
RESEARCH REPORT SERIES
(Statistics #2002-06)

 Developing SAS Software for Generating a Complete
Set of Ratio Edits

Maria Garcia and Roger Goodwin

Statistical Research Division
U.S. Bureau of the Census
Washington D.C. 20233

Report Issued: November 8, 2002

Disclaimer: This paper reports the results of research and analysis undertaken by Census Bureau staff. It has undergone

a Census Bureau review more limited in scope than that given to official Census B ureau publications. This paper is

released to inform interested parties of ongoing research and to encourage d iscussion of work in progress.

1Hereafter, the terms “implicit edit” and “implied edit” are used interchangeably.

1

Developing SAS® Software for Generating a Complete Set of Ratio Edits

Maria Garcia and Roger Goodwin

Abstract

Survey data editing using the Fellegi-Holt model requires the complete set of
explicit and implicit edits. This report presents new SAS® software that
generates the complete set of implicit (implied) edits from a given set of explicit
ratio edits. We describe the corresponding methodology, along with detailed
discussions on the considered alternatives. The new software implements a
shortest path algorithm and borrows ideas from the Generate Edits portion
(subroutine) currently used in the U.S. Census Bureau's Plain Vanilla Ratio
Module.

Keywords: ratio edits, implied edits, shortest path

1. Introduction

Data items collected by the Economic Census programs are subjected to ratio edits as
part of the overall data review process. A ratio edit compares the ratio of two highly correlated
items to upper and lower bounds. Reported items that fall outside of the bounds (or tolerances)
are considered edit failures, and one or both of the items in an edit-failing ratio are either
imputed or flagged for analyst's review. For the 1997 Economic Census, the Census Bureau
developed a generalized edit and imputation system, called Plain Vanilla (PV). The PV
subsystem consists of three separate edit and imputation programs: a ratio edit module; a
balance edit module; and a verification module. The ratio edit module is the "core" component
of PV and is used to validate most programs’ basic data items. The Ratio module utilizes the
Fellegi-Holt model of editing which means that the complete set of ratio edits is tested
simultaneously (Fellegi and Holt, 1976). The program determines the minimum number of
fields to change so that the imputed edit-failing record satisfies all the edits (Greenberg, 1986).
This methodology has been used successfully at the Census Bureau by other economic
programs since the early 1980s (Greenberg and Petkunas, 1990; Winkler and Draper, 1997).

The Plain Vanilla Ratio Module consists of three main programs. The first program
(Edit Generation) generates all implicit (implied)1 edits from the user-supplied explicit edit set.
The explicit edits imply other relationships between the data items that must be satisfied for the
data record to satisfy the edits (any two ratio edits with a common item imply a third ratio edit).
The set of explicit and implicit edits is called the complete set of edits. The PV Edit Generation
program generates the complete set of edits from the user-supplied explicit edits, then checks
the logical consistency of the edit set. The set of implicit edits obtained using the PV Edit

2The PV Edit Generation software are FORTRAN programs, which (in the Economic
Directorate) are maintained by ESMPD programmers.

2

Generation program are returned to the survey staff for evaluating the logical implications
(implicit edits) of the explicit ratios and bounds. The other two programs in the PV Ratio
module perform error localization and imputation and are not discussed further (they are
outside the scope of this project).

Clearly, developing sets of ratio edits for the PV Ratio module is an iterative process.
And prior to this project, it was unfortunately a cumbersome one. First, subject-matter experts
(analysts) selected pairs of highly correlated items for explicit ratio tests. Then, they developed
tolerances for each explicit ratio test in a given industry. After developing initial sets of explicit
edit bounds in the subject-matter division, analysts transferred the data to an Economic
Statistical Method and Programming Division (ESMPD) programmer and requested that s/he
runs the Edit Generation program to obtain the complete set of ratio edits2. After doing so, the
programmer supplied the implicit edits results to the analyst for review. If the analysts detected
inconsistencies or unreasonable edit restrictions, they adjusted the “culprit” explicit edits and
repeated the entire process until the subject-matter specialists were satisfied with the complete
(explicit and implicit) set of ratio edits. This could take a while.

For the 1997 Economic Census, Thompson and Sigman (2000) developed SAS software
that automatically generates explicit tolerance limits for ratio edits. The output from this
software can be used (in its present form) as input to the PV Edit Generation software.
However, to eliminate the “bottleneck” in the ratio-edit development process caused by having
to examine the implied edits, the Statistical Research Division (SRD) and ESMPD decided to
develop new SAS software that generates the complete set of edits from a given set of explicit
ratio edits. In doing this, we decided to revisit the original Operations Research methodology
used in the existing FORTRAN programs and to consider an alternative methodology based on
shortest path algorithms. This alternate approach was presented in an invited lecture given at
the Census Bureau by B. Greenberg on an idea suggested by J. Fagan (Fagan, 1999). The
specific objectives of this project were:

! To produce a quality SAS software product that

• uses a thoroughly tested method of finding the set of all implicit edits from any
given set of explicit edits;

• can be easily maintained by good SAS programmers; and

• can be used in conjunction with existing ratio edit parameter developing
programs and ratio edit programs (e.g., Plain Vanilla Ratio Module).

! To provide a simple-to-use User’s Guide for this software.

3

This report presents the software developed for this project, along with specific details
of the software development decision. Section 2 describes the methodology and available
algorithms. Section 3 describes the Edit Generation software. Section 4 presents the results of
the software testing. We close with a discussion in Section 5.

2. Implicit Edit Generation

2.1 Methodology

A ratio edit requires that the ratio of two data items is bounded by lower and upper
bounds (of the form lij # vi/vj# uij, where lij and uij are the lower and upper bounds respectively).
Any pair of ratio edits that contain a common data item implies another ratio edit: for example,

the two ratio edits lik # vi/vk# uik and lkj # vk/vj# ukj imply the ratio edit .

In what follows, we refer only to upper bounds. (Note that the ratio edit is

equivalent to the following two edits: and .) We can use graph theory to

generate the complete set of edits. First, the explicit ratio edits are associated to a directed

graph with n nodes (one per unique data item field). Each pair of nodes is

connected by a directed arc associated to upper bound if there is an edit connecting

fields and . To find the upper bound of the ratio edit connecting fields and , we

search along the edges of the graph, traversing the graph by starting at node and finishing at

node . As we traverse the graph, we compute the upper bound of the implied edit, always

choosing the bounds that yield the optimal (smallest) upper bound. At every step, we retain the
upper bounds contributing to this optimal bound. For example, assume that fields

 are restricted by the following upper bounds,

These edits are associated with the graph displayed in Figure 1.

4

Figure 1: Graph associated with explicit edits

Items v1 and v4 are both tested against item v2, creating an implied edit between those two items.
To find the upper bounds for this implied edit, we traverse the graph from v1 to v4 and choose
the path that will yield the optimal (minimum) upper bound. There are two possible ways of

traversing the graph starting at node and ending at node :

 1. traverse arcs (,), (,), or

2. traverse arcs (,), (,), (,)

Following the path described by (1) yields an upper bound of . The

path described by (2) gives an upper bound of . Therefore the optimal

upper bound is obtained traversing the graph from to through the arcs (,), (,),

(,), even though this path contains more arcs (nodes).

James Fagan (Fagan, 1999) framed the problem of finding the complete set of ratio edits

as a shortest path problem. The setup is the same but every directed arc is assigned a

length as follows,

 and , if there is at least one edit involving fields i,j

 , otherwise.

We now use a shortest path algorithm to generate the implied edits. With this set-up,

given the shortest path from to of cost , the bounds for the ratio edit between fields

5

and are,

and .

In this framework, the shortest path from to in the previous example is (,),

(,), (,), with length and the optimal upper bound is

 as before.

2.2 Available Algorithms

If the explicit set of ratio edits is consistent, then the methodologies presented in Section
2.1 will determine the optimal bounds for the implied ratio edits. We began by examining the
first approach described in Section 2.1, i.e., traversing the graph and choosing optimal bounds
at each node. This algorithm is similar to the one currently used by the FORTRAN edit
generation program maintained in ESMPD. The FORTRAN program uses connected sets to
simulate the graph corresponding to the edits. The SAS program that we wrote to evaluate this
approach has some key differences from the FORTRAN program. First, we used different data
structures to represent the graph and nodes. Second, we formulate the program as a linear
algebra program, coding in SAS/IML: the SAS matrix language easily represents the data
fields and edit bounds using vectors and matrices. Because the implementation of this algorithm
requires similar steps as the implementation of Floyd's algorithm described below, we call it the
Floyd-like algorithm.

The second approach described in Section 2.1 generates the optimal ratio edit bounds
using a shortest path algorithm. We first evaluated PROC NETFLOW, a SAS/OR procedure.
SAS PROC NETFLOW implements the shortest path algorithm using the Simplex Method and
the Interior Point Algorithm (SAS Institute, 1999). Using this canned procedure is quite
appealing from an implementational perspective. However, in our initial test runs, running
PROC NETFLOW proved to be quite time-consuming, hence our decision to write our own
SAS code for solving the shortest path problem. We considered two separate shortest path
algorithms: Dijkstra’s algorithm for finding all shortest paths (known as Modified Dijkstra's
algorithm, Brassard and Bratley, 1988) and Floyd’s algorithm (Brassard and Bratley, 1988). Of
these two algorithms, we chose to program only Floyd’s algorithm for reasons outlined in
Appendix 2.

2.2.1. SAS/IML Applications

Floyd's Algorithm

Step 1: Begin:
Let be the number of nodes. Construct an matrix , such that for

each , and where and , are the

6

bounds for the edit involving fields and . If there is no edit involving

fields and then set , where is a user-specified value for

infinity
Step 2: Determine the optimal bounds

For i = 1, 2, ..., do
For j = 1,2 , ..., do

For k = 1, 2, ..., do

Step 3: Compute the lower and upper bounds
For i = 1,2, 3, ..., -1 do
 For j = i+1, ..., n do

 return

Floyd-like Algorithm

Step 1: Begin:
Let be the number of nodes. Construct an matrix , such that for

each , is the upper bound of the edit and is (upper bound of

the edit). If there is no edit between fields and then ,

where is a user-specified value for infinity.
Step 2: Determine the optimal bounds

For i = 1, 2, ..., do
For j = 1,2 , ..., do

For k = 1, 2, ..., do

Step 3: Compute the lower bounds
For i = 2, 3, ..., do

For j = 1, 2, ..., do

return

Upon termination of the above algorithms, the matrix contains both the lower and
upper bounds of the ratio edits. Both Floyd’s algorithm and the Floyd-like algorithm terminate

in a time of order .

3Hereafter referred to as “industry”

7

2.2.2. SAS/OR Application (PROC NETFLOW)

PROC NETFLOW solves the shortest path problem by solving a linear programming
(LP) problem using the Simplex Algorithm or the Interior Point Algorithm (see SAS/OR User’s
Manual, SAS Institute, 1999). These algorithms are described below.

The Simplex Algorithm:

Step 1: Initialization: Introduce slack variables. (Slack variables are the equivalent of
equality constraints to the inequality constraints).
Step 2: Iteration: Determine the entering basic variable and leaving basic variable.
(Non-basic variables are set to zero, the others are called basic variables). Determine the
new basic feasible solution.
Step 3: Optimality Test: Determine whether the solution in (2) is optimal.

The Interior Point Algorithm:

Step 1: "Shoot" through the interior of the feasible region toward an optimal solution.
Step 2: Move in a direction that improves the objective function value at the fastest
possible rate.
Step 3: Transform the feasible region to place the current trial solution near its center,
thereby enabling a large improvement when implementing Step 2.

3. Implicit Ratio Edit Generation: SAS software

 We wrote three separate programs to research the alternative approaches for generating
implied edits discussed in Section 2. All three programs have the same main driver routine
written in base SAS with a call to either SAS/IML (testing the Floyd and Floyd-like algorithms)
or to SAS/OR (testing the Simplex Algorithm/Interior Point Algorithm using PROC
NETFLOW). Each program imposes an indexing scheme on the data fields in the edit set,
checks the edit set for redundancies, determines if the edit set is consistent, and finally
generates the implicit ratio edits.

All three programs require an input SAS (version 8.2) data set of explicit edits,
containing at least four data items (variables): CLASS, the classification variable code3 (e.g.,
NAICS code); E_RATIO, the explicit ratio test; L_FENCE, the ratio test’s lower bound; and
U_FENCE, the ratio test’s upper bound. This data set can be created using the software
described in Thompson and Sigman (1996). Each program produces one output file, containing
the complete set of edits (explicit and implied) for each industry in the input data set.

To help identify redundant edits, we index the tested data items based on alphabetical

8

order: for example, the ratio test for variables QPR3 and TOT1, QPR3/TOT1, is associated
with new variables and new ratio edit v1/v2. The variable indices used in our programs should
not be used in subsequent PV Ratio module applications. The indexing scheme used in the PV
Ratio edit, is directly associated with item imputation order.

The following sections describe how the software identifies and deletes redundancies
from the original explicit set of edits (Section 3.1), how the software determines whether this
modified set of edits is consistent (Section 3.2), and how each program treats disconnected
graphs (Section 3.3). Section 3.4 presents the different analytic outputs produced by each
program and discusses the advantages/disadvantages of each set of outputs.

3.1 Determining a Set of Non-Redundant Edits

A ratio edit for any two data fields is redundant if it contains another ratio edit for the
same data fields; that is, the redundant edit adds no new restrictions. Redundant edits must be
removed prior to searching for shortest paths. In the framework of graph theory, the presence of
redundancy indicates there are more than two arcs connecting some nodes, and consequently,
the shortest path algorithm cannot be applied.

Our software eliminates the redundant edits by choosing the most restrictive edits for
any two fields. Redundant edits are handled as follows: if the edits for fields i, k are

and , then the non-redundant edit is

. For example, given the following two explicit edits

the new non-redundant explicit ratio edit is .

3.2 Determining a Consistent Set of Ratio Edits

Once a set of non-redundant explicit edits is available, the software determines whether
it is consistent. A set of ratio edits is consistent if none of the edits contradict each other, i.e,

for every two fields and in a ratio edit , the ratio is consistent if lij $ 0, uij #

4, and lij # uij . In the framework of graph theory, inconsistency causes negative cycles in the
graph. Any algorithm that finds a shortest path will always keep choosing this negative cycle
until termination.

Any inconsistent set of edits must be returned to the survey analysts for review. The

9

software will do a preliminary check for inconsistencies in the explicit edits only after the
redundant edits have been removed. This sequencing is very important, since there may be
hidden inconsistencies that become obvious when redundancies are removed. For example,
given the following explicit edits

the software produces a non-redundant edit of . This relationship is impossible to

satisfy, and so, the set of edits is inconsistent.

If there are any inconsistencies in the user-supplied edits, then the software stops
processing for that industry, prints a message to the SAS log window, and continues with the
next industry. The revised (consistent, non-redundant) set of explicit edits is then used to
generate the implicit ratio edits.

3.3 Disconnected Graphs

Disconnected graphs occur when the explicit ratio edits contain edits which have no
fields in common with the other edits. For example, in the explicit edit set v1/ v2, v2/ v3, and v4/
v5, the third edit (v4/ v5) is disconnected from the other two edits (which are connected by data
item v2). When the explicit edit set contains disconnected edits, two (or more) distinct sets of
nodes exist. Our programs appropriately handle this situation, each in a different way. The
SAS/IML version connects these nodes with (0, 4) bounds, as required by the PV Ratio
Module. The SAS/OR program only produces the connected edits.

3.4 Audit Trails/Analytical Outputs

 The SAS/IML and SAS/OR applications produce very different audit trails. Figure 2
displays a sample of the audit trail output produced by the SAS/IML applications (the output
window has been edited to fit the screen capture). This “audit trail” prints the bounds as they
are updated. Recovering the shortest path contributing to the optimal bounds requires the
representation of the edits in a tree data structure which has prohibitive space requirements. The
column headings v_i, v_j, and v_k, are used to represent the data fields and the column
headings U_ik, U_kj, and U_ij are used to represent the ratio edits upper bounds. The first row
of the audit trail output shows that the upper bound for the ratio REP_EMP/REP_QPR
(3.7199987743) was obtained using the upper bounds for the ratios REP_EMP/REP_APR and
REP_APR/REP_QPR, that is 0.525984356 × 7.0724513251 = 3.7199987743.

10

The SAS/IML audit trail is not very informative. In contrast, the SAS/OR output
automatically produces a very useful audit trail. With this output, the user can see (at a glance)
which edits contributed to the lower and/or upper bounds of an implied edit. For each industry,
GenBndsOR produces an audit trail listing the derivation of each implied edit.

Figure 3 displays a sample of the SAS/OR audit trail. For the edit
REP_EMP/REP_QPR, the lower bound is calculated using the lower bounds from the two edits
REP_APR/REP_QPR and REP_EMP/REP_APR, 2.5627607 × 0.0049763 = 0.0127531.
Similarly, the optimal upper bound is calculated using the upper bounds from the two edits
REP_APR/REP_QPR and REP_EMP/REP_APR, 7.0724513 × 0.5259844 = 3.7199988.

 Explicit and Implied Edits for Industry XXX1

 Obs Lower Bound Mnemonic Name Upper Bound

 1 1.9011972 REP_APR/REP_EMP 200.9521091
 2 2.5627607 REP_APR/REP_QPR 7.0724513
 3 0.0298806 REP_APR/REP_SLS 2.7109327
 4 0.0127531 REP_EMP/REP_QPR 3.7199988
 5 0.0001487 REP_EMP/REP_SLS 1.4259082
 6 0.0042249 REP_QPR/REP_SLS 1.0578173

 Audit Trail for Industry XXX1

 Lower Path Upper Path
Lower Bound Mnemonic Name Upper Bound Bounds Edits Traversed Bounds

 1.9011972 REP_APR/REP_EMP 200.9521091 1.9011972 REP_APR/REP_EMP 200.9521091

 2.5627607 REP_APR/REP_QPR 7.0724513 2.5627607 REP_APR/REP_QPR 7.0724513

 0.0298806 REP_APR/REP_SLS 2.7109327 0.0298806 REP_APR/REP_SLS 2.7109327

 0.0127531 REP_EMP/REP_QPR 3.7199988 2.5627607 REP_APR/REP_QPR 7.0724513
 0.0049763 REP_EMP/REP_APR 0.5259844

 0.0001487 REP_EMP/REP_SLS 1.4259082 0.0298806 REP_APR/REP_SLS 2.7109327
 0.0049763 REP_EMP/REP_APR 0.5259844

 0.0042249 REP_QPR/REP_SLS 1.0578173 0.0298806 REP_APR/REP_SLS 2.7109327
 0.1413937 REP_QPR/REP_APR 0.3902042

Figure 3: Partial GenBndsOR output

 AUDIT TRAIL

 v_i v_k U_ik v_k v_j U_kj v_i v_j U_ij

REP_EMP/REP_APR 0.5259843586 REP_APR/REP_QPR 7.0724513251 REP_EMP/REP_QPR 3.7199987743
REP_EMP/REP_APR 0.5259843586 REP_APR/REP_SLS 2.7109327401 REP_EMP/REP_SLS 1.4259082186
REP_QPR/REP_APR 0.3902042111 REP_APR/REP_EMP 200.9521091000 REP_QPR/REP_EMP 78.4123591930
REP_QPR/REP_APR 0.3902042111 REP_APR/REP_SLS 2.7109327401 REP_QPR/REP_SLS 1.0578173711
REP_SLS/REP_APR 33.4665717880 REP_APR/REP_EMP 200.9521091000 REP_SLS/REP_EMP 6725.1781851000
REP_SLS/REP_APR 33.4665717880 REP_APR/REP_QPR 7.0724513251 REP_SLS/REP_QPR 236.6906999900

Figure 2: GenBndsIml Audit Trail

11

In the SAS/OR audit trails, the Lower Bounds path or Upper Bounds path variable may
be set to missing (denoted by “ . ”). In such cases, an edit contributes to either the lower or
upper bound, but not both. Figure 4 presents such an example. Examining the implied ratio
edit REP_QPR/REP_SLS, the edits REP_APR/REP_EMP and REP_EMP/REP_SLS
contribute to the lower bound but do not contribute to the upper bound, REP_APR/REP_SLS
contributes only to the upper bound, and REP_QPR/REP_APR contributes to both.

Clearly, the SAS/OR audit trail is the easier of the two to interpret and is the more
useful for ratio edit development. This is a key distinction between the two approaches.

4. Software Testing Results

We used six separate test data sets to evaluate the performance of the three different
implicit ratio edit generation programs. Five of these data sets were designed to test the specific
situations listed in Table 1. The smallest of these five data set contains four items and one
industry (10 observations) and the largest contains eight items and ten industries (80
observations). To assess the capability of the software of handling large data sets with several
ratio edits, we also tested the programs on the Census Bureau's Annual Survey of Manufactures

 Explicit and Implied Edits for Industry XXX1

 Obs Lower Bound Mnemonic Name Upper Bound

 1 1.9011972 REP_APR/REP_EMP 18.9765346
 2 2.5627607 REP_APR/REP_QPR 7.0724513
 3 0.2715995 REP_APR/REP_SLS 2.7109327
 4 0.1350489 REP_EMP/REP_QPR 3.7199988
 5 0.1428571 REP_EMP/REP_SLS 1.0000000
 6 0.0384025 REP_QPR/REP_SLS 1.0578173

 Audit Trail for Industry XXX1

 Lower Path Upper Path
Lower Bound Mnemonic Name Upper Bound Bounds Edits Traversed Bounds

 1.9011972 REP_APR/REP_EMP 18.9765346 1.9011972 REP_APR/REP_EMP .
 . REP_APR/REP_SLS 2.7109327
 . REP_SLS/REP_EMP 7.0000021

 2.5627607 REP_APR/REP_QPR 7.0724513 2.5627607 REP_APR/REP_QPR 7.0724513

 0.2715995 REP_APR/REP_SLS 2.7109327 1.9011972 REP_APR/REP_EMP .
 . REP_APR/REP_SLS 2.7109327
 0.1428571 REP_EMP/REP_SLS .

 0.1350489 REP_EMP/REP_QPR 3.7199988 2.5627607 REP_APR/REP_QPR 7.0724513
 . REP_EMP/REP_APR 0.5259844
 0.1428571 REP_EMP/REP_SLS .
 0.3688767 REP_SLS/REP_APR .

 0.1428571 REP_EMP/REP_SLS 1.0000000 0.1428571 REP_EMP/REP_SLS 1.0000000

 0.0384025 REP_QPR/REP_SLS 1.0578173 1.9011972 REP_APR/REP_EMP .
 . REP_APR/REP_SLS 2.7109327
 0.1428571 REP_EMP/REP_SLS .
 0.1413937 REP_QPR/REP_APR 0.3902042

 Figure 4: Partial GenBndsOR output with edits contributing to one bound but not the other

12

(ASM) production edits (multiple industries; 7,095 explicit ratio edits). Because we did not
evaluate the ASM data results (this was strictly a feasibility test), we do not list the ASM data
in Table 1 or provide the associated run-times in Table 2.

Table 2 provides the result of the run-time study for six separate data sets. To avoid the
confounding effect of network traffic, all run-times were obtained on a stand-alone laptop
computer.

Table 1: Test Data Sets

Dataset

Number

of

Records

Number

of

Industries

Number of Explicit

Ratios

 per Industry Specifically Checks

Crazy 10 1 10

- explicit ratios that imply impossible

relationship (inconsistent edit)

Wholesale 66 10 varies (min = 5, max=8)

- varying numbers of explicit ratios within

industry in same input dataset (not all ratio

edits are tested in every industry)

- disconnected ratio test in three industries

Wholesale.c 80 10 8

- not applicable ratio tests have lower

bound zero and upper bound infinity

- disconnected ratio test in three industries

Retail 12 4 3

- mnemonic name of ratio tests differs by

industry

Services 22 7 varies

- varying numbers of explicit ratios within

industry in same input dataset (not all ratio

edits are tested in every industry)

Services.c 28 7 4

- non applicable ratio tests have bounds

lower zero and upper bound infinity

Table 2: Execution Time for Edit Generation Programs

Test Deck

Floyd-like

 Algorithm

 Floyd's

Algorithm

SAS Proc

NETFLOW

Wholesale 10 secs 10 secs 73 secs

Wholesale.c 10 secs 9 secs 99 secs

Retail 5 secs 5 secs 24 secs

Services 7 secs 7 secs 22 sec

Services.c 7 secs 7 secs 29 secs

Crazy 4 secs 4 secs 4 secs

For each test deck, the run-time difference between the two SAS/IML programs (Floyd
and Floyd-like algorithms) was negligible. However, both SAS/IML programs were

13

consistently faster than the SAS/OR (PROC NETFLOW) program. The SAS/IML code runs
more quickly because it requires three simple DO loops, whereas PROC NETFLOW finds the
shortest path (implied edits) by solving a linear programming problem using the
computationally intensive simplex algorithm. The advantage of the SAS/OR program is the
audit trail.

4. Discussion

In this report, we presented development of SAS software for generating the complete
set of edits for a given set of explicit ratio edits. In Section 3, we presented the considered
methodologies. The results presented in Section 4 show the strengths and weaknesses of our
three separate programs. Both SAS/IML programs have similar running times. However, the
SAS/IML code that implements the Floyd-like algorithm does not require the creation of the
cost matrix. Creating the cost matrix for implementing Floyd's shortest path algorithm requires
calculating the logarithm of the lower and upper ratio edit bounds. The main advantage of the
Floyd-like implementation is that it is easier to explain and understand since it does not require
this data transformation. Because there are no other differences between the two SAS/IML
programs, we recommend using the SAS/IML program that implements the Floyd-like
algorithm.

This SAS/IML code is not however without its disadvantages: the code generates an
audit trail of edit updates but it does not provide a list of edits used to calculate the optimal
bounds. Although the SAS/IML programs are considerably faster, the SAS/OR program
provides more immediately useful outputs. The availability of the edits – explicit and implicit –
contributing to the optimal bounds is a software feature that is quite useful to edit-developers
and has been well received by the customers. Our recommendation is to use the faster, easier-
to-maintain SAS/IML code implementing the Floyd-like algorithm, during production, when
time is an issue, but to use the SAS/OR version implementing Floyd's shortest path algorithm
during development, when a more detailed examination of the implied edits is needed. In a
separate report (Goodwin, Garcia, and Thompson (2002)), we provide software documentation
along with a detailed User's guide for running the programs.

5. References

1. Brassard, G., and Bratley P., "Algorithmics: Theory and Practice", Prentice Hall, NJ, 1988.

2. Fagan, J. , "Generating Implied Ratio Edits", unpublished Census manuscript. October
1999.

3. Fellegi, I. P. and Holt, D., " A Systematic Approach to Automatic Edit and Imputation," The
Journal of the American Statistical Association, No. 71, 1976.

14

4. Goodwin, R., Garcia, M., and Thompson, K., “The GenBounds Software for Generating a
Complete Set of Ratio Edits: %Implied User’s Guide,” SRD Research Report SS-Statistics #
2002-01.

5. Greenberg, B. and Petkunas, T., "SPEER (Structured Program For Economic Editing and
Referrals", Proceedings of the Section on Survey Research Methods, ASA, 1990.

6. Hillier, Frederick S. and Lieberman, Gerald J, "Introduction to Operations Research 5th

Edition," McGraw-Hill Publishing Co, NY, NY, 1990.

7. SAS Institute Inc., SAS/OR User’s Guide: Mathematical Programming, Version 8, Cary,
NC: SAS Institute Inc., 1999. 566pp.

8. Thompson, K. J. and Sigman, R., "Statistical Methods for Developing Ratio Edit
Tolerances for Economic Data", J. Official Statistics, 2000.

9. Thompson, K. J. and Sigman, R, “User Guide for Generalized SAS Ratio Edit Parameter
Development Programs”, Washington, DC.: U.S. Bureau of the Census (Technical Report
#ESM-9602, available from the Economic Statistical Methods and Programming Division).

10. Winkler, W. and Draper, L. , "The SPEER Edit System", Proceedings of the Conference of
European Statisticians, Section on Statistical Data Editing, UNECE, 1997.

15

Acknowledgment

The authors would like to thank James Fagan for providing the new algorithm used in the
GenBndsOR code, Brian Greenberg for his lecture and discussion on this methodology, and
Richard Sigman for his contribution and helpful discussions on the SAS/OR code. The authors
also wish to thank Robert Jewett for helpful discussion on producing an audit trail for the
SAS/IML code. We also thank Katherine J. Thompson and William Winkler for providing
advice and their helpful comments on earlier versions of this manuscript. Finally, we thank
Katherine J. Thompson for her leadership in bringing about this project.

16

Appendix 1: Software Design Flowchart

17

18

19

Appendix 2: Investigation of Shortest Path Algorithms

We considered two different shortest path algorithms: Floyd’s algorithm (described in
Section 2.2.1) and the Modified Dijkstra’s algorithm. The Modified Dijkstra’s algorithms
begins with a candidate set of nodes C, each of which is associated with elements in a cost array
D, and uses a greedy algorithm to determine the minimum path associated with these costs.
Upon termination, the set S of source nodes contains all nodes in the graph, array D contains the
minimum costs, and array P contains the shortest path.

As described in Section 2, the implied edits are associated to a directed graph. The
shortest path algorithm finds the optimal bounds for the implied edit between any two fields.
Consequently, to find all optimal bounds one must solve n shortest path problems, where n is
the number of fields. When given a starting node and an ending node, the shortest path for a
given edit can be found in O(n2) iterations. However, finding all implicit edits requires nO(n2) =
O(n3) iterations.

The table below compares the maximum number of iterations for varying numbers of
arcs and nodes using Floyd's and Dijkstra's shortest path algorithms.

Maximum Number of Iterations in Floyd's Algorithm vs Dijkstra's Algorithm

a n Floyd's

Iterations

 Modifed

Dijkstra

Iterations

5 5 125 35

10 5 125 52

10 10 1000 200
a = number of edges (arcs) 20 10 1000 300

50 10 1000 600

n = number of nodes (items) 20 16 4096 694
30 16 4096 886
50 16 4096 1272

100 16 4096 2235
120 16 4096 2620

For any number of nodes, Floyd's algorithm consistently requires more iterations than Dijkstra's
algorithm, making it the more time-consuming approach. However, we found some limitations
when implementing Dijkstra's algorithm in SAS. In contrast, Floyd's and Floyd-like algorithms
require three simple DO loops and can be easily implemented using SAS/IML. Consequently,
we decided not to write code for generating the implicit edit bounds using Dijkstra's algorithm.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	coverpg2002-06.pdf
	Page 1

