = �T (�

�)Vt [� (h; �)] (T ) ; 1 � t � T: (7.6)

De�ning � (��) =
�
1 �ANCNM (��) AN 0 0

�
, under the assumptions of Theorem 6.2, we have

sup
��2��

k� (��)k <1; sup
��2��

k�T (��)� � (��)k ! 0 a:s: [i:p:]: (7.7)

From these observations, Proposition 12.1 and Lemma 12.2 of Appendix A immediately yield
the following theorem, showing that, uniformly on relative compact parameter sets, the limiting
sample second moments of the forecast errors (7.3) are the same as those of the �-model forecast
errors of the A.S. array

yMt (��; T ) = yt +A
N
�
XN
t � CNM (��)T

1
2DM;TX

M
t

�
; 1 � t � T: (7.8)
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This interpretation arises from the fact that, with

BN (��) = AN
�
�CNM (��) IN

�
; (7.9)

the asymptotic spectral distribution function of this array is

GM;�� (�) = Gy (�) +B
N (��)GX (�)B

N (��)
0
: (7.10)

For any �;�� � ��is, as usual, � � �� denotes the set f(�; ��) : � 2 �; �� 2 ��g, and con-
vergence on this set means coordinatewise convergence.

Theorem 7.1. Suppose the assumptions of Theorem 6.2 hold for the model set �� � ��is.
Then for any � � ��is for which (6.2) holds and any h � 1, the forecast error arrays Yt �
YMtjt�h (�; �

�; T ) ; 1 � t � T are jointly continuous and jointly uniformly asymptotically stationary
on ���� in the sense that, for any h; l � 1 and k � 0,

1

T

T�kX
t=1

�
Yt+k � YMt+kjt+k�h (�; �

�; T )
��
Yt � YMtjt�l (�; �

�; T )
�
! �Mk (h; l; �; �

�) (7.11)

holds uniformly a.s. [i.p.] over ����, with

�Mk (h; l; �; �
�) =

Z �

��
e�ik�� (h; �)

�
ei�
�
� (l; �)

�
e�i�

�
dGM;�� (�) : (7.12)

The functions �Mk (h; l; �; �
�) are jointly continuous and bounded on ����.

We note the following consequence.

Corollary 7.2. Suppose the assumptions of Section 3and (4.5) apply. Let �;�� � ��is be such
that (6.2) holds. Let �T , T � 1 and ��;T , T � 1 be random sequences in � and �� respectively
that are convergent a.s. [i.p.] to limits, �1 and ��;1 resp. with

�min
�
�MM
0 (��;1)

�
> 0: (7.13)

Then for any k � 0 and h; l � 1,

1

T

T�kX
t=1

�
Yt+k � YMt+kjt�h

�
�T ; ��;T ; T

���
Yt � YMtjt�l

�
�T ; ��;T ; T

��
! �Mk (h; l; �

1; ��;1) a:s: [i:p:]:

In Theorem 10.1 of Section 10 below, we establish that standard estimation procedures can
produce convergent sequences of parameter estimates of the sort assumed in this corollary.
Theorem 7.1 shows that the quantities �M0 (h; h; �; �

�) are of special interest because they
describe limiting average squared forecast errors. With

�hh (�) =

Z �

��

��� (h; �) �ei����2 dGy (�) ; (7.14)

19



(7.10) yields the decomposition

�M0 (h; h; �; �
�) = �hh (�) +B

N (��)

�Z �

��

��� (h; �) �ei����2 dGX (�)�BN (��)0 : (7.15)

By specializing the argument used to establish Theorem 7.1, �hh (�) is seen to be the limiting
average squared error of the h-step-ahead forecast of Yt when Xt is known (up to coordinates
with nonzero coe¢ cients in �). Similarly, the second quantity on the right in (7.15) is seen to
be the limit of the average of the squares of h-step-ahead forecast errors of the mean function
and its its non-transitory component:

lim
T!1

1

T

T�1X
T=1

�
��t+h [� (h; �)]� �MT (��) �Mt+h [� (h; �)]

�2
= lim

T!1

1

T

T�1X
T=1

�
AXt+h [� (h; �)]�AMT (��)XM

t+h [� (h; �)]
�2

= BN (��)

�Z �

��

��� (h; �) �ei����2 dGX (�)�BN (��)0 a:s: [i:p:]: (7.16)

We turn next to the case h = 1 because of its role in GLS estimation.

Remark 5. It is easy to see that any subvector with the property that it is asymptotically
orthogonal both to the remaining regressors of XM

t and to XN
t has no in�uence of the values

of the asymptotic forecast error second moments (7.12). For example, the results of Subsection
4.3 show that when XM

t has polynomial regressors tn; n � 0, including the constant regressor
(n = 0), and when the remaining regressors of XM

t and those of XN
t consist of regressors of the

form (4.10) with c0 = 0, then the subvector of XM
t of all regressors of the form tn; n � 0 has

this property.

7.2. Advantages of GLS estimates when h = 1

Because � (1; �)
�
ei�
�
= �

�
ei�
�
when h = 1, the limit in (7.16) for this case is

AN
�
�CNM (��) IN

�
�X0 (�)

�
�CNM (��) IN

�0
AN 0: (7.17)

The matrix CNM (�) is the unique value of C minimizing
�
�C IN

�
�X0 (�)

�
�C IN

�0
in

the ordering of symmetric matrices because�
�C IN

�
�X0 (�)

�
�C IN

�0
= (7.18)�

�CNM (�) IN
�
�X0 (�)

�
�CNM (�) IN

�
+
�
CNM (�)� C

�
�MM
0 (�)

�
CNM (�)� C

�0
:

In particular,�
�CNM (�) IN

�
�X0 (�)

�
�CNM (�) IN

�0 � � �C IN
�
�X0 (�)

�
�C IN

�0
; (7.19)
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with inequality holding for any C 6= CNM (�). For example, when CNM (�) 6= 0, it follows from
setting C = 0 in (7.19) that (7.16) is less than or equal to

lim
T!1

1

T

T�1X
T=1

�
��t+1 [�]� �M�Mt+1 [�]

�2
= lim

T!1

1

T

T�1X
T=1

�
�N�Nt+1 [�]

�2
= AN�NN0 (�)AN 0

with strict inequality holding for some values ofAN . That is, asymptotically, the "bias" of �MT (�)
of as an estimator of �M results in �MT (�) �

M
t+1 [�] being a better estimator of ��t+1 [�] on average

than �M�Mt+1 [�], due to the contribution of the linear approximation A
NCNM (�)T

1
2DM;TX

M
t

of AN�Nt+1 [�].
GLS, done in conjunction with one-step-ahead squared forecast error minimization over a

compact set, results in minimization of (1.2), an expression that coincides with the l.h.s. of (7.11)
for �� = �; k = 0; h = l = 1. It follows from Theorem 7.1 that this procedure, which is known
as conditional maximum likelihood estimation, minimizes �M0 (1; 1; �; �) asymptotically, as does
unconditional (exact) maximum likelihood estimation, which is discussed in later sections. A
speci�c result is formulated in Theorem 10.1. If a di¤erent choice of �� is used, say �� =
(1; 0; 0; : : : ) to OLS estimates, then this Theorem shows that these estimation procedures lead
to minimization of �M0 (1; 1; �; �

�). Returning to (7.17), note that if CNM (��) 6= CNM (�), then
(7.19) with C = CNM (��) yields

BN (�) �X0 (�)B
N (�)

0
< BN (��) �X0 (�)B

N (��)
0 (7.20)

for some values of AN . Our next result, whose proof is given in Appendix B, is formulated to
accommodate the fact that minimizers of �M0 (1; 1; �; �) and �

M
0 (1; 1; �; �

�) with respect to �
need not be unique when the model class � is incorrect in the sense that it cannot model the
asymptotic autocovariance sequence 
yk, i.e. when there is no � 2 � such that 
yk = �2
k (�)
holds for all k � 0 and some �2, where


k (�) =

Z �

��

e�ik�

2�

������
1X
j=0

�je
ij�

������
�2

d�; k � 0: (7.21)

Corollary 7.3. Let � � ��is be a compact set over which
P1

j=0 j�j j converges uniformly and
inf�2� �min

�
�MM
0 (�)

�
> 0 holds. Let �� denote a minimizer of �M0 (1; 1; �; �) over �. Then

�M0
�
1; 1; ��; ��

�
= min�;��2� �

M
0 (1; 1; �; �

�). More precisely, for each �� 2 �, let ��
�
denote a

minimizer of �M0 (1; 1; �; �
�) over �. Then

�M0
�
1; 1; ��; ��

�
� �M0

�
1; 1; ��

�
; ��
�
; (7.22)

with strict inequality holding when �M0
�
1; 1; ��; ��

�
< �M0

�
1; 1; ��

�
; ��
��
or when

CNM (��) 6= CNM
�
��
��
; (7.23)

and AN is such that (7.20) holds for � = ��
�
.
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The interesting choice of �� in the Corollary is �� = (1; 0; 0; : : : ), which yields �MT (�
�) = �MT ,

the OLS estimate (3.14). (Model sets for the autocovariance structure of yt usually include the
white noise model (1; 0; 0; : : : ) as a degenerate case). With this choice of �� and with �� and ��

�
as

in the Corollary, Theorem 10.1 below will show that (conditional or exact) maximum likelihood
estimation over � leads to limiting average squared forecast errors with the value �M0

�
1; 1; ��; ��

�
if GLS is used, but with the value �M0

�
1; 1; ��

�
; ��
�
if OLS is used. Thus the Corollary yields

the following optimality property of GLS: In conjunction with maximum likelihood estimation
of � and in the asymptotic sense being considered, OLS estimation is never better than GLS
estimation for one-step-ahead forecasting. When the nontransitory component Xt of the mean
function is misspeci�ed, OLS is typically worse.
Indeed, it seems likely that the Corollary�s conditions, �M0

�
1; 1; ��; ��

�
< �M0

�
1; 1; ��

�
; ��
��
and

(7.23), both hold except in quite special situations such as when �M0 (1; 1; �; �
�) does not depend

on ��, which happens for example, when XN
t = 1 and XM

t = tm for some m > 0, or when the
regressors XM

t and XN
t are asymptotically orthogonal. As we illustrate in the next subsection,

��
�
is easier to determine than ��, so it is simpler to provide examples of (7.23).
Extensions of the Corollary for the case of h-step ahead forecasting with h > 1 can be

obtained by using � (h; �) (B) in place of � (B) in the de�nition of the GLS coe¢ cient estimate
of �M , see Remark 6. However, these extensions do not carry over to h-step-ahead forecasts
of nonstationary models like regARIMA models and their generalizations, because the h-step
ahead forecast errors of such models involve forecast errors at all lags 1 � j � h of the A.S.
"di¤erenced" data, see (8.4) below.
For certain situations in which yt is i:i:d: and �t = Xt is a realization of a stationary time

series, so that DX;T = T�1=2, Thursby (1987) considers some theoretical examples of misspec-
i�ed regressors with a focus on determining which of OLS or GLS has smaller asymptotic bias
for estimating an individual coe¢ cient of AM , either outcome being possible in general. Corol-
lary 7.3 shows that, for either outcome, the bias of GLS is better for one-step-head forecasting
asymptotically.

Remark 6. The basic result (7.22) of the Corollary can be generalized considerably, for
example, to accommodate noninvertible models, i.e. models not in �is whose spectral densities

(which are proportional to
���~� �ei�����2 = ��� �ei�����2) are zero for one or more values of �. All that

is required is a set of models or, more generally, �lters � such that, for all � 2 �,Z �

��

��� �ei����2 dGy (�) <1
and

tr

�Z �

��

��� �ei����2 dGX (�)� <1
hold. Then, for

F (�; ��) =

Z �

��

��� �ei����2 dGy (�) +BN (��) �Z �

��

��� �ei����2 dGX (�)�BN (��)0 ;
a straightforward modi�cation of the proof of (7.22) yields that, for every �� 2 �,

inf
�2�

F (�; �) � inf
�2�

F (�; ��) . (7.24)
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When minimizing values �� and ��
�
exist as in the Corollary, then F

�
��; ��
�
< FM0

�
��
�
; ��
��
yields

strict inequality and (7.23) does also if AN is such that (7.20) holds for � = ��
�
. The inequality

(7.24) is valid when �MM
0 (�) =

R �
��
��� �ei����2 dGMM (�) is singular, because (7.18) still holds if

�MM
0 (�)

�1 in (4.8) is interpreted as a generalized inverse. However, Theorems 6.2 and 7.1 have
not been established for this case.

7.3. The special case of AR(1) models, h = 1 and dimXN
t = 1

We now present some illustrative formulas and examples related to the minimum asymptotic
average squared forecast errors �M0

�
1; 1; ��; ��

�
and �M0

�
1; 1; ��

�
; ��
�
of (7.22) for �� = (1; 0; 0; : : : ),

i.e. when CNM (��) = CNM . These are for the case dimXN
t = 1 when �rst order autoregressive

modeling, with � = (1;��; 0; 0; : : : ), is used for the regression error series yMt in (4.3).
We start with the simple situation in which XM

t and XN
t are asymptotically orthogonal, so

CNM (�) = 0 for all �. In this case, for all �, �M0 (1; 1; �; �
�) = �M0 (1; 1; �; �) and

�M0 (1; 1; �; �) =

Z �

��

��1� �ei���2 dGy (�) + �AN�2 Z �

��

��1� �ei���2 dGNN (�) (7.25)

=
�
1 + �2

�n

y0 +

�
AN
�2
�NN0

o
� 2�

n

y1 +

�
AN
�2
�NN1

o
: (7.26)

This is minimized by �� =
�
1;���; 0; 0; : : :

�
, with

�� =

y1 +

�
AN
�2
�NN1


y0 + (A
N )

2
�NN0

:

De�ne �y1 = 

y
1=


y
0 and �

NN
1 = �NN1 =�NN0 . Rewriting 1 � �ei� in the �rst integral in (7.25) as�

1� �y1ei�
�
+ (�y1 � �) ei� and as

�
1� �NN1 �ei�

�
+
�
�NN1 � �

�
ei�, one obtains

�M0
�
1; 1; ��; ��

�
= 
y0

�
1� (�y1)

2
�

+
y0
�
�y1 � ��

�2
+
�
AN
�2
�NN0

n�
1�

�
�NN1

�2�
+
�
�NN1 � ��

�2o
: (7.27)

The lower expression (7.27) is the amount of increase in asymptotic average square forecast error
due to misspeci�cation of the regressor.
When XM

t and XN
t are not asymptotically orthogonal and dimXt = 2, i.e. dimXM

t = 1,
then the formula for �M0 (1; 1; �; �) is obtained by replacing �

NN
k in (7.26) by

�NNk + CNM (�)
2
�MM
k � CNM (�)

�
�NMk + �NM�k

�
; k = 0; 1, with

CNM (�) =
�NM0 � ��NM1
�MM
0 � ��MM

1

:

Thus, in this case �M0 (1; 1; �; �) is a rational function of � whose minimizing value �� is a zero
of a polynomial in � of degree �ve and does not have a simple closed-form formula. Therefore,
to obtain examples for which (7.23) holds for this case, in place of a generalization of (7.27), we
will use a formula for the minimizer ��

�
=
�
1;����; 0; 0; : : :

�
of �M0 (1; 1; �; �

�).
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This ��
�
is the value of � minimizingZ �

��

��1� �ei���2 dGM;�� (�) :

Therefore ��
�
is the lag one asymptotic "autocorrelation" of

�yMt = yt +A
N
�
XN
t � T 1=2DM;TC

NMXM
t

�
;

given by

��
�
=

y1 +

�
AN
�2 n

�NN1 +
�
CNM

�2
�MM
1 � CNM

�
�NM1 + �NM�1

�o

y0 + (A

N )
2
n
�NN0 + (CNM )

2
�MM
0 � 2CNM�NM0

o : (7.28)

Except possibly at a single value of AN , this optimal ��
�
will be non-zero, i.e. be such that

��
� 6= ��, when 
y1 6= 0 or when

�NM = �NN1 +
�
CNM

�2
�MM
1 � CNM

�
�NM1 + �NM�1

�
6= 0: (7.29)

The property ��
� 6= 0 yields (7.23) when the value CNM (��) is unique,

CNM (�) 6= CNM (��) , � 6= ��: (7.30)

To cover the two most common kinds of regressors, we give two examples of (7.23), one in
which Xt is periodic and the other in which Xt is a realization of a linear stationary process.
The �rst example is motivated by the idea that if XM

t inadequately represents a periodic e¤ect,
then XN

t will include one or more compensating regressors with the same period. Consider the
simple bivariate Xt with period 4 given by

Xt =
�
XM
t XN

t

�0
= b cos

�

2
t+ c(�1)t;

with linearly independent coe¢ cient vectors b =
�
bM bN

�0
and c =

�
cM cN

�0
such that

bM ; bN 6= 0. We have
�Xk =

1

2
bb0 cos

�

2
k + cc0 (�1)k ; k = 0; 1; : : : ;

so

CNM =
1
2b
NbM + cNcM

1
2 (b

M )
2
+ (cM )

2 :

Since �X0 (�) = �
X
0 � ��X1 ,

CNM (�) =
1
2

�
1 + �2

�
bNbM + (1 + �)

2
cNcM

1
2

�
1 + �2

�
(bM )

2
+ (1 + �)

2
(cM )

2 :

Because bM ; bN 6= 0 and c is not scalar multiple of b, we have CNM (�) 6= CNM when � 6= 0, i.e.
when � 6= �� verifying (7.30). Thus (7.23) follows from �NM = �

�
cN � CNMcM

�2 6= 0.
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For the second example, consider the case in which XN
t is scalar with �NNk = 0 for some

k � 1 and XM
t = XN

t�k, with the result that �
NM
0 = 0 and therefore CNM (��) = CNM = 0. We

seek an example with CNM
�
��
�� 6= 0, or equivalently, �NM0 �

��
��
= �NNk

�
��
�� 6= 0. The formula

(7.28) yields

��
�
=

y1 +

�
AN
�2
�NN1


y0 + (A
N )

2
�NN0

:

This is nonzero when 
y1 +
�
AN
�2
�NN1 6= 0. Since

�NNk (�) =

Z �

��
e�ik�

��1� �ei���2 dGNN (�) = �1 + �2��NNk � �
�
�NNk+1 + �

NN
k�1
�

= ��
�
�NNk+1 + �

NN
k�1
�
;

it follows that �NNk
�
��
�� 6= 0 whenever �NNk+1+�NNk�1 6= 0. For example, consider the case in which


y1 6= 0 and XN
t is a realization of a second order autoregression satisfying XN

t � �2XN
t�2 = "t

with 0 < j�2j < 1 for some i.i.d. white noise process "t, then ��
�
= 
y1=

�

y0 +

�
AN
�2
�NN0

�
6= 0.

For k = 2m + 1 with m � 0, we have �NNk = 0 and �NNk+1 + �
NN
k�1 = (1 + �2)�

m
2 �

NN
0 6= 0, so

�NNk
�
��
�� 6= 0.

8. Joint Asymptotic Stationarity of Forecast Errors from Misspeci�ed
Nonstationary Models such as regARIMA Models

Many time series require linear transformations such as di¤erencing operations before they have
properties like those we have assumed for (1.1). We now present an extension of Theorem 7.1
for models for such series, e.g. invertible regARIMA models.
Suppose we have observations of the form

Wt = ��t + wt (t � �d+ 1) ; (8.1)

where wt satis�es a d-th order di¤erence equation with d � 1,

wt + �1wt�1 + � � �+ �dwt�d = yt (t � 1) ;

in which yt together with

�t = �t + �1�t�1 + � � �+ �d�t�d (t � 1)

satisfy the assumptions of Subsection ??. Observe that

Yt =Wt + �1Wt�1 + � � � �dWt�d; (t � 1) (8.2)

has the formula Yt = ��t + yt as in (1.1).
With �0 = 1 and � (z) =

Pd
j=0 �jz

j , de�ne ~�0 = 1 and ~�j =
Pj�1

i=0
~�i�j�i; j = 1; 2; : : :. It is

not di¢ cult to verify from (8.2), see Bell (1984, p. 650), that for any h � 1 and t � 0, there
exist coe¢ cients cj;h depending only on �1; : : : ; �d and h, such that

Wt+h =
h�1X
j=0

~�jYt+h�j +
d�1X
j=0

cj;hWt�j ; (t � 1) :
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Therefore, when t � 1, given forecasts of Yt+h�j ; 0 � j � h� 1; say YMt+h�jjt (�; �
�; T ),

0 � j � h� 1 de�ned as in (7.1), we can de�ne the forecast of Wt+h to be

WM
t+hjt (�; �

�; T ) =
h�1X
j=0

~�jY
M
t+h�jjt (�; �

�; T ) +
d�1X
j=0

cj;hWt�j : (8.3)

For the forecast errors, we then have, for t � 1,

Wt �WM
tjt�h (�; �

�; T ) =
h�1X
j=0

~�j

�
Yt�j � YMt�jjt�j�h (�; �

�; T )
�
: (8.4)

Consequently, these forecast errors inherit joint and uniform asymptotic stationarity from the
corresponding properties of the Yt�j � YMt�jjt�j�h (�; �

�; T ) ; 0 � j � h� 1. Thus, with

�M;�
hh (�; ��) =

Z �

��

������
h�1X
j=0

eij�~�j� (h� j; �)
�
ei�
�������
2

dGM;�� (�) (8.5)

=
h�1X
j;k=0

~�j~�k�
M
k�j (h� j; h� k; �; ��) ;

where GM;�� (�) is de�ned as in (7.10) and �Mk�j (h� j; h� k; �; �
�) as in (7.12), an immediate

consequence of Theorem 7.1 is

Theorem 8.1. Suppose �;�� � �is are such that the assumptions of Theorem 7.1 hold. Then
the forecast error sequences Wt � WM

tjt�h (�; �
�; T ) t � 1 with h � 1 are jointly uniformly

asymptotically stationary on ����. In particular,

sup
�2�;��2��

����� 1T
TX
t=1

�
Wt �WM

tjt�h (�; �
�; T )

�2
� �M;�

hh (�; ��)

�����! 0 a:s: [i:p:]: (8.6)

The limit function �M;�
hh (�; ��) is bounded and continuous on ����.

9. Finite-Past Predictors and GLS

Our results above for the truncated predictors yt+hjt (�) = yt [�(h; �)] of yt+h will serve as
stepping stones for deriving results for the more commonly used �nite-past predictors. These
are de�ned by

ŷt+hjt (�) =

� Pt�1
j=0 �t;j(h; �)yt�j ; 1 � t � T

0 ; 1� h � t � 0 ; (9.1)

using as coe¢ cient vector [�t;j (h; �)]1�j�t�1 the solution of

[�t;j (h; �)]0�j�t�1
�

j�k (�)

�
0�j;k�t�1 =

�

h+k (�)

�
1�k�t�1 ;
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where 
k (�) is as in (7.21), see, for example, Newton and Pagano (1983). Hence, if we de�ne
�t;j(h; �); 0 � j � t� 1; by

�t;j(h; �) =

8<: 1 ; j = 0
0 ; 1 � j � h� 1
��t�h;j�h(h; �) ; h � j � t� 1

for t � h+ 1; and by
�t;j(h; �) =

�
1 ; j = 0
0 ; 1 � j � t� 1 ;

for 1 � t � h, then the observable prediction error values from data yt; 1 � t � T have the
formulas

yt � ŷtjt�h (�) =
t�1X
j=0

�t;j(h; �)yt�j ; 1 � t � T:

These prediction errors and their coe¢ cients are sometimes normalized by dividing the co-
e¢ cients by the square root of the mean square prediction error quantity (9.2), particularly in
the case h = 1 used for GLS estimation as in Amemiya (1973) and for maximum likelihood
estimation based on the functions (9.12) below. The normalization is done to obtain prediction
errors with constant variance (when the �-model is correct).

utjt�h(�) =
1

2�

Z �

��

������
t�1X
j=0

�t;j (h; �) e
�ij�

������
2 ������

1X
j=0

�je
ij�

������
�2

d�

=
t�1X
j=0

�t;j(h; �)
j(�): (9.2)

Thus the normalized coe¢ cients are

��t;j(h; �) =�t;j(h; �)=u
1=2
tjt�h(�); j = 0; 1; : : : ; t� 1: (9.3)

(Note that u1=2tjt�h(�) = 
0(�)
1=2 for 1 � t � h.) By a straightforward modi�cation of the

proof of (5.17) of FPW (2003), it can be shown that the sequence utjt�h(�) is bounded above

by 
0(�) =
P1

i=0
~�
2

i and decreases uniformly as t ! 1 to
Ph�1

j=0
~�
2

j on the subsets � � �is
considered in (b) of Proposition 9.1 below. Consequently, to convert limiting forecast error
second moment formulas obtained without the normalization to formulas that apply when the
normalized coe¢ cients are used, the functions �Mk (h; l; �; �

�) with appearing in the limit must

be divided by
nPh�1

j=0
~�
2

j

Pl�1
j=0

~�
2

j

o1=2
. Note this is equal to one when h = l = 1. For simplicity,

we shall use the normalization only in our de�nitions of the �nite-past GLS coe¢ cient vector
and the Gaussian log-likelihood function both of which involve h = 1 exclusively.
With Yt (�

�) =
Pt�1

j=0 ��t;j (1; �
�)Yt�j and �

M
t (�

�) =
Pt�1

j=0 ��t;j (1; �
�) �Mt�j , the GLS estimator

of �M is de�ned by

�̂MT (�
�) =

TX
t=1

Yt (�
�) �Mt (�

�)
0
 

TX
t=1

�Mt (�
�) �Mt (�

�)
0
!�1

; (9.4)
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and the �nite-past variant of the predictor Yt+hjt(�; �
�; T ) of (7.1) is de�ned as

ŶMt+hjt (�; �
�; T ) =

t�1X
j=0

�t+h;j (h; �)Yt�j + �̂
M
T (�

�)
t+h�1X
j=0

�t+h;j (h; �) �
M
t+h�j ; (9.5)

see (7.2). With Ut (T ) as in (3.19), set

Uht (�; T ) =
t�1X
j=0

�t;j (h; �)Ut�j (T ) ; 1 � t � T;

and

V ht (�; T ) =

�
Uht (�; T )

T 1=2
Pt�1

j=0 �t;j (h; �)xt�j

�
; 1 � t � T:

Partition �̂MT (�
�) as

�
ÂMT (�

�) âMT (�
�)
�
corresponding to the partition�

AM aM
�
of �M , and de�ne

�̂T (�
�) =

h
1
�
AM � ÂMT (��)

�
T�1=2D�1

M;T A
N T�1=2

�
aM � âMT (��)

�
T�1=2�N

i
:

Then the observable forecast errors are given by

Yt � ŶMtjt�h (�; �
�; T ) = �̂T (�

�)V ht (�; T ) ; 1 � t � T: (9.6)

When no transitory regressors xt are present in �t, so that V
h
t (�; T ) in (9.6) is replaced

by Uht (�; T ) and �̂T (�
�) by

h
1
�
AM � ÂMT (�

�)
�
T�1=2D�1

M;T A
N
i
, then the fact that the A.S.

array Ut (T ) has both negligibility properties (2.8) and (2.7) has the consequence that the "�nite-
past" generalizations of Theorems 7.1 and 8.1 follow by arguments analogous to those given in
Subsection 7.1 except that use is made of Proposition 5.2 and part (a) of Proposition 2.1 of
FPW (2003) together with the assumptions that (6.4) holds and that, for some " > 0, the sumsP1

j=0

�
1 + j

1
2+"
�
j�j j and

P1
j=0

�
1 + j

1
2+"
� ����j �� converge uniformly on � and �� respectively.

When transitory regressors are �present, the simplest way to achieve generalizations seems to be
to require a bit more of the model sets in order that (b) and (c) of the following result, proved
in Appendix B, can be applied. In (d), typical choices of � (j) are � (j) = 1+ j� for some � � 0
or (in the case of invertible ARMA models) � (j) = ��j with 0 < � < 1.

Proposition 9.1. (a) Let T0 be the smallest value of T for which
PT

t=1 �t�
0

t > 0. For any
� 2 �is, the one-step-ahead prediction errors �t (�) =

Pt�1
j=0 ��t;j (1; �) �t have the property that

0 < min
������

������
1X
j=0

�je
ij�

������
2
TX
t=1

�t�t �
TX
t=1

�t (�) �t (�)
0 � max

������

������
1X
j=0

�je
ij�

������
2
TX
t=1

�t�t (9.7)

holds for every T � T0.
(b) If� � �is is any subset of�is on which (6.4) holds and

P1
j=0 (1 + j) j�j j converges uniformly,
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then
P1

j=1

Pt�1
j=0

���t;j (h; �)� �j (h; �)�� converges uniformly on � for each h � 1. Consequently,
given regressors xt satisfying

P1
t=1 kxtk < 1, the sums

P1
t=1




Pt�1
j=0 �t;j (h; �)xt�j




 converge
uniformly on �.
(c) With � as in (b), for xt (�) =

Pt�1
j=0 ��t;j (1; �)xt�j and y

M
t (�) =

Pt�1
j=0 ��t;j (1; �) y

M
t�j , with

yMt�j de�ned by (4.3), we have

sup
�2�







T�1=2
TX
t=1

yMt (�)xt (�)
0
 

TX
t=1

xt (�)xt (�)
0
!�1





! 0 a:s: [i:p:]: (9.8)

(d) Consider any nondecreasing sequence of weights 1 � � (1) � � (2) � � � � with the properties
that � (t) � � (j) � (t� j) holds whenever 0 � j � t. Let xt be such that

sup
t�1

� (t) kxtk <1:

Then, on any subset � � �is on which
P1

j=0 � (j) j�j j converges uniformly and (6.4) holds,
� (t)xt (�) is uniformly bounded,

sup
�2�;t�1

� (t) kxt (�)k <1: (9.9)

The "�nite-past" analogues of (8.3) and (8.4) are

ŴM
t+hjt (�; �

�; T ) =
h�1X
j=0

~�j Ŷ
M
t+h�jjt (�; �

�; T ) +
d�1X
j=0

cj;hWt�j : (9.10)

and

Wt � ŴM
tjt�h (�; �

�; T ) =
h�1X
j=0

~�j

�
Yt�j � ŶMt�jjt�h (�; �

�; T )
�

=
h�1X
j=0

~�j

0@t�1X
j=0

�t;j (h; �)Yt�j + �̂
M
T (�

�)
t�1X
j=0

�t;j (h; �) �
M
t�j

1A : (9.11)

We also consider the Gaussian log-likelihood function for the observationsWt; 1 � t � T , the
autocovariance structure determined by f�;� (�) of (5.1), and the GLS mean function estimates
determined by ��, for �; �� 2 �is. From its decomposition into a sum of logarithms of univariate
conditional densities, this function can be calculated as �T=2 times

LT (�; �
�; �) =

1

T

TX
t=1

log
�
2��2utjt�1(�)

�

+
1

�2T

TX
t=1

0@t�1X
j=0

��t;j (1; �)Yt�j + �̂
M
T (�

�)
t�1X
j=0

��t;j (1; �) �
M
t�j

1A2

: (9.12)

Part (c) of Proposition 9.1 in conjunction with other results is shown, in Appendix B, to
yield the following extension of Theorem 8.1.
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Theorem 9.2. Let � and �� be two model sets in �is for which the assumptions of Proposition
9.1(b) hold. Suppose that the components yt and �t of the model (1.1) satisfy the assumptions
of Subsection ??, the condition (4.5), and

P1
t=1 kxtk <1. Then

sup
��2��




��̂MT (��)� �M�T�1=2D�1
�;M;T �

�
ANCNM (��) 0

�


! 0 a:s: [i:p:]: (9.13)

Also, for h = 1; 2; : : :, the forecast error sequences Wt � ŴM
tjt�h (�; �

�; T ) are jointly uniformly
asymptotically stationary on ���� with the same asymptotic second moment functions as the
sequences Wt �WM

tjt�h (�; �
�; T ) of (8.4). In particular,

sup
�2�;��2��

����� 1T
TX
t=1

�
Wt � ŴM

tjt�h (�; �
�; T )

�2
� �M;�

hh (�; ��)

�����! 0 a:s: [i:p:]; (9.14)

with �M;�
hh (�; ��) de�ned by (8.5).

Furthermore, we have, for every " > 0,

lim
T!1

sup
�2�;��2��

"��<1

�����LT (�; ��; �)�
(
log
�
2��2

�
+
��;M11 (�; ��)

�2

)����� = 0 a:s: [i:p:]; (9.15)

and

lim
T!1

������ inf
�2�;��2��

0<�<1

LT (�; �
�; �)�

�
log

�
2� inf

�2�;��2��
��;M11 (�; ��)

�
+ 1

������� = 0 a:s: [i:p:]: (9.16)

Remark 7. Part (d) of Proposition 9.1 can be used with � (t) = 1+ t1=2+" with " > 0 to es-
tablish the uniform convergence of

P1
t=1 xt (�)xt (�)

0 and
�P1

t=1 xt (�)xt (�)
0��1. With � (t) =

1 + t3=2+", it yields the uniform convergence of
P1

t=1 t
1=2 kxt (�)k. From this, the uniform con-

vergence of
P1

t=1 y
M
t (�)xt (�)

0
=
P1

t=1

�
t�1=2yMt (�)

	�
t1=2xt (�)

0	 follows because t�1=2yMt (�)
converges uniformly to 0 a.s. [i.p.], by Theorem 2.1 and Proposition 5.2 of FPW (2003). From

these facts, one obtains the continuity of the function
P1

t=1 y
M
t (�)xt (�)

0 �P1
t=1 xt (�)xt (�)

0��1
on � and the uniform convergence of the bias âMT (�)� aM to this function.

10. Convergence of ARIMA Parameter Estimates When the Regressors
Are Estimated By GLS

Theorem 9.2 can be applied to obtain convergence results for parameter estimates determined
by h-step-ahead squared forecast error minimization or by Gaussian likelihood maximization
over compact subsets of �is ��is with the regression coe¢ cient vector �M being estimated by
the GLS estimates of Sections 5 or 9, or by OLS. Such results extend Theorems 4.1 and 5.1
of FPW (2003) to the cases of regARIMA models and regression models with a more general
covariance structure. From the various possibilities, we present speci�c results for the two cases
that seem to be of most practical interest, the case in which regression and autocovariance
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structure parameter estimates are obtained simultaneously and the case in which the regression
coe¢ cient estimates are available in advance of the estimate of the covariance structure, as when
OLS estimates are used, or previously obtained GLS estimates of �M are used for estimating �
optimally for multi-step-ahead forecasting.
In preparation, note that for any pair of compact subsets � and �� of ��is with ,�� satisfying

(6.7), it follows from their de�ning formula (8.3) that the forecast functions WM
t+hjt (�; �

�; T ) are

continuous on � � ��, so the same is true of the functions
Pt

u=1

�
Wu �WM

uju�h (�; �
�; T )

�2
.

Under the assumptions of Theorem 10.1, the function ��;Mhh (�; ��) de�ned by (8.5) is continuous
on this set, by Theorem 7.1. Therefore minimizers of these functions exist and the assertions
of the following theorem are well known consequences of uniform convergence results obtained
in Theorems 8.1 and 9.2. In the situation considered in (b) in which �NM (��) = 0 for all ��,
then BNM (��) in (7.15) does not depend on ��, so neither does �M;�

hh (�; ��). Recall that a
random sequence �T = �T (Y1; : : : ; YT ) is said to converge to a set �0 almost surely if, on each
realization of the time series Yt except realizations belonging to an event with probability zero,
every subsequence of �T has a convergent subsequence whose limit belongs to �0. Convergence
in probability to �0 means that every subsequence of �

T has a subsequence that converges
almost surely to �0. For the i.p. case, only measurable minimizers are considered, the existence
of which is guaranteed by standard results, e.g. Lemma 3.4 of Pötscher and Prucha (1997).

Theorem 10.1. Under assumptions of Section 3and (4.5), let � be a compact subset of �is,
and let ��;T , T � 1 be a convergent random sequence, ��;T ! ��;M a.s. [i.p.], contained in a
compact subset �� of ��is with the properties of (6.2) and (6.7).
(a) For a given h � 1 and each T � 1, let �T denote a minimizer ofPT

t=1

�
Wt �WM

tjt�h (�; �; T )
�2
over �. Then

T�1
TX
t=1

�
Wt �WM

tjt�h

�
�T ; �T ; T

��2
! min

�2�
��;Mhh (�; �) a:s: [i:p:];

and the sequence �T , T � 1 converges a.s. [i.p.] to the set of minimizers of the function ��;Mhh (�; �)

over �, where �M;�
hh (�; �) is de�ned by (8.5). In particular, if ��;Mhh (�; �) has a unique minimizer

�h;M over �, then �T ! �M a.s. [i.p.].

(b) For a given h � 1, let �h;T denote a minimizer of
PT

t=1

�
Wt �WM

tjt�h

�
�; ��;T ; T

��2
over �.

Then the sequence �h;T converges to the set of minimizers of �M;�
hh

�
�; ��;M

�
over � a.s. [i.p.].

If �M;�
hh

�
�; ��;M

�
has a unique minimizer �h;M in �, then �h;T ! �h;M a.s. [i.p.]. The same

conclusion obtains with no convergence requirement on ��;T when the regressors sequences XM
t

and XN
t are asymptotically orthogonal.

(c) In the case of the �nite-past forecasts (9.10), if � and � are compact subsets of �is on
which

P1
j=0 (1 + j) j�j j converges uniformly, then the conclusions of (a) and (b) also apply to

the minimizers �̂
T
ofPT

t=1

�
Wt � ŴM

tjt�1 (�; �; T )
�2

and �̂
h;T

of
PT

t=1

�
Wt � ŴM

tjt�h

�
�; ��;T ; T

��2
respectively, as
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well as to the minimizers with respect to � of LT (�; �; �) and LT
�
�; ��;T ; �

�
.

The interesting cases are usually those in which the limit ��;M of the sequence ��;T coincides
with a minimizer �h;M of �M;�

hh (�; �) over � for some h � 1. For example, when h = 1, one

version of iterated GLS estimation is de�ned by ��;T = �̂
1;T�1

in which case ��;T will have the

same limit as �̂
1;T

if the latter sequence has a limit �1;M .
Because �M;�

11 (�; ��) = �M0 (1; 1; �; �
�), the conclusions of Corollary 7.3 concerning the op-

timality of GLS for one-step-ahead forecast apply in the estimation situations considered in
Theorem 10.1 when h = 1.
Remark 8. An examination of the proofs of the theorems and corollaries of Sections 6.1�8

show their assertions for the case h = 1, and those of (a)�(b) of Theorem 10.1, hold for all
k�k1-compact subsets �, �� of absolutely summable �lters, when (6.7) holds for �� and the
�rst coordinate of each �� 2 �� is nonzero. That is, it is not necessary to restrict the zeroes
of � (z) and �� (z) to lie in fjzj � 1g. This is of interest because certain classes of multistep
forecasting �lters, for example, the direct autoregressive predictors discussed Subsection 4a of
Findley (1984) and in the literature reviewed by Bhansali (1999), do not obey such restrictions.

11. Concluding Remarks

Under weak assumption on the regressor and regression errors of data of the form (1.1), we
have shown that standard model coe¢ cient estimates converge with increasing series length
even when the model is incorrect with regard to its regressor speci�cation or its regression error
autocovariance speci�cation. The limiting behavior is described by spectral calculus second
moment formulas that generalize those that apply when the modeling assumptions are correct.
Further, in the case of one-step-ahead forecasting with an underspeci�ed mean function regressor,
the formulas yield that the use of generalized least squares estimates of the regression models
typically leads to smaller asymptotic average squared forecast errors than those obtained from
ordinary least squares coe¢ cient estimates. The results for the case of truncated in�nite-past
forecast functions did not require the restriction we imposed for the �nite-past forecast functions
that the zeroes of the generating function of the limiting prediction error �lter have magnitude
larger than one. Our development included a study of e¤ects of regressors that decay too rapidly
for consistent coe¢ cient estimation. Formula were obtained for the asymptotic bias of their GLS
coe¢ cient estimates when their decay rate is at least t�

3
2�" for some " > 0, as is the case for

the intervention variables of Box and Tiao (1975).
The results and methods of the present paper can be used in conjunction with other results

to obtain formulas for the limiting average of squared "out-of-sample" (real time) forecast errors
of regARIMA models under slightly more restrictive assumptions on the regressor sequence Xt
that are satis�ed by all of the speci�c regressor types we have mentioned. The limit formulas
are the same as those of the present article when the nontransitory regression component Xt is
asymptotically stationary, i.e., when DX;T = T�1=2IX , see Findley (2001, 2003).
When DX;T = T�1=2IX , there are relatively straightforward multivariate time series exten-

sions of those results of the present paper that do not involve the normalized forecast errors
(9.3), for the reasons described in Section 7.2 (ii) of FPW (2003).

32



Acknowledgement. The author is grateful to John Aston for comments on a draft of this
report that led to an improved exposition.

Disclaimer. This paper reports the results of research and analysis undertaken by Census
Bureau sta¤. It has undergone a Census Bureau review more limited in scope than reviews given
to o¢ cial Census Bureau publications. Any opinions expressed are those of the author and may
not re�ect Census Bureau policy.

References

[1] Amemiya, T. (1973). �Generalized Least Squares with an Estimated Autocovariance Ma-
trix,�Econometrica 41, 723-732.

[2] Anderson, T. W. (1971). The Statistical Analysis of Time Series. New York: Wiley.

[3] Bhansali, R. J. (1999). �Parameter Estimation and Model Selection for Multistep Prediction
of Time Series: A Review,� In S. Ghosh (Ed.), Asymptotics, Nonparametrics and Time
Series. Marcel Dekker: New York.

[4] Bell, W. R. and Hillmer, S. C. (1983). �Modelling Time Series with Calendar Variation,�
Journal of the American Statistical Association, 526-534.

[5] Bloom�eld, P. (1973). "An exponential model for the spectrum of a scalar time series,"
Biometrika 60, 217-226.

[6] Box, G. E. P. and Tiao, G. C. (1975). �Intervention Analysis with Applications to Economic
and Environmental Problems,�Journal of the American Statistical Association 70, 70-79.

[7] Brillinger, D. R. (1975). Time Series: Data Analysis and Theory. New York: Holt, Rinehart
and Winston.

[8] Brockwell, P. and Davis, R. (1991). Time Series: Theory and Methods, 2nd ed., Springer:
New York.

[9] Dunford, N. and J. T. Schwartz (1957). Linear Operators, Part I. Wiley-Interscience: New
York.

[10] Findley, D. F. (1984). "On Some Ambiguities Associated with the Fitting of ARMA models
to Time Series," Journal of Time Series Analysis 5, 213�225.

[11] Findley, D. F. (1991). �Convergence of Finite Multistep Predictors from Incorrect Models
and Its Role in Model Selection,�Note di Matematica XI, 145-155.

[12] Findley, D. F. (2001). �Asymptotic Stationarity Properties of Out-of-Sample Forecast Er-
rors of Misspeci�ed RegARIMA Models,�2001 Proceedings of the Business and Economic
Statistics Section, American Statistical Association, Alexandria.

[13] Findley, D. F. (2003). Asymptotic Stationarity Properties of Out-of-Sample Forecast Er-
rors of Misspeci�ed RegARIMA Models and the Optimality of GLS for One-Step-Ahead
Forecasting, manuscript submitted for publication

33



[14] Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C. and Chen, B. C. (1998). �New
Capabilities and Methods of the X-12-ARIMA Seasonal Adjustment Program,�Journal of
Business and Economic Statistics 16, 127-177 (with discussion).

[15] Findley, D. F., Pötscher, B. M., and Wei, C. Z. (2001). �Uniform Convergence of Sample
Second Moments of Time Series Arrays,�The Annals of Statistics 29, 815-838.

[16] Findley, D. F., Pötscher, B. M., and Wei, C. Z. (2003). �Modeling of Time Series Arrays
by Multistep Prediction or Likelihood Methods,�Journal of Econometrics (in press).

[17] Findley, D. F. and R. J. Soukup (2000), "Modeling and Model Selection for Moving
Holidays", 2000 Proceedings of the Business and Economic Statistics Section of the
American Statistical Association, 102-107, American Statistical Association: Alexandria.
http://www.census.gov/ts/papers/asa00_eas.pdf

[18] Grenander, U. (1954). �On the Estimation of Regression Coe¢ cients in the Case of an
Autocorrelated Disturbance,�Annals of Mathematical Statistics 25, 252-272.

[19] Hannan, E. J. (1970). Multiple Time Series. New York: Wiley.

[20] Hirschman, I., Jr. (1965). �Finite Sections of Wiener-Hopf Equations and Szegö Polynomi-
als,�J. Mathematical Analysis and Applications 11, 290-320.

[21] Koreisha, S. G. and Fang, Y. (2001), "Generalized Least Squares with Misspeci�ed Corre-
lation Structure,�J. R. Statist. Soc. B 63, 515-532.

[22] Lai, T. L. and Wei, C. Z. (1984). �Moment Inequalities with Applications to Regression
and Time Series Models,� in Inequalities in Statistics and Probability (ed. Y. L. Tong).
Hayward: IMS.

[23] Newton, H. J. and Pagano, M. (1983). �The Finite Memory Prediction of Covariance Sta-
tionary Time Series,�SIAM J. Sci. Stat. Comput. 4, 330-339.

[24] Parzen, E. (1962). "Spectral analysis of asymptotically stationary time series," Bull. Inst.
Internat. Statist. 39, 87�103.

[25] Pierce, D. A. (1971). �Least Squares Estimation in the Regression Model with
Autoregressive-Moving Average Errors,�Biometrika 58, 299�312.

[26] Pötscher, B. M. (1991). �Noninvertibility and Pseudo-Maximum Likelihood Estimation of
Misspeci�ed ARMA Models,�Econometric Theory 7, 435�449. Corrections: Econometric
Theory 10, 811.

[27] Pötscher, B. M. and Prucha, I. R. (1997). Dynamic Nonlinear Econometric Models: As-
ymptotic Theory. Berlin: Springer.

[28] Rudin, W. (1973). Functional Analysis. New York: McGraw Hill.

[29] Thursby, J. G. (1987). "OLS or GLS in the Presence of Misspeci�cation Error?" Journal of
Econometrics 35, 359-374.

[30] Titchmarsh, E. C. (1939), Theory of Functions, 2nd Ed., Oxford University Press, Oxford

34



12. Appendix A: Uniform Convergence Results for Arrays

Proposition 12.1. Let Vt (T ) ; 1 � t � T; T = 1; 2; : : : be an n-dimensional column vector
array satisfying (2.6) and (2.7). Let H and Z be sets of �lters whose absolute coe¢ cient sums
converges uniformly. Then the �lter output arrays Vt [�] (T ) ; Vt [�] (T ) ; 1 � t � T de�ned as in
(5.7) have the following properties:

(a)

lim
T!1

sup
�2H




T�1=2VT�j;T [�]


 = 0; a:s: [i:p:] j � 0; (12.1)

and, if (2.4) holds, then so does

lim
T!1

sup
�2H




T�1=2V1+j;T [�]


 = 0; a:s: [i:p:] j � 0:
(b) For any k � 0, as T !1 one has

sup
�2H;�2Z






 1T
T�kX
t=1

Vt+k [�] (T )Vt [�] (T )
0 � �Vk (�; �)






! 0 a:s: [i:p:]; (12.2)

with

�Vk (�; �) =

Z �

��
e�ik��

�
ei�
�
�
�
e�i�

�
dGV (�) : (12.3)

(c) The functions �Vk (�; �) are bounded on H � Z,

�Vk (�; �)

 � 

�V0 

 sup
�2H

��� �ei���� sup
�2Z

��� �ei���� <1;
and are jointly continuous in �; � in the sense that if �T 2 H; �T 2 Z are such that �T !
�; �T ! � (coordinatewise convergence) with � 2 H; � 2 Z, then �Vk

�
�T ; �T

�
! �Vk (�; �).

Also, if Z = H, then

inf
�2H;������

��� �ei����2 �V0 � �V0 (�; �) � sup
�2H;������

��� �ei����2 �V0 ; (12.4)

so inf�2H �min
�
�V0 (�; �)

�
> 0 if inf�2H;������

��� �ei���� > 0.
(d) If there is a partition Vt (T ) =

�
V �t (T ) V ��t (T )

�0
with asymptotically orthogonal com-

ponents, i.e.

lim
T!1

1

T

T�kX
t=k+1

V �t�k (T )V
��
t (T ) = 0; a:s: [i:p:] (k = 0; 1; : : :) ; (12.5)

then

lim
T!1

sup
�2H;�2Z






 1T
T�kX
t=k+1

V �t�k [�] (T )V
��
t [�] (T )

0






 = 0; a:s: [i:p:] (k = 0; 1; : : :) : (12.6)
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(e) Let B be an index set for a family of arrays Vt (�; T ) ; 1 � t � T; T = 1; 2; : : : , � 2 B such
that

sup
�2B






 1T
TX
t=1

Vt (�; T )Vt (�; T )
0 � �V0 (�)






! 0 a:s:; (12.7)

holds, where the �0 (�) are positive de�nite matrices whose minimum eigenvalues are bounded
away from zero, i.e.

inf
�2B

�min (�0 (�)) � mB

holds for some mB > 0. Then

sup
�2B








 
1

T

TX
t=1

Vt (�; T )Vt (�; T )
0
!�1

� �0 (�)�1






! 0 a:s: (12.8)

Proof. Parts (a)�(c) are straightforward vector extensions of special cases of Theorem 2.1
and Proposition 2.1 of FPW (2001), and (d) follows from (12.3) because, under (12.5), GV (�)
can be written in the block diagonal form GV (�) = diag [G� (�) ; G�� (�)], where G� (�) and
G�� (�) are the spectral density matrices of the arrays V �t (T ) and V

��
t (T ), respectively.

For (e), it follows from (12.7) that, given " > 0, for each realization except those of an event
with probability zero, there is a T" such that for T � T" the inequalities

sup
�2B






 1T
TX
t=1

Vt (�; T )Vt (�; T )
0 � �V0 (�)






 < "

2
m2
H

and

inf
�2B

�min

 
1

T

TX
t=1

Vt (�; T )Vt (�; T )
0
!
� mB

2

hold. Hence for these T and all � 2 B,

sup
�2B








 
1

T

TX
t=1

Vt (�; T )Vt (�; T )
0
!�1

� �0 (�)�1








� sup
�2B

8<:







 
1

T

TX
t=1

Vt (�; T )Vt (�; T )
0
!�1












 1T
TX
t=1

Vt (�; T )Vt (�; T )
0 � �0 (�)









�0 (�)�1



9=;

� 1

mH
sup
�2B

(
��1min

 
1

T

TX
t=1

Vt (�; T )Vt (�; T )
0
!)

sup
�2B

(




 1T
TX
t=1

Vt (�; T )Vt (�; T )
0 � �0 (�)







)

< ";

which establishes (12.8).
We also need the following lemma.
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Lemma 12.2. Suppose that, on a set ��, the sequence �T (�
�) ; T � 1 of row vector functions

converges uniformly to a bounded function� (��), i.e. (7.7) holds, and similarly for �T (�
�) ; T �

1 and � (��). Let Ut (�; T ) ; � 2 H and Wt (�; T ) ; � 2 Z; 1 � t � T; T = 1; 2; : : : be families of
column vector arrays of the same dimension as � (��) and � (��), respectively, such that

sup
�2H;�2Z






 1T
T�kX
t=1

Ut+k (�; T )Wt (�; T )
0 � �k (�; �)






! 0 a:s: [i:p:]; k = 0; 1; : : :

and
sup

�2H;�2Z
k�0 (�; �)k <1

hold. Then

sup
��2��

�2H;�2Z






 1T
T�kX
t=1

�T (�
�)Ut+k (�; T )Wt (�; T )

0
�T (�

�)
0 � � (��) �k (�; �) � (��)0







! 0 a:s: [i:p:]; k = 0; 1; : : : :

Proof. First note that, with M� = sup��2�� k� (��)k and M� = sup��2�� k� (��)k, since

sup
��2��






 1T
T�kX
t=1

� (��)Ut+k (�; T )Wt (�; T )
0
� 0 (��)� � (��) �k (�; �) � 0 (��)







� M�M� sup

�2H;�2Z






 1T
T�kX
t=1

Ut+k (�; T )Wt (�; T )
0 � �k (�; �)






! 0 a:s: [i:p:];

it su¢ ces to verify

sup
��2��

�2H;�2Z






 1T
T�kX
t=1

�
�T (�

�)Ut+k (�; T )Wt (�; T )
0
� 0T (�

�)� � (��)Ut+k (�; T )W 0
t (�; T ) �

0 (��)
	






! 0 a:s: [i:p:]: (12.9)

By the usual di¤erence of products decomposition, this is reduced to the proof of the uniform
convergence to zero of three expressions, for example,

sup
��2��

�2H;�2Z






 1T
T�kX
t=1

(�T (�
�)� � (��))Ut+k (�; T )Wt (�; T )

0
� (��)

0





! 0 a:s: [i:p:]: (12.10)

our proof for which is representative. The expression on the left in (12.10) is bounded above by

M� sup
�2��

k�T (��)� � (��)k sup
�2H;�2Z






 1T
T�kX
t=1

Ut+k (�; T )Wt (�; T )
0






 :
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For the factor on the right in this bound, we have

lim sup
T!1

sup
�2H;�2Z






 1T
T�kX
t=1

Ut+k (�; T )Wt (�; T )
0







� lim

T!1
sup

�2H;�2Z






 1T
T�kX
t=1

Ut+k (�; T )Wt (�; T )
0 � �k (�; �)






+ sup
�2H;�2Z

k�k (�; �)k

� 0 + sup
�2H;�2Z

k�0 (�; �)k <1:

Hence (12.10) follows from (7.7).
Finally, we need an instance of the basic uniform bounding inequalities for second moment

sums of normalized one-step-ahead array forecast errors:

Lemma 12.3. Let � be a subset of �is on which
P1

j=0 j�j j is bounded. Given a vector array
Vt (T ) ; 1 � t � T; T = 1; 2; : : : , de�ne, for every � 2 �,

Vt (�; T ) =

t�1X
j=0

��t;j (1; �)Vt�j (T ) 1 � t � T; T = 1; 2; : : : ;

where the coe¢ cients are de�ned as in (9.3) with h = 1. Then for all T � 1,

min
������

������
1X
j=0

�je
ij�

������
2
TX
t=1

Vt (T )Vt (T )
0 �

TX
t=1

Vt (�; T )Vt (�; T )
0

� max
������

������
1X
j=0

�je
ij�

������
2
TX
t=1

Vt (T )Vt (T )
0
: (12.11)

Proof. We only need verify (12.11) for the case of scalar arrays vt (T ), 1 � t � T; T = 1; 2; : : : :
the vector case is reduced to this one by multiplying each expression in (12.11) on the left by
an unrestricted nonzero row vector of length dimVt (T ) and on the right by the transpose of
this vector. For every T � 1, de�ne the column vector VT = [v1 (T ) : : : vT (T )]

0, the covariance
matrix �T (�) =

�

j�k (�)

�
0�j;k�T�1, and the lower triangular matrix LT (�) of order T whose

t-th row is given by
�
��t;t�1 (1; �) : : : ��t;0 (1; �) 0T�t

�
, where 0T�t denotes a vector of zeros of

length T � t. Then for each T � 1,
TX
t=1

vt (�; T )
2
= V0

TLT (�)
0
LT (�)VT = V

0
T�T (�)

�1
VT :

Because the �-model�s spectral density is proportional to
���P1

j=0 �je
ij�
����2, it follows from Lemma

10.2.6 of Anderson (1971) that

min
������

��� �eij����2 TX
t=1

vt (T )
2 �

TX
t=1

vt (T; �)
2 � max

������

��� �eij����2 TX
t=1

vt (T )
2
;

for each T � 1, which is (12.11) for scalar arrays. This completes the proof.
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13. Appendix B: Proofs

13.1. Proof of Proposition 3.1

From (3.10) and (3.11), it follows that for any T � k + 1,

1X
t=T



xt (�)V 0t�k (�)DV;t�k

 �
(

sup
t�T;�2Z



V 0t�k (�)DV;t�k


)
sup
�2H

1X
t=T

kxt (�)k <1:

Hence, by (3.12), for a given " > 0, there is a T0 � k + 2 such that for T � T0 + k,
sup�2H;�2Z

PT�k
t=T0



xt (�)V 0t�k (�)DV;t�k

 < "=2. Because the DV;T sequence is decreasing,
in this sum, DV;t�k � DV;T . Hence, for T � T0 + k,

T�kX
t=T0



xt (�)V 0t�k (�)DV;T

 � T�kX
t=T0



xt (�)V 0t�k (�)DV;t�k




D�1
V;t�kDV;T




 < "

2
: (13.1)

Also for T � T0 + k, calculating as above, and then using the fact that



D�1

V;t�kDV;T




 �


D�1
V;t�k




 kDV;T k, we obtain
T0�1X
t=k+1



xt (�)V 0t�k (�)DV;T

 �
�

max
k+1�t�T0�1




D�1
V;t�kDV;T




� T0�1X
t=k+1



xt (�)V 0t�k (�)DV;t�k


� kDV;T k

�
max

k+1�t�T0�1




D�1
V;t�k




� T0�1X
t=k+1



xt (�)V 0t�k (�)DV;t�k


= kDV;T k




D�1
V;T0�1




 T0�1X
t=k+1



xt (�)V 0t�k (�)DV;t�k

 :
Since kDV;T k ! 0, it follows that there is a T1 � T0 such that for T � T1 + k, we havePT0�1

t=k+1



xt (�)V 0t�k (�)DV;T

 < "=2, and therefore, from (13.1), also

T�kX
t=k+1



xt (�)V 0t�k (�)DV;T

 < ":
This establishes (3.13).

13.2. Proof of Lemma 5.1

It follows from (6.3) that �T (z) converges to � (z) uniformly on fjzj � 1g.Since the �T (z) have
no zeros in fjzj < 1g, the Theorem of Hurwitz (see Titchmarsh, 1939, p. 119), shows that the
same must be true of � (z), as asserted. Next, given any � 2 ��is and any positive, strictly

increasing sequence �T converging to 1, de�ne �
T =

�
�jT �j

�
j�0
. Then since �T (z) = � (�T z),
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we have �T 2 �is as well as


�T � �



1
=

1X
j=1

�
1� �jT

�
j�j j �

�
1� �NT

� NX
j=1

j�j j+
1X

j=N+1

j�j j

for every N � 1 from which



�T � �




1
! 0 follows.

13.3. Proof of Lemma 6.1

As we mentioned when (6.4) was introduced, under (6.2), the condition (6.4) guarantees that
the compact set �� consisting of all limit points of � is a subset of �is. Since the transformation

� 7! ~� is continuous on �is for k�k1-convergence, the image set
n
~� : � 2 ��

o
is k�k1-compact.

Consequently,
P1

j=1

���~�j��� converges uniformly on this set and therefore on the subset ~�. Con-
versely, uniform convergence of

P1
j=1

���~�j��� on ~�, implies that�
min

������;�2�

��� �ei������1 = sup
������;�2�

���~� �ei����� � sup
�2�

1X
j=1

���~�j��� <1;
from which (6.4) follows.

13.4. Proof of Theorem 6.2

We have �
�MT (�)� �M

�
T�1=2D�1

�;M;T

= T�1=2
TX
t=1

yMt [�] �Mt [�]
0
D�;M;T

 
D�;M;T

TX
t=1

�Mt [�] �
M
t [�]

0
D�;M;T

!�1

= T�1=2
TX
t=1

yt [�] �
M
t [�]

0
D�;M;T

 
D�;M;T

TX
t=1

�Mt [�] �
M
t [�]

0
D�;M;T

!�1
(13.2)

+T�1=2�N
TX
t=1

�Nt [�] �
M
t [�]

0
D�;M;T

 
D�;M;T

TX
t=1

�Mt [�] �
M
t [�]

0
D�;M;T

!�1
; (13.3)

see (4.3). By (b) and (d) of Proposition 12.1, D�;M;T

PT
t=1 �

M
t [�] �

M
t [�]

0
D�;M;T converges uni-

formly to diag
�
�MM
0 (�) ;

P1
t=1 x

M
t [�]x

M
t [�]

0� a.s. [i.p.], which, is bounded below by
diag

 
inf
�2�

�min
�
�MM
0 (�)

�
IX;M ; inf

�2�
�min

 1X
t=1

xMt [�]x
M
t [�]

0
!
Ix;M

!
; (13.4)
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where IX;M and Ix;M denote the identity matrix of orders dimXM
t and dimxMt respectively.

By (6.7), inf�2� �min
�
�MM
0 (�)

�
> 0. We verify that also

inf
�2�

�min

 1X
t=1

xMt [�]x
M
t [�]

0
!
> 0: (13.5)

Indeed, because
P1

t=1 x
M
t [�]x

M
t [�]

0 is continuous on ��, failure of (13.5) would mean that

for some � 2 �� and some vector c of dimension dimxMt , we have
P1

t=1

�
c0xMt [�]

�2
= 0, i.e.

c0xMt [�] = 0 for t = 1; 2; : : : .Since �0 = 1, this yields c
0xMt = 0 for t = 1; 2; : : : in contradiction

to (3.4). Hence (13.4) is positive de�nite.

Now (e) of Proposition 12.1 yields that
�
D�;M;T

PT
t=1 �

M
t [�] �

M
t [�]

0
D�;M;T

��1
converges

uniformly to diag
�
�MM
0 (�)

�1
;
�P1

t=1 x
M
t [�]x

M
t [�]

0��1�. By Proposition 12.1 again,
T�1=2

PT
t=1 yt [�] �

M
t [�]

0
D�;M;T , and therefore also the expression (13.2), converges uniformly

to zero a.s. [i.p.]. With IX;N and Ix;N denoting identity matrices with orders the dimensions of
XN
t and xNt respectively, observe that

T�1=2
TX
t=1

�Nt [�] �
M
t [�]

0
D�;M;T

=

�
IX;N 0
0 T�1=2Ix;N

� TX
t=1

D�;N;T �
N
t [�] �

M
t [�]

0
D�;M;T :

Applying Proposition 12.1 as before and Lemma 12.2, we obtain that the expression (13.3)
converges uniformly a.s. [i.p.] to �N times�

IX;N 0
0 0

�"
�NM0 (�) �MM

0 (�)
�1

0

0
P1

t=1 x
N
t [�]x

M
t [�]

0 �P1
t=1 x

M
t [�]x

M
t [�]

0��1
#

= diag
�
CNM (�) ; 0

�
:

This yields (6.8).
Finally, CNM (�) is bounded and continuous on � because this is true of �NM0 (�) and

�MM
0 (�)

�1, by (c) of Proposition 12.1 and (6.7).

13.5. Proof of Corollary 7.3

By (c) of Proposition 12.1, �M0 (1; 1; �; �) and �
M
0 (1; 1; �; �

�) are continuous functions of � on �.
Hence the respective minimizers �� and ��

�
exist. The inequality (7.22) follows from

�M0
�
1; 1; ��; ��

�
� �M0

�
1; 1; ��

�
; ��
�� � �M0 �1; 1; ���; ��� ;

where the �rst inequality results from the minimizing property of �� and the second from (7.19)
with C = CNM (��). The strictness of either inequality implies the strictness of (7.22). If the
�rst inequality is not strict but (7.20) holds for � = ��

�
, then the second inequality is strict.
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13.6. Proof of Proposition 9.1

(a) follows by setting Vt (T ) = �t in Lemma 12.3 and using (3.4) to obtain that
PT

t=1 �t�
0
t > 0

for T su¢ ciently large.
For (b), because each �t;j (h; �)��j (h; �) is continuous on �is by Proposition 3.1(a) of FPW

(2003) and therefore bounded on the compact set �� of limit points of �, and hence also on �,
to prove the �rst uniform convergence assertion, it su¢ ces to verify

lim
t0!1

sup
�2�

1X
t=t0

t�1X
j=0

���t;j (h; �)� �j (h; �)�� = 0: (13.6)

From the proof of the Baxter inequality (3.6) of Findley (1991), for any weights � (j) ; j � 0 as
in (d) and for any t0 = t0(�) � 1 large enough that

1X
j=0

� (j) j~�j j �
1X

j=t0�h+1
� (j) j�j j �

1

2

holds we have, for all t � t0,

t�1X
j=0

� (j)
���t;j (h; �)� �j (h; �)��

� 9

0@ 1X
j=0

� (j) j~�j j

1A20@h�1X
j=0

� (j) j~�j j

1A0@ 1X
j=0

� (j) j�j j

1A2
1X

j=t�h+1
� (j) j�j j: (13.7)

From the case � (j) � 1, we obtain

1X
t=t0

t�1X
j=0

���t;j (h; �)� �j (h; �)��

� 9

0@ 1X
j=0

j~�j j

1A20@h�1X
j=0

j~�j j

1A0@ 1X
j=0

j�j j

1A2
1X
t=t0

1X
j=t�h+1

j�j j

= 9

0@ 1X
j=0

j~�j j

1A20@h�1X
j=0

j~�j j

1A0@ 1X
j=0

j�j j

1A2
1X

j=t0�h+1
(j + h� t0) j�j j:

By (6.2), Dt = sup�2�
P1

j=t j�j j < 1, for all t � 0, and Dt & 0 as t ! 1. By Lemma 6.1,
~D0 = sup�2�

P1
j=0 j~�j j <1. Therefore, for t0 large enough that ~D0Dt0 � 1=2, we have

sup
�2�

1X
t=t0

t�1X
j=0

���t;j (h; �)� �j (h; �)�� � 9 ~D3
0D

2
0 sup
�2�

1X
j=t0�h+1

(j + h� t0) j�j j;
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from which (13.6) follows by the uniform convergence of
P1

j=0(1 + j) j�j j.
To prove the uniform convergence of

P1
t=1




Pt�1
j=0 �t;j (h; �)xt�j




, consider the inequalities
1X
t=t0








t�1X
j=0

�t;j (h; �)xt�j







 �
1X
t=t0








t�1X
j=0

���t;j (h; �)� �j (h; �)��xt�j






+

1X
t=t0








t�1X
j=0

�j (h; �)xt�j








for t0 � 1. The �rst expression on the right is bounded above by

sup
t�1

kxtk
1X
t=t0

t�1X
j=0

���t;j (h; �)� �j (h; �)��
and so converges uniformly on � by (13.6). To complete the proof of (b), it remains to that
same is true of the second expression.
By (b) of Proposition 3.1 of FPW (2003),

P1
j=0

���j (h; �)�� is continuous and uniformly
convergent on the larger, compact set ��. De�ne x0 = 0. Because, for a �xed absolutely

summable sequence x = (xt)j�0, the sequence mapping � 7! � � x =
�Pt�1

j=0 �jxt�j

�
t�0

is k�k1-continuous on the space l1 of absolutely summable sequences
�
�j
�
j�0, it follows that��Pt�1

j=0 �j (h; �)xt�j

�
t�0

: � 2 �
�
is compact. Hence

P1
t=1




Pt�1
j=0 �j (h; �)xt�j




 is absolutely
convergent on ��.

For (c) it follows from (6.7) and (9.7) that





�PT
t=1 xt (�)xt (�)

0
��1



 is uniformly bounded.

Thus it su¢ ces to verify

sup
�2�






T�1=2
TX
t=1

yMt (�)xt (�)
0






! 0 a:s: [i:p:]:

By Proposition 3.1, this follows from the result sup�2�
P1

t=1 kxt (�)k <1 of (b) together with
sup�2� t

�1=2 ��yMt (�)
��! 0 a:s: [i:p:], which is established by (a2) of Theorem 2.1 of FPW (2001)

and (13.6), by virtue of the asymptotic stationarity of yMt .
For (d), we return to (13.7) and use � (t) � � (j) � (t� j) ; 0 � j � t to calculate

� (t)
t�1X
j=0



��t;j (h; �)� �j (h; �)�xt�j

 � t�1X
j=0

� (j)
����t;j (h; �)� �j (h; �)��� � (t� j) kxt�jk

� 9
�
sup
t�1

� (t) kxtk
�0@ 1X

j=0

� (j) j~�j j

1A20@h�1X
j=0

� (j) j~�j j

1A0@ 1X
j=0

� (j) j�j j

1A2
1X

j=t�h+1
� (j) j�j j:
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From � (t) � � (j) � (t� j) ; 0 � j � t again, we obtain

� (t)
t�1X
j=0



�j (h; �)xt�j

 �
�
sup
t�1

� (t) kxtk
� t�1X
j=0

� (j)
���j (h; �)��

�
�
sup
t�1

� (t) kxtk
�0@h�1X

j=0

� (j) j~�j j

1A0@ 1X
j=0

� (j) j�j j

1A :
Hence, (d) follows from

� (t)








t�1X
j=0

�t;j (h; �)xt�j







 � � (t)
t�1X
j=0



��t;j (h; �)� �j (h; �)�xt�j

+ � (t) t�1X
j=0



�j (h; �)xt�j



�
�
sup
t�1

� (t) kxtk
�0@ 1X

j=0

� (j) j~�j j

1A
8><>:9
0@ 1X
j=0

� (j) j~�j j

1A20@ 1X
j=0

� (j) j�j j

1A3

+

0@ 1X
j=0

� (j) j�j j

1A
9>=>; :

13.7. Proof of Theorem 9.2

The similarity of (9.11) and (8.4) makes clear that it su¢ ces to consider the case d = 1, i.e.
Wt = Yt. In analogy with the proof of Theorem 7.1, it therefore su¢ ces to prove that

sup
��2��




�̂T (��)� � (��)


! 0 a:s: [i:p:] (13.8)

and that T�1
PT�k

t=1 V
h
t+k (�; T )V

l
t (�; T )

0 converges uniformly a.s. on � to264 
yk (h; l; �) 0 0
0 �Xk (h; l; �) 0

0 0
P1

t=1

�Pt�1
j=0 �t+k;j (h; �)xt+k�j

��Pt�1
j=0 �t;j (l; �)xt�j

�0
375 ;
(13.9)

with


yk (h; l; �) =

Z �

��
e�ik�� (h; �)

�
ei�
�
� (l; �)

�
e�i�

�
dGy (�) ;

etc. We start with the latter. The uniform convergence of
T�1

PT�k
t=1 U

h
t+k (�; T )U

l
t (�; T )

0 to diag
�

yk (h; l; �) ;�

X
k (h; l; �)

�
a.s. [i.p.] follows from (3.18) by

way of Proposition 5.2 and part (a) of Proposition 2.1 of FPW (2003), which also yield the
Uht (�; T ) version of (3.11) and (3.12),

sup
t�1;�2�




t�1=2Uht (�; t)


 <1 a:s: [i:p:]

and
lim
t!1

sup
�2�




t�1=2Uht (�; t)


 = 0 a:s: [i:p:];
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because Ut (T ) has both negligibility properties (2.8) and (2.7). The uniform convergence ofP1
t=1




Pt�1
j=0 �t;j (l; �)xt�j




 established in (c) of Proposition 9.1 therefore enables us to apply
Proposition 3.1 to obtain the o¤-diagonal 0�s in (13.9) and to directly obtain the last diagonal
entry.
For (13.8), it su¢ ces to establish (9.13), which follows by direct adaptation of the arguments

used to obtain (13.9) as a uniform limit to generalize the proof of Theorem 6.2 to the �nite-past
case.
Finally, (9.15) and (9.16) follow from an argument completely analogous to the proof of (b)

of Theorem 5.1 of FPW (2003), using (9.14) instead of the corresponding result for the case of
no regressors.
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