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The Homeomorphism Extension Protlem
for Triangulations in Conflation

Abstract

We discuss the problem of extending a one-to-one correspondence between
two equinumerous finite sets of points in the plane to a homeomorphism
between two topological spaces containing the sets. This problem arocse
during the development of a computer system to merge pairs of digitized
map files at the Census Bureau. This system is called conflation.
Conflation requires three fundamental steps: control point selection,
triangulation, and rubber-sheeting. Pairs of points, each pair consisting of
a point from each map, are selected. The selected points of one map are
then used as the vertices of a specific, well-defined triangulation on that
map, and for each of the triangles of this triangulation we create a triangle
on the corresponding set of vertices on the other map. The set of triangles
on the second map need not form atriangulation there. If they do, we show
that a specific extension of the correspondence between the vertices is a
homeomorphism. Moreover, the converse is also true. Also, we prove a
second characterization for triangulations from which an easy detection
algorithm is derived. A description of related problems fallows at the end.

INTRODUCTION

We discuss the problem of extending a one-to-one correspondence between two
equinumerous finite sets of points in the plane to a specific type of homeomorphism
between t wo topological spaces containing the sets. To understand the importance of the

problem, some background inform ation is necessary.

The Census Bureau is developing a computer system for merging two digitized map
files. The process of merging these files is known as conflation. Basically, conflation
requires three fundamental steps: control point selection, triangulation, and rubber-
sheeting. Pairs of points, each pair consisting of a point from each map, are selected.
The selected points of one map are then used as the vertices of a specific, well~defined
triangulation on that map, and for each of the triangles of this triangulation we areate a
triangle on the corresponding set of vertices on the other map. The set of triangles on
the second map need not form a triangulation there, but there is a one-to-one
correspondence between the sets of triangles (see Figure 1). Moreover, for each pair of
corresponding triangles there is a unique affine transformation that takes vertices of one
triangle to vertices of the other. So we obtain a piecewise-linear function from the first
map to the second that depends on the control points selected and on the triangulation on



the convex hull of those points. This function is the extension we are interested in. If
the triangles on the second map form a triangulation, then the function is one-to-cne,
onto, and bi-continuous. Thus, we have a piecewise-linear homeomorphism (PLH)
bet ween the maps. The PLH is used as the rubber-sheet function that moves one map
onto the other. However, the rubber-sheeting process breaks down when the extension
results in something other than a homeomorphism between the maps.

In this paper, we define the piecewise-linear extension mentioned above and show that

the extension is a homeomorphism precisely when we have a triangulation on the second

map. Then we prove a second necessary and sufficient condition for triangulations from

which we derive an easy detection algorithm. A description of related problems follows
~ at the end.
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Figure 1: Each map has these triangles: A (ade), A (aeb), A (dce), A (bec). For A (aeb),
a,e,b is a counterclockwise ordering of the verticesin map 1, but clockwise for map 2.

TRIANGULATIONRS

We begin with a discussion of triangulations in general. Intuitively, a triangulation of a
region is like a jigsaw puzzle where each piece is a triangle. If we keep the set of
vertices constant, no new triangles may be ¢reated by adding edges. So, formally we can
define a triangulation as fallows:

Definfition 1: Given n 2 3 points in the plane which are not all collinear, let R be the
convex hull of the points. Then, a triangulationon R i{s a maximal subdivision of R into



triangles where the n points are the vertices and every point in R is in one and only one
triangle unless it lies on a triangle edge.

Any convex hull of a finite set of points in the plane can be triangulated. In any
triangulation every edge on the boundary of the hull is an edge for one triangle, and
every edge which is not on the boundary is an edge for two triangles. Therefore, the
entire region R is covered by triangles which abutt edge to edge and vertex to vertex but
do not overlap. Among other things, this implies that none of the edges in a triangulation
aross each other except possibly at their endpoints (see Figure 2). So, we say that two
edges in a triangulation have a non-trivial intersection if the point of intersection is a

non-endpoint for at least one of the edges.

. A B Cc

Figure 2: A,B are not triangulations, C is. A) Number of triangles is not maximal,
B) Non-trivial intersection of edges, C) A triangulation.

The number of triangles and edges in a triangulation of the covex hull of n points with m
points in the boundary of the hull is fixed, where 3 S m S n . The formulas are as
fallows:

D) NT = 2(n-1)-m
(2) NE = 3(n=1)-m

where NT is number of triangles and NE is number of edges. The proofs of these are
omitted, but the results fallow from the Euler characteristic for planar graphs (see
Lefschetz).



PIECEWISE-LINEAR HOMEOMORPHISM

Now we lay the foundation for discussing the extension problem. First, we define the
specific extension that we are interested instudying. Then, we prove a theorem showing
that the extension is a homeomorphism precisely when there is a triangulation on the

image space.

Let S1 and 82 be two finite sets of n 2 3 points in the plane which are not all collinear
and a be a one-to-one correspondence between the elements of S1 and 52' Let R1 and
R2 be the convex hulls of S1 and 82, respectively, and let Hi- {hi » e e ’h;xi} be the

boundary of Ri‘ Note that H1 is the boundary of a sim ple convex ms-gon.

We triangulate Ry then use a to create edges and triangle~boundaries on R2 using the
points in 82 as vertices. For the edges, this is done as follows: For every
a (87, a (sp) € Sy, a (39) and a (s,) are connected by an edge if and only if s; and s, are
connected by an edge. The triangles are created analogously. It is important to note
that the region in R2 determined by the induced triangles need not be all of RZ' It should
be added, also, that these triangles do not necessarily form a triangulation of R2. We
will denote the set of edges and triangle-boundaries in R1 as T and the set of edges and
triangle-boundaries in R2 as a(T). Also, for any edge, e, or triangle-boundary, t, in T,
denote a(e) and a(t) as the corresponding edge and triangle-boundary in a(T) ,
respectively.

The correspondence a maps S1 to 32. We now define an extension of a which maps R1 to

R2. Call this extension @ . The question we will ask is whether a is a homeom orphism.

We introduce a new notation as follows:

T={¢tlt erT]} and
a(T) = { a(t) lal(t) € a(T) }

where t and a(t ) are the triangles bounded by t and a(t ), respectively. From now on
we will refer to t and a(t ) as triangles, too, for simplicity. No confusion should result
from this.

On each pair of corresponding triangles, we define the affine transform ation that takes
each vertex to its corresponding one as fallows: LetteTand a(t) ¢ a(T) be a
corresponding pair of triangles. We denote the affine transformation from ttoalt) as



Et. Let vy, vo, v3,a(v1), a(vz), a(v3)be the vertices of t and a(t),
respectively. For any x ¢ t , there exists non-negative real numbers B1 , B ]

such that

2' "3

i j
X = <] v and 1 = B, .
f=1 1 1 f=1 1

The 8 { are called the simplicial coordinates for x. Then

_ 3
at(x) - ) 8

alv, ).
=1 i

i
The map ;t is a homeomorphism between the triangles taken as subsets of the plane with
the standard 82 topology. Note that Et is unique and it takes edges to corresponding
edges. The map ais defined as follows: For any x ¢ R1 , there exists t such
that X e t,then

a(x) = &t(x) .

We should em phasize at this point that a depends not only on S1, 82, and a, but alsoon
the triangulation of R1. For any two distinct triangulations of R4, applying the
procedure just desaribed for generating a gives rise to t wo different extensions.

It is easy to show that when a pair of triangles of T share an edge, the corresponding pair
in &( T) share the corresponding edge and that the affine transformations for adjacent
pairs must agree on the edge common to the pair. Therefore, a is well-defined and
continuous. In addition, each affine transform ation is invertible; if there is an inverse
of a s 1t is continuous. The only questions that need to be answered are whether ais

onto and one-to-one.

To conclude these remarks, we prove a theorem relating homeomorphisms,

triangulations, and our function a .

Theorem 1: ais a homeomorphism between R, and R, if and only ifa(T)is a
triangulation of R,.

Proof: Assume ais a homeom orphism. Therefore, the boundary of R1 is mapped onto

the boundary of R,, i.e. H, is the image of H,y. In particular, my = m, By (1) and



(2), a(T) has the correct (maximum) number of triangles and edges to be a triangulation
on R2. Because a is one to one, no triangles fold over each other, and there are no non-
trivial intersections of edges. Because a is onto, all of R2 is covered by triangles
of a ( 7‘) . Therefore, each point in R2 lies in one and only one triangle unless it lies on an
edge. Because ais bicontinuous, the set of triangles meet edge to edge and all the

adjacency relations are preserved. Therefore, a(T) is a triangulation on Ro.

Assume a(T) is a triangulation on R2. For any xr:l-‘(2 , Xxliesin one and only one triangle
unless it lies on an edge. So, the trianglesin a(T) cover all of R2, therefore a is onto.
Also, from this and the definition of a » We have the pre-image of any x.eR2 contains
Just one point in R1. Therefore, a is one-to-one. From the definition of a we know
that a is continuous. Since a is one-to-one and onto, it has an inverse. Since each piece
.‘of aisahomeom orphism and since c-x( 'f’) is a triangulation on R2, we can apply thesame
argument to the inverse of @ that we applied to a to conclude that a is bicontinuous.

There?ore. ais a homeom orphism. 0

In the proof of the theorem we showed that If ais a homeonm orphism then
a (H1 ) = H2 . Since a agrees with a on vertices and edges of T, then a H1 ) = HZ'
Therefore, we have a

Corallary: If a is a homeomorphism between R, and Ry, then cx(H1 ) = H2.
We emphasize this fact because we will need it as an assumption in the next section.
Note that it is a necessary condition, but not a sufficient condition, for a(T) to be a
triangulation on R, (see Figures 3 and 4).

A B C D

| 0
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Figure 3: What can go wrong if a(H1) ¥ Hz. A) Triangleson Ry, B) R, where
my>my C) R2 where m < my, D) R2 where mq = m, and a maps each vertex

in H1 toonein HZ'
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Figure 4: Even though u(H1 ) = H2. a(T) is not a triangulation of Ro.

PRELIMIN A RIES

From now on, we will assume that cx(H1 ) = HZ . To bein a position to prove the main
result, we need a definition and som e facts first.

E-‘or'anytr'iangle,A(v1 L v3), wher'ev1 = (xi, yi)for' i=1,23, et
P(vys Vs v3) = (xq = Xp) (yg +¥p) + (x5 =x3) (yp +¥3) + (x3-%) (y3 +yy).

Defimition 2: If A(v1 v, v3) is a non-degenerate triangle, then the orientation of
A(v1 v, v3) is positive if P(vq, v, v3) >0 and negative otherwise.

For non-degenerate triangles, P(vy, Vo v3) is positive (negative) if and only if Vis Vor V3
is a counterclockwise (clockwise) ordering of the vertices about the interior of the
triangle. Notice that any even permutation of the vertices of a triangle leaves the value

of P unchanged and any odd permutation of the vertices reverses sign.

Whenever the ordering of the vertices is understood or isn't necessary, we will leave off
mention of them and write P. IfteTandt = A(s1 s, 33) , then we write
l’c!(s1 Py 33) instead of P(cx(s,I Yy u(sz). a(s3)) for a(t) ¢ a(T). With
this notation, we can specify an order for the vertices of atrianglein a(T) by specifying

an order for its coresponding triangle in T.



A useful fact is the fallowing formula. The area of a simple polygon in terms of the

coordinates of the vertices is

3) A =

-
e~ 3

(ym xpq) gy

i=1

wheren 2 31is the number of vertices in the polygon, (xi, yi) is the i-th vertex, and

(Xne1» Ypet) = (Xq5 ¥¢). We canremove the absolute values signs above if and only if the

vertices as indexed by i are in counterclockwise order around the polygon.

Because any simple polygon can be subdivided into triangles, we have

N3
1
) Amgl IJ§1("1,J- IETSRINC IR TURPRRI

where N is the number of triangles in the subdivision and (wi.j’ ziJ) is the j-th vertex in
the i-th triangle. Again the absolute value signs can be removed if and only if each
triangle has its vertices listed in counterclockwise order.

If all sets of vertices are listed counterclockwise in (3) and (%), then (4) callapses into (3)
because each interior edge is counted twice, once in each direction. The two terms are

negatives of each other, so they cancel. Thus, we are left with the termsin (3).

We can apply (3) and (4) to any triangulation on Rqy. If we orient Hy and the vertices of
the triangles in counterclockwise order, then we canremove the absolute value signs and
still have equality. For the set of triangles on R2, we get similar formulas by
applying a to each vertex and substituting the new coordinates of the corresponding
vertex in each term. Call these new formulas a{3) and a(4) . Then, considering them
without the absolute value signs, a{(3) = a(U4) because each interior edge (i.e. an edge
not in H2) is counted twice, once in each direction. Note that this is true regardless of
whether the triangles on R2 form a triangulation and regardless of the order of the
vertices of the triangles. It is not true in general, however, that a(3) = a(4) withthe
absolute value signs replaced.

The last facts we will need are com putational and are easily derived. If we apply (3) to a
triangle on Ry, then the area of the triangle as given by (3) is

(5) a=121pl



It follows from (4) and (5) that the area of Ry (or H4) is given by

(6) A - % ! el

teT
Of course, if the vertices of every triangle are oriented counterclockwise, then P > 0 for
every triangle and the absolute value signs can be removed in (6). We have similar
formulas for the triangles on Ro.

MAIN RESULT

Now, we prove the mainresult. It gives us a practical way of determining whether aisa
homeomorphism. The algorithm follows from this theorem.
Theorem 2: a(T) is a triangulation if and only if either a preserves orientation on every

tr'iangfe in T or areverses orientation on every triangle in T.

Proof: Assume that a(T)is a triangulation. Let s,;t e T be adjacent triangles and
a(s), a(t) e a(T) be the corrsponding‘aq;jacent triangles. Let vy = (xq, ¥4)
vy = (x5, Yo) and vy = (x3, y3) be the vertices of t such that P(vq, vo, v3) > 0. Let
vy = (xu. yu) be the other vertex for s and v2 » v3 be the common vertices between s
and t {see Figure 5). Suppose a reverses the orientation of t. Then, Pa(v1 ,vz,v3) <0
fora(t). a(T)is atriangulation of Ry, S0 <:(v1 ) and a(vu) lie on opposite sides of
the common edge between a(s) and a(t). For s, P(vu,v3,v ) > 0. Thus,
P (vu A ETAP ) < 0for a(s) (see Figure 6). Therefore, a reverses the orientation for

s. Therefore, we conclude that a reverses orlentation for all trianglesin T.

figure S | figure 6

Figure 5: A pair of adjacent triangles in T: s andt.
Figure 6: The corresponding pair of adjacent trianglesin a(T): a(s) and a(t).
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Assume a preserves orientation on every triangle in T. Fix a listing of the vertices of
every triangle in T such that P > 0 for each triangle. Therefore, Pa> 0 for every
‘triangle in a(T). If we list the vertices of Hy in counterclockwise order, then since

cz(H1 ) = H2 we can list the vertices of H, in counterclockwise order. Applying (3) to

the vertices of Hz, we get

m
1
(N Area of R2-§| 151()(1- xi+1) (Yi‘* Yi”) ‘

m
L= xg) Gyt vge)

where (x5, y) =h-= a(n]) .

From the discussion just before the statement of the theorem above, (4) applied to the
vertices of the triangles on R, and (7), we get

1 m
(®) 2 LG X)) e vy
Y
= - (w - W ) (z + z ) ’
2 12y g5y TaaT Mg 1,37 %1,5+1

where (wiJ' ziJ) is the vertex in R, corresponding to the j-th vertex of the i-th triangle

on R,.

From (4), (5), and (6) applied to the triangles on R, and the fact that Pa > 0 for each
triangle, we get

L NT 3
@ 2 121J§1("1J' Mioger) (Bg gt 2y ger)
L NT 3
-3 o X(WI'J- wi,j+1)(zi,j+ zi,J”)l.

i=1  j=1



-11=

Combining (7), (8), and (9) we get that the sum of the areas of the triangles on R, is the
area of the region bounded by HZ' i.e. R2. Therefore, any point in R2 isin one and only
one triangle unless it lies on an edge. By (1) and (2) we get that the number of triangles
is the maximum. Therefore, the set of triangles on R, i.e. a(T) ,1is a triangulation. We
can prove the result when areverses orientation on every triangle in T in a similar

P |
marlilier. 4

ALGORITHM

We are now in a position to present an easy detection algorithm for determining whether
or not 5( T‘) is a triangulation. The theoretical basis for the algorithm is Theorem 2.
The algorithm runs in O(NT) time, where NT is the number of triangles.

The only data structures necessary for this procedure are as fallows:

a) F?or- each triangle in T, a list of the vertices;

b) Table for a, i.e. a list of corresponding pairs of vertices, one from S1 and one from
82 in each pair.

Procedure
a) For each triangle in the list
1) Calculate P+ Pa
2y IfP- Pa < 0 then Stop.- a(T) is not a triangulation on R,.
b) eof. a(T) isa triangulation of R,.

CONCLUSION

We have proved a necessary and sufficient condition for determining whether or not the
extension a is a homeon orphism. It turns out that this is equivalent to knowing whether
or not a(T) is a triangulation on R,. Wethen outlined a very simple detection algorithm
for determining if indeed 2 isahomeon orphism.

The full story, however, is far from complete. For we can ask the following question. If
it turns out that a is not a homeom orphism, is it possible to modify S1 and 82 in such a
way that the modified ais a homeom orphism? We say "modify" here because it is not
clear whether we should add or remove points from S, and S» in order to effect this
change. The two figures below (Figures 7 and 8) indicate how either method could be
used. It is possible, too, that a combination of both methods will be useful. In any case,

once it is determined that certain modifications will work, a second question fallows.
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Given that the answer to the first question is yes, is it possible to develop an effective
method, i.e. one from which an algorithm can be developed?

From the discussion above, we can formally state tworesearch problems as fallows:

Protlem 1: Is it possible to modify S; and S, such that the modified ais a
homeomorphism?

Problem 2: Given that the answer to prohlem 1 is 'yes', can we find an effective
m odification method?

AlB CiD

Figure 7: How adding a vertex can create a triangulation on R2'

L} L
A) Ry, B) Ry C) R1 with point P added, D) R2.

Figure 8: How removing a vertex can create a triangulation on Rz.

4) Rq» B) Ro, c) R1 with point P in R4 removed, D) RZ .

These two problems assume that we will use the same extension method as presented in
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the paper. There is nothing saared about extending to the piecewise-linear function.
Instead of trying to modify S1 and 52' it might be possible to modify the extension
procedure in such a way that a homeomorphism is obtained. Finding another way to
create an extension could be a rather difficult problem though, owing to the fact that
triangulations are rather easy to use and they lead naturally into our choice of an

extension.

Another possiblity is to change the triangles rather than modify the vertex sets. In our
application we use a particular triangulation procedure, the Delaunay Triangulation. This
is a well-defined procedure, meaning that for a given set of points the same triangles are
produced regardless of the order of processing the points. By relaxing the strict
mathem atical definition for the triangulation procedure we will be able to have different
sets of triangles on a given set of points. By judiciously choosing which triangles to
change, we could remove all triangle pairs where the orientation is reversed. This would
meagour extension is a homeomorphism.

These ideas and others will be examined in the near future to find an algorithm for
areating an extension which is a homeomorphism.
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