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Preface

The United States Environmental Protection Agency (EPA) prepares the official U.S. Inventory of Greenhouse Gas
Emissions and Sinks to comply with existing commitments under the United Nations Framework Convention on
Climate Change (UNFCCC). Under decision 3/CP.5 of the UNFCCC Conference of the Parties, national
inventories for UNFCCC Annex | parties should be provided to the UNFCCC Secretariat each year by April 15.

In an effort to engage the public and researchers across the country, the EPA has instituted an annual public review
and comment process for this document. The availability of the draft document is announced via Federal Register
Notice and is posted on the EPA web site. Copies are also mailed upon request. The public comment period is
generally limited to 30 days; however, comments received after the closure of the public comment period are
accepted and considered for the next edition of this annual report.
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Executive Summary

An emissions inventory that identifies and quantifies a country's primary anthropogenic? sources and sinks of
greenhouse gases is essential for addressing climate change. This inventory adheres to both (1) a comprehensive
and detailed set of methodologies for estimating sources and sinks of anthropogenic greenhouse gases, and (2) a
common and consistent mechanism that enables Parties to the United Nations Framework Convention on Climate
Change (UNFCCC) to compare the relative contribution of different emission sources and greenhouse gases to
climate change.

In 1992, the United States signed and ratified the UNFCCC. As stated in Article 2 of the UNFCCC, “The ultimate
objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to
achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas
concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the
climate system. Such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt
naturally to climate change, to ensure that food production is not threatened and to enable economic development to
proceed in a sustainable manner.”?2

Parties to the Convention, by ratifying, “shall develop, periodically update, publish and make available...national
inventories of anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by
the Montreal Protocol, using comparable methodologies...”3 The United States views this report as an opportunity
to fulfill these commitments.

This chapter summarizes the latest information on U.S. anthropogenic greenhouse gas emission trends from 1990
through 2010. To ensure that the U.S. emissions inventory is comparable to those of other UNFCCC Parties, the
estimates presented here were calculated using methodologies consistent with those recommended in the Revised
1996 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories
(IPCC/UNEP/OECD/IEA 1997), the IPCC Good Practice Guidance and Uncertainty Management in National
Greenhouse Gas Inventories (IPCC 2000), and the IPCC Good Practice Guidance for Land Use, Land-Use Change,
and Forestry (IPCC 2003). Additionally, the U.S. emission inventory has continued to incorporate new
methodologies and data from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006).
The structure of this report is consistent with the UNFCCC guidelines for inventory reporting.# For most source
categories, the IPCC methodologies were expanded, resulting in a more comprehensive and detailed estimate of
emissions.

[BEGIN BOX]
Box ES- 1: Methodological approach for estimating and reporting U.S. emissions and sinks

In following the UNFCCC requirement under Article 4.1 to develop and submit national greenhouse gas emissions
inventories, the emissions and sinks presented in this report are organized by source and sink categories and
calculated using internationally-accepted methods provided by the IPCC.5> Additionally, the calculated emissions
and sinks in a given year for the United States are presented in a common manner in line with the UNFCCC
reporting guidelines for the reporting of inventories under this international agreement.® The use of consistent
methods to calculate emissions and sinks by all nations providing their inventories to the UNFCCC ensures that

1 The term “anthropogenic,” in this context, refers to greenhouse gas emissions and removals that are a direct result of human
activities or are the result of natural processes that have been affected by human activities (IPCC/UNEP/OECD/IEA 1997).

2 Article 2 of the Framework Convention on Climate Change published by the UNEP/WMO Information Unit on Climate
Change. See <http://unfccc.int>.

3 Article 4(1)(a) of the United Nations Framework Convention on Climate Change (also identified in Article 12). Subsequent
decisions by the Conference of the Parties elaborated the role of Annex | Parties in preparing national inventories. See
<http://unfccc.int>.

4 See < http://unfcce.int/resource/docs/2006/shsta/eng/09.pdf>.
5See< http://www.ipcc-nggip.iges.or.jp/public/index.html>.
6 See < http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/5270.php>.

Executive Summary ES-1



these reports are comparable. In this regard, U.S. emissions and sinks reported in this inventory report are
comparable to emissions and sinks reported by other countries. Emissions and sinks provided in this inventory do
not preclude alternative examinations, but rather this inventory report presents emissions and sinks in a common
format consistent with how countries are to report inventories under the UNFCCC. The report itself follows this
standardized format, and provides an explanation of the IPCC methods used to calculate emissions and sinks, and
the manner in which those calculations are conducted.

On October 30, 2009, the U.S. Environmental Protection Agency (EPA) published a rule for the mandatory
reporting of greenhouse gases (GHG) from large GHG emissions sources in the United States. Implementation of 40
CFR Part 98 is referred to as the Greenhouse Gas Reporting Program (GHGRP). 40 CFR part 98 applies to direct
greenhouse gas emitters, fossil fuel suppliers, industrial gas suppliers, and facilities that inject CO, underground for
sequestration or other reasons. Reporting is at the facility level, except for certain suppliers of fossil fuels and
industrial greenhouse gases. For calendar year 2010, the first year in which data were reported, facilities in 29
categories provided in 40 CFR part 98 were required to report their 2010 emissions by the September 30, 2011
reporting deadline.” The GHGRP dataset and the data presented in this inventory report are complementary and, as
indicated in the respective planned improvements sections in this report’s chapters, EPA is analyzing how to use
facility-level GHGRP data to improve the national estimates presented in this inventory.

[END BOX]

ES.1. Background Information

Naturally occurring greenhouse gases include water vapor, carbon dioxide (CO,), methane (CHy,), nitrous oxide
(N,0), and ozone (O3). Several classes of halogenated substances that contain fluorine, chlorine, or bromine are
also greenhouse gases, but they are, for the most part, solely a product of industrial activities. Chlorofluorocarbons
(CFCs) and hydrochlorofluorocarbons (HCFCs) are halocarbons that contain chlorine, while halocarbons that
contain bromine are referred to as bromofluorocarbons (i.e., halons). As stratospheric 0zone depleting substances,
CFCs, HCFCs, and halons are covered under the Montreal Protocol on Substances that Deplete the Ozone Layer.
The UNFCCC defers to this earlier international treaty. Consequently, Parties to the UNFCCC are not required to
include these gases in their national greenhouse gas emission inventories.8 Some other fluorine-containing
halogenated substances—hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF¢)—do
not deplete stratospheric ozone but are potent greenhouse gases. These latter substances are addressed by the
UNFCCC and accounted for in national greenhouse gas emission inventories.

There are also several gases that do not have a direct global warming effect but indirectly affect terrestrial and/or
solar radiation absorption by influencing the formation or destruction of greenhouse gases, including tropospheric
and stratospheric ozone. These gases include carbon monoxide (CO), oxides of nitrogen (NO,), and non-CH,
volatile organic compounds (NMVOCs). Aerosols, which are extremely small particles or liquid droplets, such as
those produced by sulfur dioxide (SO,) or elemental carbon emissions, can also affect the absorptive characteristics
of the atmosphere.

Although the direct greenhouse gases CO,, CH,, and N,O occur naturally in the atmosphere, human activities have
changed their atmospheric concentrations. From the pre-industrial era (i.e., ending about 1750) to 2010,
concentrations of these greenhouse gases have increased globally by 39, 158, and 19 percent, respectively (IPCC
2007 and NOAA/ESLR 2009).

Beginning in the 1950s, the use of CFCs and other stratospheric ozone depleting substances (ODS) increased by
nearly 10 percent per year until the mid-1980s, when international concern about ozone depletion led to the entry
into force of the Montreal Protocol. Since then, the production of ODS is being phased out. In recent years, use of
ODS substitutes such as HFCs and PFCs has grown as they begin to be phased in as replacements for CFCs and

7 See <http://www.epa.gov/climatechange/emissions/ghgrulemaking.html> and <http://ghgdata.epa.gov/ghgp/main.do>.

8 Emissions estimates of CFCs, HCFCs, halons and other ozone-depleting substances are included in the annexes of the
Inventory report for informational purposes.
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HCFCs. Accordingly, atmospheric concentrations of these substitutes have been growing (IPCC 2007).

Global Warming Potentials

Gases in the atmosphere can contribute to the greenhouse effect both directly and indirectly. Direct effects occur
when the gas itself absorbs radiation. Indirect radiative forcing occurs when chemical transformations of the
substance produce other greenhouse gases, when a gas influences the atmospheric lifetimes of other gases, and/or
when a gas affects atmospheric processes that alter the radiative balance of the earth (e.g., affect cloud formation or
albedo).® The IPCC developed the Global Warming Potential (GWP) concept to compare the ability of each
greenhouse gas to trap heat in the atmosphere relative to another gas.

The GWP of a greenhouse gas is defined as the ratio of the time-integrated radiative forcing from the instantaneous
release of 1 kilogram (kg) of a trace substance relative to that of 1 kg of a reference gas (IPCC 2001). Direct
radiative effects occur when the gas itself is a greenhouse gas. The reference gas used is CO,, and therefore GWP-
weighted emissions are measured in teragrams (or million metric tons) of CO, equivalent (Tg CO, Eq.).10:11 All
gases in this Executive Summary are presented in units of Tg CO, Eq.

The UNFCCC reporting guidelines for national inventories were updated in 2006,12 but continue to require the use
of GWPs from the IPCC Second Assessment Report (SAR) (IPCC 1996). This requirement ensures that current
estimates of aggregate greenhouse gas emissions for 1990 to 2010 are consistent with estimates developed prior to
the publication of the IPCC Third Assessment Report (TAR) (IPCC 2001) and the IPCC Fourth Assessment Report
(AR4) (IPCC 2007). Therefore, to comply with international reporting standards under the UNFCCC, official
emission estimates are reported by the United States using SAR GWP values. All estimates are provided throughout
the report in both CO, equivalents and unweighted units. A comparison of emission values using the SAR GWPs
versus the TAR and AR4 GWPs can be found in Chapter 1 and, in more detail, in Annex 6.1 of this report. The
GWP values used in this report are listed below in Table ES-1.

Table ES-1: Global Warming Potentials (100-Year Time Horizon) Used in this Report

Gas GWP
CO, 1
CH,* 21
N,O 310
HFC-23 11,700
HFC-32 650
HFC-125 2,800
HFC-134a 1,300
HFC-143a 3,800
HFC-152a 140
HFC-227¢ea 2,900
HFC-236fa 6,300
HFC-4310mee 1,300
CF, 6,500
C,F¢ 9,200
C4Fio 7,000
C5F14 7,400
SFg 23,900

Source: IPCC (1996)
* The CH, GWP includes the direct
effects and those indirect effects due

9 Albedo is a measure of the Earth’s reflectivity, and is defined as the fraction of the total solar radiation incident on a body that
is reflected by it.

10 carbon comprises 12/44™ of carbon dioxide by weight.
11 one teragram is equal to 10'? grams or one million metric tons.
12 gee <http://unfccc.int/resource/docs/2006/sbsta/eng/09.pdf>.
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to the production of tropospheric
ozone and stratospheric water vapor.
The indirect effect due to the
production of CO, is not included.

Global warming potentials are not provided for CO, NO,, NMVOCs, SO,, and aerosols because there is no agreed-
upon method to estimate the contribution of gases that are short-lived in the atmosphere, spatially variable, or have
only indirect effects on radiative forcing (IPCC 1996).

ES.2. Recent Trends in U.S. Greenhouse Gas Emissions and Sinks

In 2010, total U.S. greenhouse gas emissions were 6,821.8 Tg or million metric tons CO, Eq. Total U.S. emissions
have increased by 10.5 percent from 1990 to 2010, and emissions increased from 2009 to 2010 by 3.2 percent (213.5
Tg CO, Eq.). The increase from 2009 to 2010 was primarily due to an increase in economic output resulting in an
increase in energy consumption across all sectors, and much warmer summer conditions resulting in an increase in
electricity demand for air conditioning that was generated primarily by combusting coal and natural gas. Since
1990, U.S. emissions have increased at an average annual rate of 0.5 percent.

Figure ES-1 through Figure ES-3 illustrate the overall trends in total U.S. emissions by gas, annual changes, and
absolute change since 1990. Table ES-2 provides a detailed summary of U.S. greenhouse gas emissions and sinks
for 1990 through 2010.

Figure ES-1: U.S. Greenhouse Gas Emissions by Gas

Figure ES-2: Annual Percent Change in U.S. Greenhouse Gas Emissions

Figure ES-3: Cumulative Change in Annual U.S. Greenhouse Gas Emissions Relative to 1990

Table ES-2: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks (Tg or million metric tons CO, Eq.)

Gas/Source 1990 2005 2006 2007 2008 2009 2010
CO, 5,100.5 6,107.6  6,019.0 6,118.6 59243 55005 5,706.4
Fossil Fuel Combustion 4,738.3 5,7465 56530 57578 55715 5206.2 5,387.8
Electricity Generation 1,820.8 2,402.1 12,3464 24128 2,3609 2,1464  2,258.4
Transportation 1,485.9 1,896.6 1,878.1 18939 1,789.8 1,727.9 1,7455
Industrial 846.4 816.4 848.1 844.4 806.5 726.6 777.8
Residential 338.3 357.9 3215 341.6 349.3 339.0 340.2
Commercial 219.0 2235 208.6 2189 225.1 224.6 224.2

U.S. Territories 27.9 50.0 50.3 46.1 39.8 41.7 41.6
Non-Energy Use of Fuels 119.6 144.1 143.8 134.9 138.6 123.7 125.1
Iron and Steel Production &

Metallurgical Coke Production 99.6 66.0 68.9 71.1 66.1 42.1 54.3
Natural Gas Systems 37.6 29.9 30.8 31.0 32.8 32.2 32.3
Cement Production 33.3 45.2 45.8 445 40.5 29.0 30.5
Lime Production 115 14.4 15.1 14.6 14.3 11.2 13.2
Incineration of Waste 8.0 12.5 12,5 12.7 11.9 11.7 12.1
Limestone and Dolomite Use 5.1 6.8 8.0 7.7 6.3 7.6 10.0
Ammonia Production 13.0 9.2 8.8 9.1 7.9 7.9 8.7
Cropland Remaining Cropland 7.1 7.9 7.9 8.2 8.6 7.2 8.0
Urea Consumption for Non-

Agricultural Purposes 3.8 3.7 35 4.9 4.1 34 4.4
Soda Ash Production and Consumption 4.1 4.2 4.2 4.1 4.1 3.6 3.7
Petrochemical Production 3.3 4.2 3.8 3.9 34 2.7 3.3
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Aluminum Production 6.8 4.1 3.8 4.3 45 3.0 3.0

Carbon Dioxide Consumption 14 1.3 1.7 1.9 1.8 1.8 2.2
Titanium Dioxide Production 1.2 1.8 1.8 1.9 1.8 1.6 1.9
Ferroalloy Production 2.2 1.4 15 1.6 1.6 1.5 1.7
Zinc Production 0.6 1.0 1.0 1.0 1.2 0.9 1.2
Phosphoric Acid Production 15 1.4 1.2 1.2 1.2 1.0 1.0
Wetlands Remaining Wetlands 1.0 1.1 0.9 1.0 1.0 1.1 1.0
Lead Production 0.5 0.6 0.6 0.6 0.5 0.5 0.5
Petroleum Systems 0.4 0.3 0.3 0.3 0.3 0.3 0.3
Silicon Carbide Production and

Consumption 0.4 0.2 0.2 0.2 0.2 0.1 0.2
Land Use, Land-Use Change, and

Forestry (Sink)? (881.8) (1,085.9) (1,110.4) (1,108.2) (1,087.5) (1,062.6) (1,074.7)
Wood Biomass and Ethanol

Consumption® 218.6 228.6 233.7 241.1 252.1 244.1 266.1
International Bunker Fuels® 111.8 109.8 128.4 127.6 133.7 122.3 127.8

CH, 668.3 625.8 664.6 656.2 667.9 672.2 666.5
Natural Gas Systems 189.6 190.5 217.7 205.3 212.7 220.9 2154
Enteric Fermentation 133.8 139.0 141.4 143.8 143.4 142.6 141.3
Landfills 147.7 112.7 111.7 111.7 113.1 111.2 107.8
Coal Mining 84.1 56.8 58.1 57.8 66.9 70.1 72.6
Manure Management 317 479 48.4 52.7 51.8 50.7 52.0
Petroleum Systems 35.2 29.2 29.2 29.8 30.0 30.7 31.0
Wastewater Treatment 15.9 16.5 16.7 16.6 16.6 16.5 16.3
Rice Cultivation 7.1 6.8 5.9 6.2 7.2 7.3 8.6
Stationary Combustion 75 6.6 6.2 6.5 6.6 6.3 6.3
Abandoned Underground Coal Mines 6.0 55 55 5.3 5.3 5.1 5.0
Forest Land Remaining Forest Land 25 8.1 17.9 14.6 8.8 5.8 4.8
Mobile Combustion 4.7 2.5 24 2.2 2.1 2.0 1.9
Composting 0.3 1.6 1.6 1.7 1.7 1.6 1.6
Petrochemical Production 0.9 11 1.0 1.0 0.9 0.8 0.9
Iron and Steel Production &

Metallurgical Coke Production 1.0 0.7 0.7 0.7 0.6 0.4 0.5
Field Burning of Agricultural Residues 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Ferroalloy Production + + + + + + +
Silicon Carbide Production and

Consumption + + + + + + +
Incineration of Waste + + + + + + +
International Bunker Fuesl® 0.2 0.1 0.2 0.2 0.2 0.1 0.2

N,O 316.2 331.9 336.8 334.9 317.1 304.0 306.2
Agricultural Soil Management 200.0 213.1 211.1 211.1 212.9 207.3 207.8
Stationary Combustion 12.3 20.6 20.8 21.2 21.1 20.7 22.6
Mobile Combustion 43.9 37.0 33.7 29.0 25.2 225 20.6
Manure Management 14.8 17.6 18.4 185 18.3 18.2 18.3
Nitric Acid Production 17.6 16.4 16.1 19.2 16.4 14.5 16.7
Wastewater Treatment 35 4.7 4.8 4.8 4.9 5.0 5.0
N,O from Product Uses 4.4 4.4 4.4 4.4 4.4 4.4 4.4
Forest Land Remaining Forest Land 2.1 7.0 15.0 12.2 7.5 5.1 4.3
Adipic Acid Production 15.8 7.4 8.9 10.7 2.6 2.8 2.8
Composting 0.4 1.7 1.8 1.8 1.9 1.8 1.7
Settlements Remaining Settlements 1.0 1.5 15 1.6 1.5 1.4 1.4
Incineration of Waste 0.5 0.4 0.4 0.4 0.4 0.4 0.4
Field Burning of Agricultural Residues 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Wetlands Remaining Wetlands + + + + + + +
International Bunker Fuels® 1.1 1.0 1.2 1.2 1.2 1.1 1.2

HFCs 36.9 115.0 116.0 120.0 1175 112.1 123.0
Substitution of Ozone Depleting 0.3 99.0 101.9 102.7 103.6 106.3 114.6
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Substances

HCFC-22 Production 36.4 15.8 13.8 17.0 13.6 5.4 8.1
Semiconductor Manufacture 0.2 0.2 0.3 0.3 0.3 0.3 0.3
PFCs 20.6 6.2 6.0 7.5 6.6 5.6 5.6
Semiconductor Manufacture 2.2 3.2 35 3.7 4.0 4.0 4.1
Aluminum Production 18.4 3.0 25 3.8 2.7 1.6 1.6
SFs 32.6 17.8 16.8 15.6 15.0 13.9 14.0
Electrical Transmission and
Distribution 26.7 13.9 13.0 12.2 12.2 11.8 11.8
Magnesium Production and Processing 5.4 2.9 2.9 2.6 1.9 1.1 1.3
Semiconductor Manufacture 0.5 1.0 1.0 0.8 0.9 1.0 0.9
Total 6,175.2 7,204.2 7,159.3 7,252.8 17,0483 6,608.3 6,821.8
Net Emission (Sources and Sinks) 5,293.4 6,118.3  6,048.9 6,1445 59609 55457 5,747.1

+ Does not exceed 0.05 Tg CO, Eq.

2 Parentheses indicate negative values or sequestration. The net CO, flux total includes both emissions and sequestration, and
constitutes a net sink in the United States. Sinks are only included in net emissions total.

® Emissions from Wood Biomass and Ethanol Consumption are not included specifically in summing energy sector totals. Net
carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for Land Use, Land-Use Change,
and Forestry.

¢ Emissions from International Bunker Fuels are not included in totals.

¢ Small amounts of PFC emissions also result from this source.

Note: Totals may not sum due to independent rounding.

Figure ES-4 illustrates the relative contribution of the direct greenhouse gases to total U.S. emissions in 2010. The
primary greenhouse gas emitted by human activities in the United States was CO,, representing approximately 83.6
percent of total greenhouse gas emissions. The largest source of CO,, and of overall greenhouse gas emissions, was
fossil fuel combustion. CH,4 emissions, which have decreased by 0.3 percent since 1990, resulted primarily from
natural gas systems, enteric fermentation associated with domestic livestock, and decomposition of wastes in
landfills. Agricultural soil management, mobile source fuel combustion and stationary fuel combustion were the
major sources of N,O emissions. Ozone depleting substance substitute emissions and emissions of HFC-23 during
the production of HCFC-22 were the primary contributors to aggregate HFC emissions. PFC emissions resulted
from semiconductor manufacturing and as a by-product of primary aluminum production, while electrical
transmission and distribution systems accounted for most SFg emissions.

Figure ES-4: 2010 Greenhouse Gas Emissions by Gas (percentages based on Tg CO, Eq.)

Overall, from 1990 to 2010, total emissions of CO, increased by 605.9 Tg CO, Eq. (11.9 percent), while total
emissions of CH, and N,O decreased by 1.7 Tg CO, Eq. (0.3 percent), and 10.0 Tg CO, Eq. (3.2 percent),
respectively. During the same period, aggregate weighted emissions of HFCs, PFCs, and SFg rose by 52.5 Tg CO,
Eq. (58.2 percent). From 1990 to 2010, HFCs increased by 86.1 Tg CO, Eq. (233.1 percent), PFCs decreased by
15.0 Tg CO; Eq. (72.7 percent), and SF¢ decreased by 18.6 Tg CO, Eq. (57.0 percent). Despite being emitted in
smaller quantities relative to the other principal greenhouse gases, emissions of HFCs, PFCs, and SFg are significant
because many of these gases have extremely high global warming potentials and, in the cases of PFCs and SFg, long
atmospheric lifetimes. Conversely, U.S. greenhouse gas emissions were partly offset by carbon sequestration in
forests, trees in urban areas, agricultural soils, and landfilled yard trimmings and food scraps, which, in aggregate,
offset 15.8 percent of total emissions in 2010. The following sections describe each gas’s contribution to total U.S.
greenhouse gas emissions in more detail.

Carbon Dioxide Emissions

The global carbon cycle is made up of large carbon flows and reservoirs. Billions of tons of carbon in the form of
CO, are absorbed by oceans and living biomass (i.e., sinks) and are emitted to the atmosphere annually through
natural processes (i.e., sources). When in equilibrium, carbon fluxes among these various reservoirs are roughly
balanced. Since the Industrial Revolution (i.e., about 1750), global atmospheric concentrations of CO, have risen
about 39 percent (IPCC 2007 and NOAA/ESLR 2009), principally due to the combustion of fossil fuels. Within the
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United States, fossil fuel combustion accounted for 94.4 percent of CO, emissions in 2010. Globally, approximately
30,313 Tg of CO, were added to the atmosphere through the combustion of fossil fuels in 2009, of which the United
States accounted for about 18 percent.13 Changes in land use and forestry practices can also emit CO, (e.g., through
conversion of forest land to agricultural or urban use) or can act as a sink for CO, (e.g., through net additions to
forest biomass). In addition to fossil-fuel combustion, several other sources emit significant quantities of CO,. These
sources include, but are not limited to non-energy use of fuels, iron and steel production and cement production
(Figure ES-5).

Figure ES-5: 2010 Sources of CO, Emissions

As the largest source of U.S. greenhouse gas emissions, CO, from fossil fuel combustion has accounted for
approximately 78 percent of GWP-weighted emissions since 1990, growing slowly from 77 percent of total GWP-
weighted emissions in 1990 to 79 percent in 2010. Emissions of CO, from fossil fuel combustion increased at an
average annual rate of 0.7 percent from 1990 to 2010. The fundamental factors influencing this trend include (1) a
generally growing domestic economy over the last 21 years, and (2) an overall growth in emissions from electricity
generation and transportation activities. Between 1990 and 2010, CO, emissions from fossil fuel combustion
increased from 4,738.3 Tg CO, Eg. to 5,387.8 Tg CO, Eq.—a 13.7 percent total increase over the twenty-one-year
period. From 2009 to 2010, these emissions increased by 181.6 Tg CO, Eq. (3.5 percent).

Historically, changes in emissions from fossil fuel combustion have been the dominant factor affecting U.S.
emission trends. Changes in CO, emissions from fossil fuel combustion are influenced by many long-term and
short-term factors, including population and economic growth, energy price fluctuations, technological changes, and
seasonal temperatures. In the short term, the overall consumption of fossil fuels in the United States fluctuates
primarily in response to changes in general economic conditions, energy prices, weather, and the availability of non-
fossil alternatives. For example, in a year with increased consumption of goods and services, low fuel prices, severe
summer and winter weather conditions, nuclear plant closures, and lower precipitation feeding hydroelectric dams,
there would likely be proportionally greater fossil fuel consumption than a year with poor economic performance,
high fuel prices, mild temperatures, and increased output from nuclear and hydroelectric plants. In the long term,
energy consumption patterns respond to changes that affect the scale of consumption (e.g., population, number of
cars, and size of houses), the efficiency with which energy is used in equipment (e.g., cars, power plants, steel mills,
and light bulbs) and behavioral choices (e.g., walking, bicycling, or telecommuting to work instead of driving).

Figure ES-6: 2010 CO, Emissions from Fossil Fuel Combustion by Sector and Fuel Type

Figure ES-7: 2010 End-Use Sector Emissions of CO,, CH,4, and N,O from Fossil Fuel Combustion

The five major fuel consuming sectors contributing to CO, emissions from fossil fuel combustion are electricity
generation, transportation, industrial, residential, and commercial. CO, emissions are produced by the electricity
generation sector as they consume fossil fuel to provide electricity to one of the other four sectors, or “end-use”
sectors. For the discussion below, electricity generation emissions have been distributed to each end-use sector on
the basis of each sector’s share of aggregate electricity consumption. This method of distributing emissions assumes
that each end-use sector consumes electricity that is generated from the national average mix of fuels according to
their carbon intensity. Emissions from electricity generation are also addressed separately after the end-use sectors
have been discussed.

Note that emissions from U.S. territories are calculated separately due to a lack of specific consumption data for the
individual end-use sectors.

13 Global CO, emissions from fossil fuel combustion were taken from Energy Information Administration International Energy
Statistics 2010 < http://tonto.eia.doe.gov/cfapps/ipdbproject/IEDIndex3.cfm> EIA (2010a).
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Figure ES-6, Figure ES-7, and Table ES-3 summarize CO, emissions from fossil fuel combustion by end-use sector.

Table ES-3: CO, Emissions from Fossil Fuel Combustion by Fuel Consuming End-Use Sector (Tg or million metric
tons CO, Eq.)

End-Use Sector 1990 2005 2006 2007 2008 2009 2010
Transportation 1,489.0 1,901.3 11,8826 1,899.0 1,7945 17324 1,750.0
Combustion 1,485.9 1,896.6 11,8781 11,8939 1,789.8 1,727.9 1,7455
Electricity 3.0 4.7 4.5 51 4.7 4.5 4.5
Industrial 1,533.1 1,553.3 1,560.2 1,5559.8 1,503.8 1,328.6 14154
Combustion 846.4 816.4 848.1 844.4 806.5 726.6 777.8
Electricity 686.8 737.0 712.0 715.4 697.3 602.0 637.6
Residential 931.4 1,2147 1,1524 1,2052 1,922 1,1255 1,183.7
Combustion 338.3 357.9 321.5 341.6 349.3 339.0 340.2
Electricity 593.0 856.7 830.8 863.5 842.9 786.5 843.5
Commercial 757.0 1,027.2 1,007.6 1,047.7 1,041.1 978.0 997.1
Combustion 219.0 2235 208.6 218.9 225.1 224.6 224.2
Electricity 538.0 803.7 799.0 828.8 816.0 753.5 772.9
U.S. Territories® 27.9 50.0 50.3 46.1 39.8 41.7 41.6
Total 4,738.3 57465 5,653.0 5,757.8 55715 5,206.2 5,387.8
Electricity Generation 1,820.8 2,402.1 2,346.4 2,4128 2,360.9 2,146.4 2,258.4

Note: Totals may not sum due to independent rounding. Combustion-related emissions from electricity
generation are allocated based on aggregate national electricity consumption by each end-use sector.

2 Fuel consumption by U.S. territories (i.e., American Samoa, Guam, Puerto Rico, U.S. Virgin Islands,
Wake Island, and other U.S. Pacific Islands) is included in this report.

Transportation End-Use Sector. Transportation activities (excluding international bunker fuels) accounted for 32
percent of CO, emissions from fossil fuel combustion in 2010.14 Virtually all of the energy consumed in this end-
use sector came from petroleum products. Nearly 65 percent of the emissions resulted from gasoline consumption
for personal vehicle use. The remaining emissions came from other transportation activities, including the
combustion of diesel fuel in heavy-duty vehicles and jet fuel in aircraft. From 1990 to 2010, transportation
emissions rose by 18 percent due, in large part, to increased demand for travel and the stagnation of fuel efficiency
across the U.S. vehicle fleet. The number of vehicle miles traveled by light-duty motor vehicles (passenger cars and
light-duty trucks) increased 34 percent from 1990 to 2010, as a result of a confluence of factors including population
growth, economic growth, urban sprawl, and low fuel prices over much of this period.

Industrial End-Use Sector. Industrial CO, emissions, resulting both directly from the combustion of fossil fuels and
indirectly from the generation of electricity that is consumed by industry, accounted for 26 percent of CO, from
fossil fuel combustion in 2010. Approximately 55 percent of these emissions resulted from direct fossil fuel
combustion to produce steam and/or heat for industrial processes. The remaining emissions resulted from
consuming electricity for motors, electric furnaces, ovens, lighting, and other applications. In contrast to the other
end-use sectors, emissions from industry have steadily declined since 1990. This decline is due to structural changes
in the U.S. economy (i.e., shifts from a manufacturing-based to a service-based economy), fuel switching, and
efficiency improvements.

Residential and Commercial End-Use Sectors. The residential and commercial end-use sectors accounted for 22
and 19 percent, respectively, of CO, emissions from fossil fuel combustion in 2010. Both sectors relied heavily on
electricity for meeting energy demands, with 71 and 78 percent, respectively, of their emissions attributable to
electricity consumption for lighting, heating, cooling, and operating appliances. The remaining emissions were due
to the consumption of natural gas and petroleum for heating and cooking. Emissions from these end-use sectors
have increased 29 percent since 1990, due to increasing electricity consumption for lighting, heating, air
conditioning, and operating appliances.

14 |f emissions from international bunker fuels are included, the transportation end-use sector accounted for 34.0 percent of U.S.
emissions from fossil fuel combustion in 2010.
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Electricity Generation. The United States relies on electricity to meet a significant portion of its energy demands.
Electricity generators consumed 36 percent of U.S. energy from fossil fuels and emitted 42 percent of the CO, from
fossil fuel combustion in 2010. The type of fuel combusted by electricity generators has a significant effect on their
emissions. For example, some electricity is generated with low CO, emitting energy technologies, particularly non-
fossil options such as nuclear, hydroelectric, or geothermal energy. However, electricity generators rely on coal for
over half of their total energy requirements and accounted for 94 percent of all coal consumed for energy in the
United States in 2010. Consequently, changes in electricity demand have a significant impact on coal consumption
and associated CO, emissions.

Other significant CO, trends included the following:

e CO, emissions from non-energy use of fossil fuels have increased 5.5 Tg CO, Eq. (4.6 percent) from 1990
through 2010. Emissions from non-energy uses of fossil fuels were 125.1 Tg CO, Eq. in 2010, which
constituted 2.2 percent of total national CO, emissions, approximately the same proportion as in 1990.

e CO, emissions from iron and steel production and metallurgical coke production increased by 12.2 Tg CO,
Eq. (28.9 percent) from 2009 to 2010, upsetting a trend of decreasing emissions. Despite this, from 1990
through 2010 emissions declined by 45.5 percent (45.3 Tg CO, Eq.). This decline is due to the
restructuring of the industry, technological improvements, and increased scrap utilization.

e In 2010, CO, emissions from cement production increased by 1.5 Tg CO, Eq. (5.1 percent) from 2009.
After decreasing in 1991 by two percent from 1990 levels, cement production emissions grew every year
through 2006; emissions decreased in the three years prior to 2010. Overall, from 1990 to 2010, emissions
from cement production have decreased by 8.3 percent, a decrease of 2.8 Tg CO, Eq.

e Net CO, uptake from Land Use, Land-Use Change, and Forestry increased by 192.8 Tg CO, Eq. (21.9
percent) from 1990 through 2010. This increase was primarily due to an increase in the rate of net carbon
accumulation in forest carbon stocks, particularly in aboveground and belowground tree biomass, and
harvested wood pools. Annual carbon accumulation in landfilled yard trimmings and food scraps slowed
over this period, while the rate of carbon accumulation in urban trees increased.

Methane Emissions

Methane (CHy) is more than 20 times as effective as CO, at trapping heat in the atmosphere (IPCC 1996). Over the
last two hundred and fifty years, the concentration of CH, in the atmosphere increased by 158 percent (IPCC 2007).
Anthropogenic sources of CH, include natural gas and petroleum systems, agricultural activities, landfills, coal

mining, wastewater treatment, stationary and mobile combustion, and certain industrial processes (see Figure ES-8).

Figure ES-8: 2010 Sources of CH4 Emissions

Some significant trends in U.S. emissions of CH,4 include the following:

o Natural gas systems were the largest anthropogenic source category of CH4 emissions in the United States
in 2010 with 215.4 Tg CO, Eq. of CH,4 emitted into the atmosphere. Those emissions have increased by
25.8 Tg CO, Eq. (13.6 percent) since 1990.

e Enteric fermentation is the second largest anthropogenic source of CH4 emissions in the United States. In
2010, enteric fermentation CH, emissions were 141.3 Tg CO, Eq. (21.2 percent of total CH, emissions),
which represents an increase of 7.5 Tg CO, Eq. (5.6 percent) since 1990.

o Landfills are the third largest anthropogenic source of CH, emissions in the United States, accounting for
16.2 percent of total CH, emissions (107.8 Tg CO, Eq.) in 2010. From 1990 to 2010, CH, emissions from
landfills decreased by 39.8 Tg CO, Eq. (27.0 percent), with small increases occurring in some interim
years. This downward trend in overall emissions is the result of increases in the amount of landfill gas
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collected and combusted, 1 which has more than offset the additional CH, emissions resulting from an
increase in the amount of municipal solid waste landfilled.

e In 2010, CH, emissions from coal mining were 72.6 Tg CO, Eq., a 2.5 Tg CO, Eq. (3.5 percent) increase
over 2009 emission levels. The overall decline of 11.5 Tg CO, Eq. (13.6 percent) from 1990 results from
the mining of less gassy coal from underground mines and the increased use of CH, collected from
degasification systems.

e Methane emissions from manure management increased by 64.0 percent since 1990, from 31.7 Tg CO, Eq.
in 1990 to 52.0 Tg CO, Eq. in 2010. The majority of this increase was from swine and dairy cow manure,
since the general trend in manure management is one of increasing use of liquid systems, which tends to
produce greater CH, emissions. The increase in liquid systems is the combined result of a shift to larger
facilities, and to facilities in the West and Southwest, all of which tend to use liquid systems. Also, new
regulations limiting the application of manure nutrients have shifted manure management practices at
smaller dairies from daily spread to manure managed and stored on site.

Nitrous Oxide Emissions

N,O is produced by biological processes that occur in soil and water and by a variety of anthropogenic activities in
the agricultural, energy-related, industrial, and waste management fields. While total N,O emissions are much
lower than CO, emissions, N,O is approximately 300 times more powerful than CO, at trapping heat in the
atmosphere (IPCC 1996). Since 1750, the global atmospheric concentration of N,O has risen by approximately 19
percent (IPCC 2007). The main anthropogenic activities producing N,O in the United States are agricultural soil
management, fuel combustion in motor vehicles, stationary fuel combustion, manure management and nitric acid
production (see Figure ES-9).

Figure ES-9: 2010 Sources of N,O Emissions

Some significant trends in U.S. emissions of N,O include the following:

e In 2010, N,O emissions from mobile combustion were 20.6 Tg CO, Eq. (approximately 6.7 percent of U.S.
N,O emissions). From 1990 to 2010, N,O emissions from mobile combustion decreased by 53.1 percent.
However, from 1990 to 1998 emissions increased by 25.6 percent, due to control technologies that reduced
NO, emissions while increasing N,O emissions. Since 1998, newer control technologies have led to an
overall decline in N,O from this source.

e N,O emissions from adipic acid production were 2.8 Tg CO, Eqg. in 2010, and have decreased significantly
in recent years due to the widespread installation of pollution control measures. Emissions from adipic acid
production have decreased by 82.2 percent since 1990 and by 84.0 percent since a peak in 1995.

e N,O emissions from stationary combustion increased 10.3 Tg CO, Eq. (84.4 percent) from 1990 through
2010. N,O emissions from this source increased primarily as a result of an increase in the number of coal
fluidized bed boilers in the electric power sector.

e Agricultural soils accounted for approximately 67.9 percent of N,O emissions in the United States in 2010.
Estimated emissions from this source in 2010 were 207.8 Tg CO, Eq. Annual N,O emissions from
agricultural soils fluctuated between 1990 and 2010, although overall emissions were 3.9 percent higher in
2010 than in 1990.

HFC, PFC, and SFg Emissions

HFCs and PFCs are families of synthetic chemicals that are used as alternatives to ODS, which are being phased out
under the Montreal Protocol and Clean Air Act Amendments of 1990. HFCs and PFCs do not deplete the

15 The €O, produced from combusted landfill CH, at landfills is not counted in national inventories as it is considered part of the
natural C cycle of decomposition.
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stratospheric ozone layer, and are therefore acceptable alternatives under the Montreal Protocol.

These compounds, however, along with SFg, are potent greenhouse gases. In addition to having high global
warming potentials, SFs and PFCs have extremely long atmospheric lifetimes, resulting in their essentially
irreversible accumulation in the atmosphere once emitted. Sulfur hexafluoride is the most potent greenhouse gas the
IPCC has evaluated (IPCC 1996).

Other emissive sources of these gases include electrical transmission and distribution systems, HCFC-22 production,
semiconductor manufacturing, aluminum production, and magnesium production and processing (see Figure ES-10).

Figure ES-10: 2010 Sources of HFCs, PFCs, and SFg Emissions

Some significant trends in U.S. HFC, PFC, and SFg emissions include the following:

e  Emissions resulting from the substitution of ozone depleting substances (ODS) (e.g., CFCs) have been
consistently increasing, from small amounts in 1990 to 114.6 Tg CO, Eq. in 2010. Emissions from ODS
substitutes are both the largest and the fastest growing source of HFC, PFC, and SFg emissions. These
emissions have been increasing as phase-out of ODS required under the Montreal Protocol came into
effect, especially after 1994, when full market penetration was made for the first generation of new
technologies featuring ODS substitutes.

e HFC emissions from the production of HCFC-22 decreased by 77.8 percent (28.3 Tg CO, Eq.) from 1990
through 2010, due to a steady decline in the emission rate of HFC-23 (i.e., the amount of HFC-23 emitted
per kilogram of HCFC-22 manufactured) and the use of thermal oxidation at some plants to reduce HFC-23
emissions.

e  SFgemissions from electric power transmission and distribution systems decreased by 55.7 percent (14.9
Tg CO, Eq.) from 1990 to 2010, primarily because of higher purchase prices for SFg and efforts by industry
to reduce emissions.

e  PFC emissions from aluminum production decreased by 91.5 percent (16.9 Tg CO, Eq.) from 1990 to
2010, due to both industry emission reduction efforts and declines in domestic aluminum production.

ES.3. Overview of Sector Emissions and Trends

In accordance with the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories
(IPCC/UNEP/OECD/IEA 1997), and the 2003 UNFCCC Guidelines on Reporting and Review (UNFCCC 2003),
Figure ES-11 and Table ES-4 aggregate emissions and sinks by these chapters. Emissions of all gases can be
summed from each source category from IPCC guidance. Over the twenty-one-year period of 1990 to 2010, total
emissions in the Energy and Agriculture sectors grew by 645.8 Tg CO, Eq. (12.2 percent), and 40.6 Tg CO, Eq.
(10.5 percent), respectively. Emissions slightly decreased in the Industrial Processes sector by 10.5 Tg CO, Eq. (3.4
percent) , while emissions from the Waste and Solvent and Other Product Use sectors decreased by 35.2 Tg CO, Eq.
(21.0 percent) and less than 0.1 Tg CO, Eq. (0.4 percent), respectively. Over the same period, estimates of net C
sequestration in the Land Use, Land-Use Change, and Forestry (LULUCF) sector (magnitude of emissions plus CO,
flux from all LULUCF source categories) increased by 187.0 Tg CO, Eqg. (21.5 percent).

Figure ES-11: U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC Sector

Table ES-4: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC Sector (Tg or million
metric tons CO, Eq.)

Chapter/IPCC Sector 1990 2005 2006 2007 2008 2009 2010
Energy 5,287.7 6,282.4 6,214.4 6,294.3 6,125.4 5,752.7 5,933.5
Industrial Processes 313.9 330.1 335.5 347.3 319.1 268.2 303.4
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Solvent and Other Product Use 44 44 44 4.4 44 44 44
Agriculture 387.8 424.6 4254 432.6 433.8 426.4 428.4
Land-Use Change and Forestry 13.8 25.6 43.2 37.6 27.4 20.6 19.6
Waste 167.7 137.2 136.5 136.7 138.2 136.0 132.5
Total Emissions 6,175.2 7,204.2 7,159.3 7,252.8 7,048.3 6,608.3 6,821.8
Land-Use Change and Forestry (Sinks) (881.8) (1,085.9) (1,110.4) (1,108.2) (1,087.5) (1,062.6) (1,074.7)
Net Emissions (Emissions and Sinks) 5,293.4 6,118.3 6,048.9 6,144.5 5,960.9 5,545.7 5,747.1

* The net CO, flux total includes both emissions and sequestration, and constitutes a sink in the United States. Sinks are only
included in net emissions total.
Note: Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

Energy

The Energy chapter contains emissions of all greenhouse gases resulting from stationary and mobile energy
activities including fuel combustion and fugitive fuel emissions. Energy-related activities, primarily fossil fuel
combustion, accounted for the vast majority of U.S. CO, emissions for the period of 1990 through 2010. In 2010,
approximately 85 percent of the energy consumed in the United States (on a Btu basis) was produced through the
combustion of fossil fuels. The remaining 15 percent came from other energy sources such as hydropower, biomass,
nuclear, wind, and solar energy (see Figure ES-12). Energy-related activities are also responsible for CH, and N,O
emissions (50 percent and 14 percent of total U.S. emissions of each gas, respectively). Overall, emission sources in
the Energy chapter account for a combined 87.0 percent of total U.S. greenhouse gas emissions in 2010.

Figure ES-12: 2010 U.S. Energy Consumption by Energy Source

Industrial Processes

The Industrial Processes chapter contains by-product or fugitive emissions of greenhouse gases from industrial
processes not directly related to energy activities such as fossil fuel combustion. For example, industrial processes
can chemically transform raw materials, which often release waste gases such as CO,, CH,, and N,O. These
processes include iron and steel production and metallurgical coke production, cement production, ammonia
production and urea consumption, lime production, limestone and dolomite use (e.g., flux stone, flue gas
desulfurization, and glass manufacturing), soda ash production and consumption, titanium dioxide production,
phosphoric acid production, ferroalloy production, CO, consumption, silicon carbide production and consumption,
aluminum production, petrochemical production, nitric acid production, adipic acid production, lead production, and
zinc production. Additionally, emissions from industrial processes release HFCs, PFCs, and SFs. Overall, emission
sources in the Industrial Process chapter account for 4.4 percent of U.S. greenhouse gas emissions in 2010.

Solvent and Other Product Use

The Solvent and Other Product Use chapter contains greenhouse gas emissions that are produced as a by-product of
various solvent and other product uses. In the United States, emissions from N,O from product uses, the only source
of greenhouse gas emissions from this sector, accounted for about 0.1 percent of total U.S. anthropogenic
greenhouse gas emissions on a carbon equivalent basis in 2010.

Agriculture

The Agricultural chapter contains anthropogenic emissions from agricultural activities (except fuel combustion,
which is addressed in the Energy chapter, and agricultural CO, fluxes, which are addressed in the Land Use, Land-
Use Change, and Forestry Chapter). Agricultural activities contribute directly to emissions of greenhouse gases
through a variety of processes, including the following source categories: enteric fermentation in domestic livestock,
livestock manure management, rice cultivation, agricultural soil management, and field burning of agricultural
residues. CH, and N,O were the primary greenhouse gases emitted by agricultural activities. CH, emissions from
enteric fermentation and manure management represented 21.2 percent and 7.8 percent of total CH, emissions from
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anthropogenic activities, respectively, in 2010. Agricultural soil management activities such as fertilizer application
and other cropping practices were the largest source of U.S. N,O emissions in 2010, accounting for 67.9 percent. In
2010, emission sources accounted for in the Agricultural chapters were responsible for 6.3 percent of total U.S.
greenhouse gas emissions.

Land Use, Land-Use Change, and Forestry

The Land Use, Land-Use Change, and Forestry chapter contains emissions of CH4 and N,O, and emissions and
removals of CO, from forest management, other land-use activities, and land-use change. Forest management
practices, tree planting in urban areas, the management of agricultural soils, and the landfilling of yard trimmings
and food scraps resulted in a net uptake (sequestration) of C in the United States. Forests (including vegetation,
soils, and harvested wood) accounted for 86 percent of total 2010 net CO, flux, urban trees accounted for 9 percent,
mineral and organic soil carbon stock changes accounted for 4 percent, and landfilled yard trimmings and food
scraps accounted for 1 percent of the total net flux in 2010. The net forest sequestration is a result of net forest
growth and increasing forest area, as well as a net accumulation of carbon stocks in harvested wood pools. The net
sequestration in urban forests is a result of net tree growth in these areas. In agricultural soils, mineral and organic
soils sequester approximately 5 times as much C as is emitted from these soils through liming and urea fertilization.
The mineral soil C sequestration is largely due to the conversion of cropland to permanent pastures and hay
production, a reduction in summer fallow areas in semi-arid areas, an increase in the adoption of conservation tillage
practices, and an increase in the amounts of organic fertilizers (i.e., manure and sewage sludge) applied to
agriculture lands. The landfilled yard trimmings and food scraps net sequestration is due to the long-term
accumulation of yard trimming carbon and food scraps in landfills.

Land use, land-use change, and forestry activities in 2010 resulted in a net C sequestration of 1,074.7 Tg CO, Eq.
(Table ES-5). This represents an offset of 18.8 percent of total U.S. CO, emissions, or 15.8 percent of total
greenhouse gas emissions in 2010. Between 1990 and 2010, total land use, land-use change, and forestry net C flux
resulted in a 21.9 percent increase in CO, sequestration, primarily due to an increase in the rate of net C
accumulation in forest C stocks, particularly in aboveground and belowground tree biomass, and harvested wood
pools. Annual C accumulation in landfilled yard trimmings and food scraps slowed over this period, while the rate
of annual C accumulation increased in urban trees.

Table ES-5: Net CO, Flux from Land Use, Land-Use Change, and Forestry (Tg or million metric tons CO, Eq.)

Sink Category 1990 2005 2006 2007 2008 2009 2010
Forest Land Remaining Forest Land (701.4) (940.9) (963.5) (959.2) (938.3) (910.6) (921.8)
Cropland Remaining Cropland (29.4) (18.3) (19.1) (19.7) (18.1) (17.4) (15.6)
Land Converted to Cropland 2.2 5.9 5.9 5.9 5.9 5.9 5.9
Grassland Remaining Grassland (52.2) (8.9) (8.8) (8.6) (8.5) (8.3) (8.3)
Land Converted to Grassland (19.8) (24.4) (24.2) (24.0) (23.8) (23.6) (23.6)
Settlements Remaining Settlements (57.1) (87.8) (89.8) (91.9) (93.9) (95.9) (98.0)
Other (Landfilled Yard Trimmings and Food

Scraps) (24.2) (11.6) (11.0) (10.9) (10.9) (12.7) (13.3)
Total (881.8) (1,085.9) (1,110.4) (1,108.2) (1,087.5) (1,062.6) (1,074.7)

Note: Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

Emissions from Land Use, Land-Use Change, and Forestry are shown in Table ES-6. Liming of agricultural soils
and urea fertilization in 2010 resulted in CO, emissions of 3.9 Tg CO, Eq. (3,906 Gg) and 4.1 Tg CO, Eq. (4,143
Gg), respectively. Lands undergoing peat extraction (i.e., Peatlands Remaining Peatlands) resulted in CO,
emissions of 1.0 Tg CO, Eq. (983 Gg), and N,O emissions of less than 0.05 Tg CO, Eq. The application of
synthetic fertilizers to forest soils in 2010 resulted in direct N,O emissions of 0.4 Tg CO, Eqg. (1 Gg). Direct N,O
emissions from fertilizer application to forest soils have increased by 455 percent since 1990, but still account for a
relatively small portion of overall emissions. Additionally, direct N,O emissions from fertilizer application to
settlement soils in 2010 accounted for 1.4 Tg CO, Eq. (5 Gg). This represents an increase of 43 percent since 1990.
Forest fires in 2010 resulted in CH4 emissions of 4.8 Tg CO, Eq. (231 Gg), and in N,O emissions of 4.0 Tg CO, Eq.
(14 Gg).

Table ES-6: Emissions from Land Use, Land-Use Change, and Forestry (Tg or million metric tons CO, Eq.)
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Source Category 1990 2005 2006 2007 2008 2009 2010

CO, 8.1 8.9 8.8 9.2 9.6 8.3 9.0
Cropland Remaining Cropland: Liming

of Agricultural Soils 4.7 4.3 4.2 45 5.0 3.7 3.9
Cropland Remaining Cropland: Urea

Fertilization 2.4 35 3.7 3.8 3.6 3.6 4.1
Wetlands Remaining Wetlands: Peatlands

Remaining Peatlands 1.0 1.1 0.9 1.0 1.0 1.1 1.0
CH, 25 8.1 17.9 14.6 8.8 5.8 4.8
Forest Land Remaining Forest Land:

Forest Fires 25 8.1 17.9 14.6 8.8 5.8 4.8
N,O 3.1 8.5 16.5 13.8 9.0 6.5 5.7
Forest Land Remaining Forest Land:

Forest Fires 2.1 6.6 14.6 11.9 7.2 4.7 4.0
Forest Land Remaining Forest Land:

Forest Soils 0.1 0.4 0.4 0.4 0.4 0.4 0.4
Settlements Remaining Settlements:

Settlement Soils 1.0 15 15 1.6 15 1.4 1.4
Wetlands Remaining Wetlands: Peatlands

Remaining Peatlands + + + + + + +
Total 13.8 25.6 43.2 37.6 274 20.6 19.6

+ Less than 0.05 Tg CO, Eq.
Note: Totals may not sum due to independent rounding.

Waste

The Waste chapter contains emissions from waste management activities (except incineration of waste, which is
addressed in the Energy chapter). Landfills were the largest source of anthropogenic greenhouse gas emissions in
the Waste chapter, accounting for 81.4 percent of this chapter’s emissions, and 16.2 percent of total U.S. CH,
emissions.*® Additionally, wastewater treatment accounts for 16.1 percent of Waste emissions, 2.5 percent of U.S.
CH, emissions, and 1.6 percent of U.S. N,O emissions. Emissions of CH, and N,O from composting are also
accounted for in this chapter; generating emissions of 1.6 Tg CO, Eq. and 1.7 Tg CO, Eq., respectively. Overall,
emission sources accounted for in the Waste chapter generated 1.9 percent of total U.S. greenhouse gas emissions in
2010.

ES.4. Other Information

Emissions by Economic Sector

Throughout the Inventory of U.S. Greenhouse Gas Emissions and Sinks report, emission estimates are grouped into
six sectors (i.e., chapters) defined by the IPCC: Energy; Industrial Processes; Solvent Use; Agriculture; Land Use,
Land-Use Change, and Forestry; and Waste. While it is important to use this characterization for consistency with
UNFCCC reporting guidelines, it is also useful to allocate emissions into more commonly used sectoral categories.
This section reports emissions by the following economic sectors: Residential, Commercial, Industry,
Transportation, Electricity Generation, Agriculture, and U.S. Territories.

Table ES-7 summarizes emissions from each of these sectors, and Figure ES-13 shows the trend in emissions by
sector from 1990 to 2010.

Figure ES-13: Emissions Allocated to Economic Sectors

18 |_andfills also store carbon, due to incomplete degradation of organic materials such as wood products and yard trimmings, as
described in the Land-Use, Land-Use Change, and Forestry chapter of the Inventory report.
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Table ES-7: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (Tg or million metric tons CO, Eq.)

Implied Sectors 1990 2005 2006 2007 2008 2009 2010
Electric Power Industry 1,866.2 2,448.8 2,393.0 2459.1 24058 21914 2,306.5
Transportation 1,545.2 2,0175 19945 20024 1,889.8 1,819.3 1,834.0
Industry 1,564.8 1,438.1 1,499.8 14896 14485 1,317.2 1,394.2
Agriculture 431.9 4960 5167 5176 5058 4928 4948
Commercial 388.0 3743 3599 3722 3818 3820 3817
Residential 345.4 3713 3361 3584 3684 3600  365.2
U.S. Territories 33.7 58.2 59.3 53.5 48.4 455 455
Total Emissions 6,175.2 7,204.2 71593 72528 7,0483 6,608.3 6,821.8
Land Use, Land-Use Change, and Forestry

(Sinks) (881.8) (1,085.9) (1,110.4) (1,108.2) (1,087.5) (1,062.6) (1,074.7)
Net Emissions (Sources and Sinks) 5,293.4 6,118.3 6,048.9 6,1445 509609 55457 5,747.1

Note: Totals may not sum due to independent rounding. Emissions include CO,, CH,4, N,O, HFCs, PFCs, and SFs.
See Table 2-12 for more detailed data.

Using this categorization, emissions from electricity generation accounted for the largest portion (34 percent) of
U.S. greenhouse gas emissions in 2010. Transportation activities, in aggregate, accounted for the second largest
portion (27 percent), while emissions from industry accounted for the third largest portion (20 percent) of U.S.
greenhouse gas emissions in 2010. In contrast to electricity generation and transportation, emissions from industry
have in general declined over the past decade. The long-term decline in these emissions has been due to structural
changes in the U.S. economy (i.e., shifts from a manufacturing-based to a service-based economy), fuel switching,
and energy efficiency improvements. The remaining 19 percent of U.S. greenhouse gas emissions were contributed
by, in order of importance, the agriculture, commercial, and residential sectors, plus emissions from U.S. territories.
Activities related to agriculture accounted for 7 percent of U.S. emissions; unlike other economic sectors,
agricultural sector emissions were dominated by N,O emissions from agricultural soil management and CH,
emissions from enteric fermentation. The commercial and residential sectors accounted for 6 and 5 percent,
respectively, of emissions and U.S. territories accounted for 1 percent of emissions; emissions from these sectors
primarily consisted of CO, emissions from fossil fuel combustion.

CO, was also emitted and sequestered by a variety of activities related to forest management practices, tree planting
in urban areas, the management of agricultural soils, and landfilling of yard trimmings.

Electricity is ultimately consumed in the economic sectors described above. Table ES-8 presents greenhouse gas
emissions from economic sectors with emissions related to electricity generation distributed into end-use categories
(i.e., emissions from electricity generation are allocated to the economic sectors in which the electricity is
consumed). To distribute electricity emissions among end-use sectors, emissions from the source categories
assigned to electricity generation were allocated to the residential, commercial, industry, transportation, and
agriculture economic sectors according to retail sales of electricity.1? These source categories include CO, from
fossil fuel combustion and the use of limestone and dolomite for flue gas desulfurization, CO, and N,O from
incineration of waste, CH, and N,O from stationary sources, and SF4 from electrical transmission and distribution
systems.

When emissions from electricity are distributed among these sectors, industrial activities account for the largest
share of U.S. greenhouse gas emissions (30 percent) in 2010. Transportation is the second largest contributor to
total U.S. emissions (27 percent). The residential and commercial sectors contributed the next largest shares of total
U.S. greenhouse gas emissions in 2010. Emissions from these sectors increase substantially when emissions from
electricity are included, due to their relatively large share of electricity consumption (e.g., lighting, appliances, etc.).
In all sectors except agriculture, CO, accounts for more than 80 percent of greenhouse gas emissions, primarily from
the combustion of fossil fuels. Figure ES-14 shows the trend in these emissions by sector from 1990 to 2010.

Table ES-8: U.S Greenhouse Gas Emissions by Economic Sector with Electricity-Related Emissions Distributed

17 Emissions were not distributed to U.S. territories, since the electricity generation sector only includes emissions related to the
generation of electricity in the 50 states and the District of Columbia.
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(Tg or million metric tons CO, Eq.)

Implied Sectors 1990 2005 2006 2007 2008 2009 2010
Industry 2,237.7 2,159.9 12,1985 2,185.9 2,131.5 1,905.8 2,019.0
Transportation 1,548.3 2,022.3 1,999.1 2,007.6 1,894.6 1,823.9 1,838.6
Residential 953.2 1,2446 1,1834 1,2385 1,227.3 1,162.9 1,226.6
Commercial 939.4 1,1936 11,1748 1,216.9 1,213.3 1,151.3 1,171.0
Agriculture 462.9 525.5 544.2 550.5 533.3 518.9 521.1
U.S. Territories 33.7 58.2 59.3 53.5 48.4 455 455
Total Emissions 6,175.2 7,2042 71593 7,252.8 7,048.3 6,608.3 6,821.8
Land Use, Land-Use Change, and

Forestry (Sinks) (881.8) (1,085.9) (1,110.4) (1,108.2) (1,087.5) (1,062.6) (1,074.7)
Net Emissions (Sources and Sinks) 5,293.4 6,118.3 16,0489 6,1445 5,960.9 5,545.7 5,747.1

See Table 2-14 for more detailed data.

Figure ES-14: Emissions with Electricity Distributed to Economic Sectors

[BEGIN BOX]

Box ES- 2: Recent Trends in Various U.S. Greenhouse Gas Emissions-Related Data

Total emissions can be compared to other economic and social indices to highlight changes over time. These
comparisons include: (1) emissions per unit of aggregate energy consumption, because energy-related activities are
the largest sources of emissions; (2) emissions per unit of fossil fuel consumption, because almost all energy-related
emissions involve the combustion of fossil fuels; (3) emissions per unit of electricity consumption, because the
electric power industry—utilities and nonutilities combined—was the largest source of U.S. greenhouse gas
emissions in 2010; (4) emissions per unit of total gross domestic product as a measure of national economic activity;
and (5) emissions per capita.

Table ES-9 provides data on various statistics related to U.S. greenhouse gas emissions normalized to 1990 as a
baseline year. Greenhouse gas emissions in the United States have grown at an average annual rate of 0.5 percent
since 1990. This rate is slightly slower than that for total energy and for fossil fuel consumption, and much slower
than that for electricity consumption, overall gross domestic product and national population (see Figure ES-15).

Table ES-9: Recent Trends in Various U.S. Data (Index 1990 = 100)

Growth
Variable 1990 2005 2006 2007 2008 2009 2010  Rate?
GDP® 100 157 161 165 164 158 163 2.5%
Electricity Consumption® 100 134 135 137 136 131 137 1.6%
Fossil Fuel Consumption® 100 119 117 119 116 109 113 0.6%
Energy Consumption® 100 119 118 121 119 113 117 0.8%
Population® 100 118 120 121 122 123 123 1.1%
Greenhouse Gas Emissions® 100 117 116 117 114 107 110 0.5%

& Average annual growth rate

® Gross Domestic Product in chained 2005 dollars (BEA 2010)

¢ Energy content-weighted values (EIA 2010b)

¢ U.S. Census Bureau (2010)

¢ GWP-weighted values

Figure ES-15: U.S. Greenhouse Gas Emissions Per Capita and Per Dollar of Gross Domestic Product
Source: BEA (2010), U.S. Census Bureau (2010), and emission estimates in this report.
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[END BOX]

Indirect Greenhouse Gases (CO, NOy, NMVOCs, and SO5)

The reporting requirements of the UNFccc” request that information be provided on indirect greenhouse gases,
which include CO, NO,, NMVOCs, and SO,. These gases do not have a direct global warming effect, but indirectly
affect terrestrial radiation absorption by influencing the formation and destruction of tropospheric and stratospheric
ozone, or, in the case of SO,, by affecting the absorptive characteristics of the atmosphere. Additionally, some of
these gases may react with other chemical compounds in the atmosphere to form compounds that are greenhouse
gases.

Since 1970, the United States has published estimates of annual emissions of CO, NO,, NMVOCs, and SO, (EPA
2010, EPA 2009),19 which are regulated under the Clean Air Act. Table ES-10 shows that fuel combustion
accounts for the majority of emissions of these indirect greenhouse gases. Industrial processes—such as the
manufacture of chemical and allied products, metals processing, and industrial uses of solvents—are also significant
sources of CO, NO,, and NMVOCs.

Table ES-10: Emissions of NO,, CO, NMVOCs, and SO, (Gg)

Gas/Activity 1990 2005 2006 2007 2008 2009 2010
NO, 21,705 15,899 15,039 14,380 13,545 11,467 11,467
Mobile Fossil Fuel Combustion 10,862 9,012 8,488 7,965 7,441 6,206 6,206
Stationary Fossil Fuel Combustion 10,023 5,858 5,545 5,432 5,148 4,159 4,159
Industrial Processes 591 569 553 537 520 568 568
Oil and Gas Activities 139 321 319 318 318 393 393
Incineration of Waste 82 129 121 114 106 128 128
Agricultural Burning 8 6 7 8 8 8 8
Solvent Use 1 3 4 4 4 3 3
Waste + 2 2 2 2 2 2
CcoO 129,976 70,791 67,227 63,613 59,993 51,431 51,431
Mobile Fossil Fuel Combustion 119,360 62,692 58,972 55,253 51,533 43,355 43,355
Stationary Fossil Fuel Combustion 5,000 4,649 4,695 4,744 4,792 4,543 4,543
Industrial Processes 4,125 1,555 1,597 1,640 1,682 1,549 1,549
Incineration of Waste 978 1,403 1,412 1,421 1,430 1,403 1,403
Agricultural Burning 268 184 233 237 270 247 247
Oil and Gas Activities 302 318 319 320 322 345 345
Waste 1 7 7 7 7 7 7
Solvent Use 5 2 2 2 2 2 2
NMVOCs 20,930 13,761 13,594 13,423 13,254 9,313 9,313
Mobile Fossil Fuel Combustion 10,932 6,330 6,037 5,742 5,447 4,151 4,151
Solvent Use 5,216 3,851 3,846 3,839 3,834 2,583 2,583
Industrial Processes 2,422 1,997 1,933 1,869 1,804 1,322 1,322
Stationary Fossil Fuel Combustion 912 716 918 1,120 1,321 424 424
Oil and Gas Activities 554 510 510 509 509 599 599
Incineration of Waste 222 241 238 234 230 159 159
Waste 673 114 113 111 109 76 76
Agricultural Burning NA NA NA NA NA NA NA
SO, 20,935 13,466 12,388 11,799 10,368 8,599 8,599
Stationary Fossil Fuel Combustion 18,407 11,541 10,612 10,172 8,891 7,167 7,167
Industrial Processes 1,307 831 818 807 795 798 798
Mobile Fossil Fuel Combustion 793 889 750 611 472 455 455
Oil and Gas Activities 390 181 182 184 187 154 154

18 See <http://unfccc.int/resource/docs/cop8/08.pdf>.

19 NO, and CO emission estimates from field burning of agricultural residues were estimated separately, and therefore not taken
from EPA (2008).
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Incineration of Waste 38 24 24 24 23 24 24

Waste + 1 1 1 1 1 1
Solvent Use + + + + + + +
Agricultural Burning NA NA NA NA NA NA NA

Source: (EPA 2010, EPA 2009) except for estimates from field burning of agricultural residues.
NA (Not Available)

Note: Totals may not sum due to independent rounding.

+ Does not exceed 0.5 Gg.

Key Categories

The 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006) defines a key category as a
“[source or sink category] that is prioritized within the national inventory system because its estimate has a
significant influence on a country’s total inventory of direct greenhouse gases in terms of the absolute level of
emissions, the trend in emissions, or both.”20 By definition, key categories are sources or sinks that have the
greatest contribution to the absolute overall level of national emissions in any of the years covered by the time
series. In addition, when an entire time series of emission estimates is prepared, a thorough investigation of key
categories must also account for the influence of trends of individual source and sink categories. Finally, a
qualitative evaluation of key categories should be performed, in order to capture any key categories that were not
identified in either of the quantitative analyses.

Figure ES-16 presents 2010 emission estimates for the key categories as defined by a level analysis (i.e., the
contribution of each source or sink category to the total inventory level). The UNFCCC reporting guidelines request
that key category analyses be reported at an appropriate level of disaggregation, which may lead to source and sink
category names which differ from those used elsewhere in the inventory report. For more information regarding key
categories, see section 1.5 and Annex 1.

Figure ES-16: 2010 Key Categories

Quality Assurance and Quality Control (QA/QC)

The United States seeks to continually improve the quality, transparency, and credibility of the Inventory of U.S.
Greenhouse Gas Emissions and Sinks. To assist in these efforts, the United States implemented a systematic
approach to QA/QC. While QA/QC has always been an integral part of the U.S. national system for inventory
development, the procedures followed for the current inventory have been formalized in accordance with the
QAJ/QC plan and the UNFCCC reporting guidelines.

Uncertainty Analysis of Emission Estimates

While the current U.S. emissions inventory provides a solid foundation for the development of a more detailed and
comprehensive national inventory, there are uncertainties associated with the emission estimates. Some of the
current estimates, such as those for CO, emissions from energy-related activities and cement processing, are
considered to have low uncertainties. For some other categories of emissions, however, a lack of data or an
incomplete understanding of how emissions are generated increases the uncertainty associated with the estimates
presented. Acquiring a better understanding of the uncertainty associated with inventory estimates is an important
step in helping to prioritize future work and improve the overall quality of the Inventory. Recognizing the benefit of
conducting an uncertainty analysis, the UNFCCC reporting guidelines follow the recommendations of the IPCC
Good Practice Guidance (IPCC 2000) and require that countries provide single estimates of uncertainty for source
and sink categories.

Currently, a qualitative discussion of uncertainty is presented for all source and sink categories. Within the

20 see Chapter 7 “Methodological Choice and Recalculation™ in IPCC (2000). <http://www.ipcc-
nggip.iges.or.jp/public/gp/gpgaum.htm>
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discussion of each emission source, specific factors affecting the uncertainty surrounding the estimates are
discussed. Most sources also contain a quantitative uncertainty assessment, in accordance with UNFCCC reporting
guidelines.

[BEGIN BOX]

Box ES- 3: Recalculations of Inventory Estimates

Each year, emission and sink estimates are recalculated and revised for all years in the Inventory of U.S. Greenhouse
Gas Emissions and Sinks, as attempts are made to improve both the analyses themselves, through the use of better
methods or data, and the overall usefulness of the report. In this effort, the United States follows the 2006 IPCC
Guidelines (IPCC 2006), which states, “Both methodological changes and refinements over time are an essential
part of improving inventory quality. It is good practice to change or refine methods” when: available data have
changed; the previously used method is not consistent with the IPCC guidelines for that category; a category has
become key; the previously used method is insufficient to reflect mitigation activities in a transparent manner; the
capacity for inventory preparation has increased; new inventory methods become available; and for correction of
errors.” In general, recalculations are made to the U.S. greenhouse gas emission estimates either to incorporate new
methodologies or, most commonly, to update recent historical data.

In each Inventory report, the results of all methodology changes and historical data updates are presented in the
"Recalculations and Improvements" chapter; detailed descriptions of each recalculation are contained within each
source's description contained in the report, if applicable. In general, when methodological changes have been
implemented, the entire time series (in the case of the most recent inventory report, 1990 through 2010) has been
recalculated to reflect the change, per the 2006 IPCC Guidelines (IPCC 2006). Changes in historical data are
generally the result of changes in statistical data supplied by other agencies. References for the data are provided for
additional information.

[END BOX]
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Figure ES-16: 2010 Key Categories

Notes: For a complete discussion of the key category analysis, see Annex 1.
Black bars indicate a Tier 1 level assessment key category.
Gray bars indicate a Tier 2 level assessment key category.



1. Introduction

This report presents estimates by the United States government of U.S. anthropogenic greenhouse gas emissions and
sinks for the years 1990 through 2010. A summary of these estimates is provided in Table 2-1 and Table 2-2 by gas
and source category in the Trends in Greenhouse Gas Emissions chapter. The emission estimates in these tables are
presented on both a full molecular mass basis and on a Global Warming Potential (GWP) weighted basis in order to
show the relative contribution of each gas to global average radiative forcing.2! This report also discusses the
methods and data used to calculate these emission estimates.

In 1992, the United States signed and ratified the United Nations Framework Convention on Climate Change
(UNFCCC). As stated in Article 2 of the UNFCCC, “The ultimate objective of this Convention and any related
legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant
provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would
prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a
time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not

threatened and to enable economic development to proceed in a sustainable manner.”22.23

Parties to the Convention, by ratifying, “shall develop, periodically update, publish and make available...national
inventories of anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by
the Montreal Protocol, using comparable methodologies...”24 The United States views this report as an opportunity
to fulfill these commitments under the UNFCCC.

In 1988, preceding the creation of the UNFCCC, the World Meteorological Organization (WMOQ) and the United
Nations Environment Programme (UNEP) jointly established the Intergovernmental Panel on Climate Change
(IPCC). The role of the IPCC is to assess on a comprehensive, objective, open and transparent basis the scientific,
technical and socio-economic information relevant to understanding the scientific basis of risk of human-induced
climate change, its potential impacts and options for adaptation and mitigation (IPCC 2003). Under Working Group
1 of the IPCC, nearly 140 scientists and national experts from more than thirty countries collaborated in the creation
of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC/UNEP/OECD/IEA 1997) to
ensure that the emission inventories submitted to the UNFCCC are consistent and comparable between nations. The
IPCC accepted the Revised 1996 IPCC Guidelines at its Twelfth Session (Mexico City, September 11-13, 1996).
This report presents information in accordance with these guidelines. In addition, this Inventory is in accordance
with the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories and
the Good Practice Guidance for Land Use, Land-Use Change, and Forestry, which further expanded upon the
methodologies in the Revised 1996 IPCC Guidelines. The IPCC has also accepted the 2006 Guidelines for National
Greenhouse Gas Inventories (IPCC 2006) at its Twenty-Fifth Session (Mauritius, April 2006). The 2006 IPCC
Guidelines build on the previous bodies of work and includes new sources and gases “...as well as updates to the
previously published methods whenever scientific and technical knowledge have improved since the previous
guidelines were issued.” Many of the methodological improvements presented in the 2006 Guidelines have been
adopted in this Inventory.

Overall, this inventory of anthropogenic greenhouse gas emissions provides a common and consistent mechanism
through which Parties to the UNFCCC can estimate emissions and compare the relative contribution of individual
sources, gases, and nations to climate change. The inventory provides a national estimate of sources and sinks for
the United States, including all states and U.S. territories.2> The structure of this report is consistent with the current

21 See the section below entitled Global Warming Potentials for an explanation of GWP values.

22 The term “anthropogenic,” in this context, refers to greenhouse gas emissions and removals that are a direct result of human
activities or are the result of natural processes that have been affected by human activities (IPCC/UNEP/OECD/IEA 1997).

23 Article 2 of the Framework Convention on Climate Change published by the UNEP/WMO Information Unit on Climate
Change. See <http://unfccc.int>. (UNEP/WMO 2000)

24 Article 4(1)(a) of the United Nations Framework Convention on Climate Change (also identified in Article 12). Subsequent
decisions by the Conference of the Parties elaborated the role of Annex | Parties in preparing national inventories. See
<http://unfccc.int>.

25 .S, Territories include American Samoa, Guam, Puerto Rico, U.S. Virgin Islands, Wake Island, and other U.S. Pacific
Islands.
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UNFCCC Guidelines on Annual Inventories (UNFCCC 2006).

[BEGIN BOX]

Box 1-1: Methodological approach for estimating and reporting U.S. emissions and sinks

In following the UNFCCC requirement under Article 4.1 to develop and submit national greenhouse gas emissions
inventories, the emissions and sinks presented in this report are organized by source and sink categories and
calculated using internationally-accepted methods provided by the IPCC.26 Additionally, the calculated emissions
and sinks in a given year for the U.S. are presented in a common manner in line with the UNFCCC reporting
guidelines for the reporting of inventories under this international agreement.2” The use of consistent methods to
calculate emissions and sinks by all nations providing their inventories to the UNFCCC ensures that these reports
are comparable. In this regard, U.S. emissions and sinks reported in this inventory report are comparable to
emissions and sinks reported by other countries. Emissions and sinks provided in this inventory do not preclude
alternative examinations, but rather this inventory report presents emissions and sinks in a common format
consistent with how countries are to report inventories under the UNFCCC. The report itself follows this
standardized format, and provides an explanation of the IPCC methods used to calculate emissions and sinks, and
the manner in which those calculations are conducted.

On October 30, 2009, the U.S. Environmental Protection Agency (EPA) published a rule for the mandatory
reporting of greenhouse gases (GHG) from large GHG emissions sources in the United States. Implementation of 40
CFR Part 98 is referred to as the Greenhouse Gas Reporting Program (GHGRP). 40 CFR part 98 applies to direct
greenhouse gas emitters, fossil fuel suppliers, industrial gas suppliers, and facilities that inject CO, underground for
sequestration or other reasons. Reporting is at the facility level, except for certain suppliers of fossil fuels and
industrial greenhouse gases. For calendar year 2010, the first year in which data were reported, facilities in 29
categories provided in 40 CFR part 98 were required to report their 2010 emissions by the September 30, 2011
reporting deadline.28 The GHGRP dataset and the data presented in this inventory report are complementary and, as
indicated in the respective planned improvements sections in this report’s chapters, EPA is analyzing how to use
facility-level GHGRP data to improve the national estimates presented in this inventory.

[END BOX]

1.1. Background Information
Science

For over the past 200 years, the burning of fossil fuels such as coal and oil, deforestation, and other sources have
caused the concentrations of heat-trapping "greenhouse gases" to increase significantly in our atmosphere. These
gases absorb some of the energy being radiated from the surface of the earth and trap it in the atmosphere,
essentially acting like a blanket that makes the earth's surface warmer than it would be otherwise.

Greenhouse gases are necessary to life as we know it, because without them the planet's surface would be about 60
°F cooler than present. But, as the concentrations of these gases continue to increase in the atmosphere, the Earth's
temperature is climbing above past levels. According to NOAA and NASA data, the Earth's average surface
temperature has increased by about 1.2 to 1.4 °F since 1900. The ten warmest years on record (since 1850) have all
occurred in the past 13 years (EPA 2009). Most of the warming in recent decades is very likely the result of human
activities. Other aspects of the climate are also changing such as rainfall patterns, snow and ice cover, and sea level.

26 see <http://www.ipcc-nggip.iges.or.jp/public/index.html>.
27 See <http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/5270.php>
28 See <http://www.epa.gov/climatechange/emissions/ghgrulemaking.html> and <http://ghgdata.epa.gov/ghgp/main.do>.
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If greenhouse gases continue to increase, climate models predict that the average temperature at the Earth's surface
could increase from 2.0 to 11.5 °F above 1990 levels by the end of this century (IPCC 2007). Scientists are certain
that human activities are changing the composition of the atmosphere, and that increasing the concentration of
greenhouse gases will change the planet's climate. But they are not sure by how much it will change, at what rate it
will change, or what the exact effects will be.29

Greenhouse Gases

Although the Earth’s atmosphere consists mainly of oxygen and nitrogen, neither plays a significant role in
enhancing the greenhouse effect because both are essentially transparent to terrestrial radiation. The greenhouse
effect is primarily a function of the concentration of water vapor, carbon dioxide (CO,), and other trace gases in the
atmosphere that absorb the terrestrial radiation leaving the surface of the Earth (IPCC 2001). Changes in the
atmospheric concentrations of these greenhouse gases can alter the balance of energy transfers between the
atmosphere, space, land, and the oceans.39 A gauge of these changes is called radiative forcing, which is a measure
of the influence a factor has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system
(IPCC 2001). Holding everything else constant, increases in greenhouse gas concentrations in the atmosphere will
produce positive radiative forcing (i.e., a net increase in the absorption of energy by the Earth).

Climate change can be driven by changes in the atmospheric concentrations of a number of radiatively
active gases and aerosols. We have clear evidence that human activities have affected concentrations,
distributions and life cycles of these gases (IPCC 1996).

Naturally occurring greenhouse gases include water vapor, CO,, methane (CH,), nitrous oxide (N,O), and ozone
(Os3). Several classes of halogenated substances that contain fluorine, chlorine, or bromine are also greenhouse
gases, but they are, for the most part, solely a product of industrial activities. Chlorofluorocarbons (CFCs) and
hydrochlorofluorocarbons (HCFCs) are halocarbons that contain chlorine, while halocarbons that contain bromine
are referred to as bromofluorocarbons (i.e., halons). As stratospheric ozone depleting substances, CFCs, HCFCs,
and halons are covered under the Montreal Protocol on Substances that Deplete the Ozone Layer. The UNFCCC
defers to this earlier international treaty. Consequently, Parties to the UNFCCC are not required to include these
gases in national greenhouse gas inventories.31 Some other fluorine-containing halogenated substances—
hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SFs)—do not deplete stratospheric
0zone but are potent greenhouse gases. These latter substances are addressed by the UNFCCC and accounted for in
national greenhouse gas inventories.

There are also several gases that, although they do not have a commonly agreed upon direct radiative forcing effect,
do influence the global radiation budget. These tropospheric gases include carbon monoxide (CO), nitrogen dioxide
(NO,), sulfur dioxide (SO,), and tropospheric (ground level) ozone Os. Tropospheric ozone is formed by two
precursor pollutants, volatile organic compounds (VOCs) and nitrogen oxides (NO,) in the presence of ultraviolet
light (sunlight). Aerosols are extremely small particles or liquid droplets that are often composed of sulfur
compounds, carbonaceous combustion products, crustal materials and other human induced pollutants. They can
affect the absorptive characteristics of the atmosphere. Comparatively, however, the level of scientific
understanding of aerosols is still very low (IPCC 2001).

CO,, CH,4, and N,O are continuously emitted to and removed from the atmosphere by natural processes on Earth.
Anthropogenic activities, however, can cause additional quantities of these and other greenhouse gases to be emitted
or sequestered, thereby changing their global average atmospheric concentrations. Natural activities such as
respiration by plants or animals and seasonal cycles of plant growth and decay are examples of processes that only
cycle carbon or nitrogen between the atmosphere and organic biomass. Such processes, except when directly or
indirectly perturbed out of equilibrium by anthropogenic activities, generally do not alter average atmospheric
greenhouse gas concentrations over decadal timeframes. Climatic changes resulting from anthropogenic activities,

29 For more information see <http://www.epa.gov/climatechange/science>
30 For more on the science of climate change, see NRC (2001).

31 Emissions estimates of CFCs, HCFCs, halons and other ozone-depleting substances are included in this document for
informational purposes.
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however, could have positive or negative feedback effects on these natural systems. Atmospheric concentrations of
these gases, along with their rates of growth and atmospheric lifetimes, are presented in Table 1-1.

Table 1-1: Global Atmospheric Concentration, Rate of Concentration Change, and Atmospheric Lifetime (years) of
Selected Greenhouse Gases

Atmospheric Variable CO, CH, N,O SFg CF,
Pre-industrial atmospheric

concentration 280 ppm 0.700 ppm 0.270 ppm 0 ppt 40 ppt
Atmospheric concentration 390 ppm 1.750-1.871 ppm? 0.322-0.323 ppm*  6.8-7.4 ppt 74 ppt
Rate of concentration change 1.4 ppmlyr 0.005 ppm/yr® 0.26%/yr Linear® Linear®
Atmospheric lifetime (years) 50-200¢ 12° 114° 3,200 >50,000

Source: Pre-industrial atmospheric concentrations and rate of concentration changes for all gases are from IPCC (2007). The
current atmospheric concentration for CO, is from NOAA/ESRL (2009).

2 The range is the annual arithmetic averages from a mid-latitude Northern-Hemisphere site and a mid-latitude Southern-
Hemisphere site for October 2006 through September 2007 (CDIAC 2009).

® The growth rate for atmospheric CH, has been decreasing from 1.4 ppb/yr in 1984 to less than 0 ppb/yr in 2001, 2004, and 2005.
¢ IPCC (2007) identifies the rate of concentration change for SFg and CF, as linear.

9 No single lifetime can be defined for CO, because of the different rates of uptake by different removal processes.

¢ This lifetime has been defined as an “adjustment time” that takes into account the indirect effect of the gas on its own residence
time.

A brief description of each greenhouse gas, its sources, and its role in the atmosphere is given below. The following
section then explains the concept of GWPs, which are assigned to individual gases as a measure of their relative
average global radiative forcing effect.

Water Vapor (H,0). Overall, the most abundant and dominant greenhouse gas in the atmosphere is water vapor.
Water vapor is neither long-lived nor well mixed in the atmosphere, varying spatially from 0 to 2 percent (IPCC
1996). In addition, atmospheric water can exist in several physical states including gaseous, liquid, and solid.
Human activities are not believed to affect directly the average global concentration of water vapor, but, the
radiative forcing produced by the increased concentrations of other greenhouse gases may indirectly affect the
hydrologic cycle. While a warmer atmosphere has an increased water holding capacity, increased concentrations of
water vapor affects the formation of clouds, which can both absorb and reflect solar and terrestrial radiation.
Aircraft contrails, which consist of water vapor and other aircraft emittants, are similar to clouds in their radiative
forcing effects (IPCC 1999).

Carbon Dioxide (CO,). In nature, carbon is cycled between various atmospheric, oceanic, land biotic, marine biotic,
and mineral reservoirs. The largest fluxes occur between the atmosphere and terrestrial biota, and between the
atmosphere and surface water of the oceans. In the atmosphere, carbon predominantly exists in its oxidized form as
CO,. Atmospheric CO, is part of this global carbon cycle, and therefore its fate is a complex function of
geochemical and biological processes. CO, concentrations in the atmosphere increased from approximately 280
parts per million by volume (ppmv) in pre-industrial times to 390 ppmv in 2010, a 39.2 percent increase (IPCC 2007
and NOAA/ESRL 2009).3233 The IPCC definitively states that “the present atmospheric CO, increase is caused by
anthropogenic emissions of CO,” (IPCC 2001). The predominant source of anthropogenic CO, emissions is the
combustion of fossil fuels. Forest clearing, other biomass burning, and some non-energy production processes (e.g.,
cement production) also emit notable quantities of CO,. In its Fourth Assessment Report, the IPCC stated “most of
the observed increase in global average temperatures since the mid-20" century is very likely due to the observed
increased in anthropogenic greenhouse gas concentrations,” of which CO, is the most important (IPCC 2007).

Methane (CH,). CHy is primarily produced through anaerobic decomposition of organic matter in biological
systems. Agricultural processes such as wetland rice cultivation, enteric fermentation in animals, and the
decomposition of animal wastes emit CHy,, as does the decomposition of municipal solid wastes. CHj, is also
emitted during the production and distribution of natural gas and petroleum, and is released as a by-product of coal

32 The pre-industrial period is considered as the time preceding the year 1750 (IPCC 2001).

33 carbon dioxide concentrations during the last 1,000 years of the pre-industrial period (i.e., 750-1750), a time of relative
climate stability, fluctuated by about £10 ppmv around 280 ppmv (IPCC 2001).
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mining and incomplete fossil fuel combustion. Atmospheric concentrations of CH, have increased by about 158
percent since 1750, from a pre-industrial value of about 700 ppb to 1,750-1,871 ppb in 2010,34 although the rate of
increase has been declining. The IPCC has estimated that slightly more than half of the current CH, flux to the
atmosphere is anthropogenic, from human activities such as agriculture, fossil fuel use, and waste disposal (IPCC
2007).

CH, is removed from the atmosphere through a reaction with the hydroxyl radical (OH) and is ultimately converted
to CO,. Minor removal processes also include reaction with chlorine in the marine boundary layer, a soil sink, and
stratospheric reactions. Increasing emissions of CH, reduce the concentration of OH, a feedback that may increase
the atmospheric lifetime of CH, (IPCC 2001).

Nitrous Oxide (N,O). Anthropogenic sources of N,O emissions include agricultural soils, especially production of
nitrogen-fixing crops and forages, the use of synthetic and manure fertilizers, and manure deposition by livestock;
fossil fuel combustion, especially from mobile combustion; adipic (nylon) and nitric acid production; wastewater
treatment and waste incineration; and biomass burning. The atmospheric concentration of N,O has increased by 19
percent since 1750, from a pre-industrial value of about 270 ppb to 322-323 ppb in 2010,3° a concentration that has
not been exceeded during the last thousand years. N,O is primarily removed from the atmosphere by the photolytic
action of sunlight in the stratosphere (IPCC 2007).

Ozone. Ozone is present in both the upper stratosphere, 36 where it shields the Earth from harmful levels of
ultraviolet radiation, and at lower concentrations in the troposphere,37 where it is the main component of
anthropogenic photochemical “smog.” During the last two decades, emissions of anthropogenic chlorine and
bromine-containing halocarbons, such as CFCs, have depleted stratospheric ozone concentrations. This loss of
ozone in the stratosphere has resulted in negative radiative forcing, representing an indirect effect of anthropogenic
emissions of chlorine and bromine compounds (IPCC 1996). The depletion of stratospheric ozone and its radiative
forcing was expected to reach a maximum in about 2000 before starting to recover. As of IPCC’s fourth assessment,
“whether or not recently observed changes in 0zone trends are already indicative of recovery of the global ozone
layer is not yet clear” (IPCC 2007).

The past increase in tropospheric ozone, which is also a greenhouse gas, is estimated to provide the third largest
increase in direct radiative forcing since the pre-industrial era, behind CO, and CH,. Tropospheric ozone is
produced from complex chemical reactions of volatile organic compounds mixing with NO, in the presence of
sunlight. The tropospheric concentrations of ozone and these other pollutants are short-lived and, therefore,
spatially variable (IPCC 2001).

Halocarbons, Perfluorocarbons, and Sulfur Hexafluoride. Halocarbons are, for the most part, man-made chemicals
that have both direct and indirect radiative forcing effects. Halocarbons that contain chlorine (CFCs, HCFCs,
methyl chloroform, and carbon tetrachloride) and bromine (halons, methyl bromide, and hydrobromofluorocarbons
[HFCs]) result in stratospheric ozone depletion and are therefore controlled under the Montreal Protocol on
Substances that Deplete the Ozone Layer. Although CFCs and HCFCs include potent global warming gases, their
net radiative forcing effect on the atmosphere is reduced because they cause stratospheric ozone depletion, which
itself is an important greenhouse gas in addition to shielding the Earth from harmful levels of ultraviolet radiation.
Under the Montreal Protocol, the United States phased out the production and importation of halons by 1994 and of
CFCs by 1996. Under the Copenhagen Amendments to the Protocol, a cap was placed on the production and

34 The range is the annual arithmetic averages from a mid-latitude Northern-Hemisphere site and a mid-latitude Southern-
Hemisphere site for October 2006 through September 2007 (CDIAC 2010).

35 The range is the annual arithmetic averages from a mid-latitude Northern-Hemisphere site and a mid-latitude Southern-
Hemisphere site for October 2006 through September 2007 (CDIAC 2010).

36 The stratosphere is the layer from the troposphere up to roughly 50 kilometers. In the lower regions the temperature is nearly
constant but in the upper layer the temperature increases rapidly because of sunlight absorption by the ozone layer. The ozone-
layer is the part of the stratosphere from 19 kilometers up to 48 kilometers where the concentration of ozone reaches up to 10
parts per million.

37 The troposphere is the layer from the ground up to 11 kilometers near the poles and up to 16 kilometers in equatorial regions
(i.e., the lowest layer of the atmosphere where people live). It contains roughly 80 percent of the mass of all gases in the
atmosphere and is the site for most weather processes, including most of the water vapor and clouds.
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importation of HCFCs by non-Avrticle 538 countries beginning in 1996, and then followed by a complete phase-out
by the year 2030. While ozone depleting gases covered under the Montreal Protocol and its Amendments are not
covered by the UNFCCC, they are reported in this inventory under Annex 6.2 of this report for informational
purposes.

HFCs, PFCs, and SF¢ are not ozone depleting substances, and therefore are not covered under the Montreal Protocol.
They are, however, powerful greenhouse gases. HFCs are primarily used as replacements for ozone depleting
substances but also emitted as a by-product of the HCFC-22 manufacturing process. Currently, they have a small
aggregate radiative forcing impact, but it is anticipated that their contribution to overall radiative forcing will
increase (IPCC 2001). PFCs and SF; are predominantly emitted from various industrial processes including
aluminum smelting, semiconductor manufacturing, electric power transmission and distribution, and magnesium
casting. Currently, the radiative forcing impact of PFCs and SFg is also small, but they have a significant growth
rate, extremely long atmospheric lifetimes, and are strong absorbers of infrared radiation, and therefore have the
potential to influence climate far into the future (IPCC 2001).

Carbon Monoxide. Carbon monoxide has an indirect radiative forcing effect by elevating concentrations of CH, and
tropospheric ozone through chemical reactions with other atmospheric constituents (e.g., the hydroxyl radical, OH)
that would otherwise assist in destroying CH, and tropospheric ozone. Carbon monoxide is created when carbon-
containing fuels are burned incompletely. Through natural processes in the atmosphere, it is eventually oxidized to
CO,. Carbon monoxide concentrations are both short-lived in the atmosphere and spatially variable.

Nitrogen Oxides (NO,). The primary climate change effects of nitrogen oxides (i.e., NO and NO,) are indirect and
result from their role in promoting the formation of ozone in the troposphere and, to a lesser degree, lower
stratosphere, where they have positive radiative forcing effects.3° Additionally, NO, emissions from aircraft are
also likely to decrease CH, concentrations, thus having a negative radiative forcing effect (IPCC 1999). Nitrogen
oxides are created from lightning, soil microbial activity, biomass burning (both natural and anthropogenic fires)
fuel combustion, and, in the stratosphere, from the photo-degradation of N,O. Concentrations of NO, are both
relatively short-lived in the atmosphere and spatially variable.

Nonmethane Volatile Organic Compounds (NMVOCs). Non-CH, volatile organic compounds include substances
such as propane, butane, and ethane. These compounds participate, along with NO,, in the formation of
tropospheric ozone and other photochemical oxidants. NMVOCs are emitted primarily from transportation and
industrial processes, as well as biomass burning and non-industrial consumption of organic solvents. Concentrations
of NMVOCs tend to be both short-lived in the atmosphere and spatially variable.

Aerosols. Aerosols are extremely small particles or liquid droplets found in the atmosphere. They can be produced
by natural events such as dust storms and volcanic activity, or by anthropogenic processes such as fuel combustion
and biomass burning. Aerosols affect radiative forcing differently than greenhouse gases, and their radiative effects
occur through direct and indirect mechanisms: directly by scattering and absorbing solar radiation; and indirectly by
increasing droplet counts that modify the formation, precipitation efficiency, and radiative properties of clouds.
Aerosols are removed from the atmosphere relatively rapidly by precipitation. Because aerosols generally have
short atmospheric lifetimes, and have concentrations and compositions that vary regionally, spatially, and
temporally, their contributions to radiative forcing are difficult to quantify (IPCC 2001).

The indirect radiative forcing from aerosols is typically divided into two effects. The first effect involves decreased
droplet size and increased droplet concentration resulting from an increase in airborne aerosols. The second effect
involves an increase in the water content and lifetime of clouds due to the effect of reduced droplet size on
precipitation efficiency (IPCC 2001). Recent research has placed a greater focus on the second indirect radiative
forcing effect of aerosols.

Various categories of aerosols exist, including naturally produced aerosols such as soil dust, sea salt, biogenic

38 Article 5 of the Montreal Protocol covers several groups of countries, especially developing countries, with low consumption
rates of ozone depleting substances. Developing countries with per capita consumption of less than 0.3 kg of certain ozone
depleting substances (weighted by their ozone depleting potential) receive financial assistance and a grace period of ten
additional years in the phase-out of 0zone depleting substances.

39 NO, emissions injected higher in the stratosphere, primarily from fuel combustion emissions from high altitude supersonic
aircraft, can lead to stratospheric ozone depletion.
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aerosols, sulfates, and volcanic aerosols, and anthropogenically manufactured aerosols such as industrial dust and

carbonaceous?? aerosols (e.g., black carbon, organic carbon) from transportation, coal combustion, cement
manufacturing, waste incineration, and biomass burning.

The net effect of aerosols on radiative forcing is believed to be negative (i.e., net cooling effect on the climate),
although because they remain in the atmosphere for only days to weeks, their concentrations respond rapidly to
changes in emissions.41 Locally, the negative radiative forcing effects of aerosols can offset the positive forcing of
greenhouse gases (IPCC 1996). “However, the aerosol effects do not cancel the global-scale effects of the much
longer-lived greenhouse gases, and significant climate changes can still result” (IPCC 1996).

The IPCC’s Third Assessment Report notes that “the indirect radiative effect of aerosols is now understood to also
encompass effects on ice and mixed-phase clouds, but the magnitude of any such indirect effect is not known,
although it is likely to be positive” (IPCC 2001). Additionally, current research suggests that another constituent of
aerosols, black carbon, has a positive radiative forcing, and that its presence “in the atmosphere above highly
reflective surfaces such as snow and ice, or clouds, may cause a significant positive radiative forcing” (IPCC 2007).
The primary anthropogenic emission sources of black carbon include diesel exhaust and open biomass burning.

Global Warming Potentials

A global warming potential is a quantified measure of the globally averaged relative radiative forcing impacts of a
particular greenhouse gas (see Table 1-2). It is defined as the ratio of the time-integrated radiative forcing from the
instantaneous release of 1 kilogram (kg) of a trace substance relative to that of 1 kg of a reference gas (IPCC 2001).
Direct radiative effects occur when the gas itself absorbs radiation. Indirect radiative forcing occurs when chemical
transformations involving the original gas produce a gas or gases that are greenhouse gases, or when a gas
influences other radiatively important processes such as the atmospheric lifetimes of other gases. The reference gas
used is CO,, and therefore GWP-weighted emissions are measured in teragrams of CO, equivalent (Tg CO, Eq.)42
The relationship between gigagrams (Gg) of a gas and Tg CO, Eq. can be expressed as follows:

Tg
Tg CO, Eq =(Gg of GWP)x| ———
g 2 EQ (90 gas)x( )x(l,OOOng

where,
Tg CO, Eq. = Teragrams of CO, Equivalent
Gg = Gigagrams (equivalent to a thousand metric tons)
GWP = Global Warming Potential
Tg = Teragrams

GWP values allow for a comparison of the impacts of emissions and reductions of different gases. According to the
IPCC, GWPs typically have an uncertainty of £35 percent. The parties to the UNFCCC have also agreed to use
GWPs based upon a 100-year time horizon, although other time horizon values are available.

Greenhouse gas emissions and removals should be presented on a gas-by-gas basis in units of mass... In
addition, consistent with decision 2/CP.3, Parties should report aggregate emissions and removals of
greenhouse gases, expressed in CO, equivalent terms at summary inventory level, using GWP values
provided by the IPCC in its Second Assessment Report... based on the effects of greenhouse gases over a

40 Carbonaceous aerosols are aerosols that are comprised mainly of organic substances and forms of black carbon (or soot)
(IPCC 2001).

41 volcanic activity can inject significant quantities of aerosol producing sulfur dioxide and other sulfur compounds into the
stratosphere, which can result in a longer negative forcing effect (i.e., a few years) (IPCC 1996).

42 Carbon comprises 12/44'™ of carbon dioxide by weight.
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100-year time horizon.43

Greenhouse gases with relatively long atmospheric lifetimes (e.g., CO,, CH4, N,O, HFCs, PFCs, and SFg) tend to be
evenly distributed throughout the atmosphere, and consequently global average concentrations can be determined.
The short-lived gases such as water vapor, carbon monoxide, tropospheric ozone, ozone precursors (e.g., NO,, and
NMVOCs), and tropospheric aerosols (e.g., SO, products and carbonaceous particles), however, vary regionally,
and consequently it is difficult to quantify their global radiative forcing impacts. No GWP values are attributed to
these gases that are short-lived and spatially inhomogeneous in the atmosphere.

Table 1-2: Global Warming Potentials and Atmospheric Lifetimes (Years) Used in this Report

Gas Atmospheric Lifetime GWpP?
CO, 50-200 1
CH/° 1243 21
N,O 120 310
HFC-23 264 11,700
HFC-32 5.6 650
HFC-125 32.6 2,800
HFC-134a 14.6 1,300
HFC-143a 48.3 3,800
HFC-152a 15 140
HFC-227ea 36.5 2,900
HFC-236fa 209 6,300
HFC-4310mee 17.1 1,300
CF, 50,000 6,500
C,Fs 10,000 9,200
C4F1o 2,600 7,000
CeF14 3,200 7,400
SFg 3,200 23,900

Source: (IPCC 1996)

& 100-year time horizon

® The GWP of CH, includes the direct effects and those indirect effects
due to the production of tropospheric ozone and stratospheric water
vapor. The indirect effect due to the production of CO, is not included.

[BEGIN BOX]

Box 1-2: The IPCC Fourth Assessment Report and Global Warming Potentials

In 2007, the IPCC published its Fourth Assessment Report (AR4), which provided an updated and more
comprehensive scientific assessment of climate change. Within this report, the GWPs of several gases were revised
relative to the SAR and the IPCC’s Third Assessment Report (TAR) (IPCC 2001). Thus the GWPs used in this
report have been updated twice by the IPCC; although the SAR GWPs are used throughout this report, it is
interesting to review the changes to the GWPs and the impact such improved understanding has on the total GWP-
weighted emissions of the United States. Since the SAR and TAR, the IPCC has applied an improved calculation of
CO;, radiative forcing and an improved CO, response function. The GWPs are drawn from IPCC/TEAP (2005) and
the TAR, with updates for those cases where new laboratory or radiative transfer results have been published.
Additionally, the atmospheric lifetimes of some gases have been recalculated. In addition, the values for 