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Despite g rea t theore t ica l and technological in te res t in polyacetylene, 

(CH)j^, the basic features of i t s band s t ruc tu re have not been unambiguously 

resolved. Since photoconductivity and optical absorption data have frequently 

been used to infer information on the band s t ruc ture of semiconductors , we 

have c a r r i e d out such m e a s u r e m e n t s on (CH)^. This work was initiated 

under DOE funding (contract No. DE-AC04-79ET-23002) and supported by 

DARPA (N00014-75-C-0962) on a grant monitored by the Office of Naval 

Resea rch . 

We repor t the main resul ts-of an extensive study of the photocon­

ductivity (Aa ) and absorpt ion coefficient (a) in (CH) . The absence of 

photoconductivity in cis-(CH) , despite the s imi la r i ty in optical p roper t ies 

indicates that Aa , in t rans-(CH) is induced by i somer iza t ion . We find 
ph X •' 

that i somer iza t ion genera tes s ta tes deep inside the gap that act as "safe 

t r a p s " for minor i ty c a r r i e r s and thereby enhance the photoconductivity. 

Compensation of t rans-(CH) with ammonia appears to dec rease the number 

of safe t r a p s , whereas acceptor doping i n c r e a s e s their number . Thus, 

chemical doping can be used to control the photoconductive response . The 

energy of the safe t raps inside the gap is independent of the p rocess used 

to genera te them; indicative of an in t r ins ic localized defect level in 

t rans-(CH) . A coherent p ic ture based on the soliton model can explain 

these r e su l t s , including the safe t rapping. 

The photoconductivity studies were c a r r i e d out at room t empera tu re 



on thin film samples (thickness of a few mic rons ) polymerized di rect ly 

on glass s u b s t r a t e s . A surface cel l configuration was employed using 

ohmic contacts made with s i lve rpas te or Electrodag conducting paints . 

The m e a s u r e m e n t s were c a r r i e d out in the range 0. 6 - 3.0 eV using phase 

sensi t ive detection of the voltage change a c r o s s a r e s i s t o r in s e r i e s with 

the sample . Due to excellent t h e r m a l anchoring of the sample to the m a s s i v e 

2 

glass subs t ra te , sample heating was found to be unimportant . Where 

neces sa ry , co r rec t ions were made for t r ansmi t t ed light. The absorpt ion 

coefficient studies were c a r r i e d out on freshly grown s e m i - t r a n s p a r e n t 

thin films on g lass s u b s t r a t e s . All films were kept under vacuum or in an 

iner t a tmosphere . 

In Fig. 1 the logar i thm of the photocurrent (I ) in t rans-(CH) is 
ph X 

shown as a function of incident photon energy. The resu l t s were co r rec t ed 

for t r a n s m i s s i o n ( less than 15% over the whole spec t rum for this sample) . 

Th^ inse t in Fig. 1 shows a compar ison of the same data (curve A) with 

resu l t s from three other samples of varying quality (see below) in o rde r to 

point out the sample dependence of the photocurrent spec t rum. Despite the 

large var ia t ion in the four sets of r e su l t s , a dis t inct common feature i s the 

r a the r sharp r i s e above 1. 1 eV. The peak below 1. 5 eV, which may be 

re la ted to the 1. 35 eV peak repor ted e a r l i e r , i s not seen in a l l s amp le s . 

Measu remen t s of I , in cis-(CH) were at tempted under s imi l a r 
ph X 

conditions without success ; no photocurrent has been detected in samples 

2 
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Fig. , - 2 S 1: Photocurrent of o rde r of 10""° ampere s per photon per second 
at 2. 0 eV has been generated through application of a 10* vo l t / cm 
e lec t r ic field. 
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of 80% cis—rich (CH) . In situ i somer i za t ion of the same film resul ted in 
X 

the s izeable I , shown in F ig . 1. The upper l imit on I , in cis-(CH) is 
ph ° ph X 

th ree o r d e r s of magnitude s m a l l e r than in t rans- (CH) . 

Since the dark conductivity can be va r i ed by more than twelve o r d e r s 
4 

of magnitude through doping and compensat ion, we have invest igated the 

corresponding effects on Aa . The data, after compensat ion 

with ammonia (NHj ) a n d after light doping with A s F a r e a lso shown in 

Fig. 2. The curve labeled "compensa ted" is from the same sample as that 

labeled "ini t ia l r esu l t " ; the "compensated"data were obtained after exposure 

to ammonia sufficient to i n c r e a s e the dark r e s i s t ance by seve ra l o r d e r s 

of magni tude. The curve labeled "acceptor doped" in Fig . 2 was obtained 

subsequently f rom the s a m e sample after light doping with A s F . 

Compensat ion with ammonia appears to have two dis t inct effects. 

F i r s t , at energ ies n e a r and below the threshold , I , is dec reased considerably 
ph 

relat ive to the photocurrent at higher ene rg ie s . Second, the overal l photo­

conductive response , including the energy region above the edge, d e c r e a s e s 

after compensat ion. Subsequent light doping with A s F causes a uniform 

inc rease in the photoresponse . Note that the doping and compensation 

exper iments cause I to vary by m o r e than two o r d e r s of magnitude with 

essent ia l ly no shift of the photoconductive threshold . After compensat ion, the 

resu l t s for samples (C) and (D) (inset to Fig. 1) change to r e semble that 

shown by curve (A). The effect of compensat ion is shown in m o r e detai l 

for sample (C) in the inse t to Fig. 2. 

4 
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Fig. 2: Photocurrent spectrum for trans-(CH)^. (o) as-grown trans-(CH)^; 
(x) after compensation with NI^ ; (+) after doping with AsF^; all on 
the same sample. The inset shows the effect of compensation on 
sample (C) of Fig. 1. 
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The optical densi ty of a carefully p repa red uniform thin film is 

shown on Fig. 3 as a function of photon energy. The data were obtained 
2 

with the film cooled to 77 K and have been normal ized to show the absorpt ion 

coefficient. Note that the absorp t ion i n c r e a s e s by m o r e than two o r d e r s of 

magnitude at the sha rp edge above 1. 4 eV. As in the ca se below threshold in 

I , , the absorpt ion below 1.4 eV i s somewhat sample dependent. The basic 
^^ 1,5 

differences between this r e su l t and those repor ted e a r l i e r a r e the somewhat 

sha rpe r edge and wider range in a due to the high quality (CH) film. The 

photocurrent r e su l t s from Fig. 1 a r e a lso shown as log I for compar i son . 
10 ph 

We note that the photoconductivity edge is about 0. 3 eV lower in energy than 

that of the absorpt ion coefficient. 

In addition to the ma in absorpt ion, a weak absorpt ion pealc at about 

0. 9 eV is also evident in the data of Fig. 3. A second weak absorpt ion at 
3 

about 1.45 eV, repor ted previous ly , i s detectable when the data a r e expanded 

to a p roper sca le . The osc i l l a tor s t rengths of these two weak absorpt ions 

a r e comparable and about th ree o r d e r s of magnitude s m a l l e r than that of 

the main absorpt ion. 

Summar iz ing; i somer iza t ion gives r i s e to photoconductivity in 

t rans-(CH) with a threshold near 1. 1 eV, about 0. 3 eV below the absorpt ion 
X 

edge. Compensat ion and accep to r doping dec rea se and i n c r e a s e the photo­

conductivity, respec t ive ly , without changing the threshold energy. 

The sharp r i s e in a together with the monotonic d e c r e a s e above 2 eV 
5,6 

has been a t t r ibuted to the d i rec t interband t rans i t ion in a one-d imens ional 

6 
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5 
(1-d) band s t r u c t u r e . The square root divergence of the joint densi ty of 

s ta tes is p resumably rounded by d i s o r d e r and th ree -d imens iona l (3-d) 
7 

in terchain coupling. The r e su l t s of F ig . 3 would then imply a 1-d d i r ec t 

band gap of about 1. 6 eV with 3-d coupling and d i s o r d e r dec reas ing the 

min imum gap to about 1.4 eV. 

The peak in Ot nea r 2 eV is re la ted to the t rans i t ion from the peak 

in the density of s ta tes in the valence band (VB) to that of the conduction 

band (CB). The rounding appears to shift the position of the peaks in the 

VB and CB dens i t i es of s ta tes by about 0. 2 eV. The weak absorpt ion 

nea r 0. 9 eV would then cor respond to a t rans i t ion between the peak in 

VB densi ty of s ta tes and a level inside the gap. Relative to tlie VB edge, 

the gap s ta te occurs at about 0. 7 eV, S imi lar ly the second weak 

absorpt ion peaking near 1.45 eV desc r ibed above locates a second level 

n e a r 1. 1 - 1. 2 eV above the VB edge. Independent evidence of this second 

level is found in the s t ruc tu re observed in Ao s tar t ing at about 1. 1 eV 

with a maximum near 1. 4 eV (see F igs . 1 and 2). The magnitude of 

the peak is sample dependent, and it is removed by compensat ion. 

We note that in this analys is we have ignored any shifts resul t ing 

from energy dependent m a t r i x e lements associa ted with the optical 

t r ans i t ions . The re levant energ ies a re sketched on a band d i ag ram 

in the inse t of Fig. 3, r e fe r r ing all values to the edge of the valence 

band. 
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Photoconductivity a r i s e s w h m photon absorpt ion resu l t s in 

generat ion of e lec t ron-hole (e-h) pa i r s which can be separa ted in an 

e lec t r i c field. Often, the photogenerated e-h pa i r s cannot be separa ted 

due to exciton formation or geminate recombination. In such a case one 

has absorpt ion without photoconduction. Since the onset of Aa is about 

0. 3 eV lower in energy than the onset of a, it is c lea r that the photoconduc­

tion p r o c e s s in t r ans -(CH) is in t imate ly associa ted with the p resence of 

s ta tes deep inside the gap. The fact that we have not been able to detect 

photoconductivity in cis-(CH) indica tes that such s ta tes have been crea ted 
X 

in the i somer i za t ion p r o c e s s . 

It is well-known that photoconductivity can be enhanced by the 

p re sence of s ta tes in the gap, so-ca l led " s a f e - t r a p s " ; i. e. localized s tates 

that can capture e lec t rons (minori ty c a r r i e r s ) and prevent recombination 

8 

with mobile holes . As a resu l t , the recombination t ime is lengthened con­

s iderably , thereby enhancing the photoconductivity. In the absence of t r ap -
8 

ping, and under s teady s tate conditions 

Aa , =eT r ( l + b) U (1) 
ph R e 

where r is the c a r r i e r photogenerat ion ra te , ''"^ i^ ^^^- recombination 
R 

l i fet ime, H is the e lec t ron mobili ty and bM is the hole mobility. In the 
e ^ 9 

case of safe t rapped minor i ty c a r r i e r s (electrons), the additional photo-

genera ted holes will i n c r e a s e with the number of trapped e lec t rons . They 

will continue to produce a photocurrent until the trapped e lec t rons eventually 

9 



recombine e i ther d i rec t ly or by p r i m a r y excitation back into the conduction 

band. If the ave rage t ime a minor i ty c a r r i e r spends in a safe t r ap i s T 
2 • 

and T (T < T ) is the average t ime before i t is t rapped, equation (2) then 
8 

becomes : 

T 

Aa ^ = e r T ^ [ l + b + b - ^ ] H (2) 
ph R T e 
^ 1 

For T » T , I i s enhanced by T / T » 1 and the photoconductive decay 
2 1 ph ' ' s i ^ ' 

i s de te rmined by T In such a case Aa would turn on at an energy 

corresponding to the t r ans i t ion from the VB to the safe t r ap state inside 

the gap, explaining the unusual resu l t of Fig. 3. Trans ien t measurenaents 

indicate a. long decay t ime of o r d e r a few mi l l i seconds , consis tent with 

2 
these i deas . The sample dependent peak in the photocurrent spec t rum 

(Figs . 1 and 2) co r re sponds to d i rec t excitat ion of an e lect ron f rom the VB peak 

into a safe t r ap . For such a d i rec t excitat ion one obtains essent ia l ly 100% 

trapping, or T -* 0 resul t ing in a maximum in I . 

Compensat ion of t rans- (CH) would chemical ly fill the safe t r aps 
x 

making them unavailable for photoexcited e l ec t rons . Acceptor doping 

would tend to genera te new safe t r aps a n d / o r empty the filled ones making 

them available for photoexcited e l ec t rons . The fact that (Fig. 2) accep tor 

doping can i n c r e a s e ACJ , well beyond the undoped resul t while leaving the 

photoconductivity edge at the same energy i s , therefore , pa r t i cu la r ly important . 

10 



The observat ion that i somer iza t ion induces safe t r ap s tates inside 
10-13 

the gap is suggestive of the applicabil i ty of the soliton model. The 

accep to r doping exper iments fur ther indicate that positively charged 

solitons (S ), p resen t even in the undoped m a t e r i a l , a r e of principle 

impor tance . Although other mechan i sms for generating safe trapping 

14 
s ta tes in-the gap mus t be cons idered , the fact that the threshold for 

Ao does not shif t ,e i ther after compensat ion or after subsequent doping, 
ph 

points to an in t r ins ic defect which is not specific to a pa r t i cu la r dopant. 

Detailed ass ignments mus t await a m o r e thorough understanding of the 

role of the e l ec t ron -e l ec t ron Coulomb interact ion and the binding of 

charged soli tons to the negative dopant ions. 

The long photoconductive decay t ime is of special i n t e re s t since 

one would anticipate rapid minor i ty c a r r i e r recombination in a d i sordered 
15 9,16 

sys tem with a high densi ty of major i ty c a r r i e r s . The identification 

of the impor tant role played by solitons suggests a m o r e detailed under­

standing of the long l i fe t ime. The t rans i t ion rate of safe trapped e lec t rons 
o + 

to the VB (S ^-h"* S ) would be dependent on finding a mobile hole nearby. 

Since within the soliton p ic ture the dark c a r r i e r s a r e all charged solitons 

the nunnber of VB holes would be r e s t r i c t ed to the small number of 

photogenerated c a r r i e r s . As a resul t ,T^ would be long even though the 
9,16 18 ".3 

dopant level is in excess of 10 cm . Thus although considerable 

detailed theore t ica l work is requ i red , it nnay be possible to vmderstand 

the safe t rapping as a d i rec t resu l t of soliton formation in t rans-(CH) . 11 
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Stability of Polyacetylene 

To check the effect of the a i r exposure on the undoped (CH) , an 

onOline exffe3y.ment was set up to monitor conductivity v s . t ime . Samples 

were mounted in a glove bag under argon a tmosphe re . In the f i rs t th ree 

hours of a i r exposure , the conductivity of cis-(CH) inc reased by one o rde r 

of magnitude while that of t rans- (CH) inc reased by only about a factor of t h ree . 

Upon pumping out the a i r , the conductivity re turned to i t s ini t ial value. 

Such revers ib i l i ty was a l so observed e a r l i e r in e lec t ron spin resonance 

exper iments . Air exposure of heavily doped metal l ic samples for 2 hours 

resul ted in a 40% and 20% d e c r e a s e , respect ively , for rCH(AsF ) ] and 
6 y X 

[CH(I ) ] . Studies of the effect of oxygen on metal l ic [CH(I ) ] samples 

showed a d e c r e a s e in conductivity of about 10% in the f i rs t four hours . 

In an ini t ial a t tempt to s tabi l ize the samples after doping, paraffin 

wax coatings were applied. Conductivity m e a s u r e m e n t s of uncoated and wax 

coated meta l l ic [CH(I ) ] we re c a r r i e d out on samples doped at the same 

t ime and under ident ical conditions. The conductivity of the wax coated 

sample dec reased only 10% after 12 hours , whereas the conductivity of the 

uncoated sample fell by a factor of five during the same period. 

S imi la r t e s t s were c a r r i e d out in connection with the t empera tu re 

dependence m e a s u r e m e n t s . The t e m p e r a t u r e dependence exhibited by 

doped samples obtained from the bottom of the r eac to r was not significantly 

different from that obtained from samples extracted from, the side wal ls . 

14 



Using cis samples of e i ther origin, metal l ic A s F -doped (CH) showed a 

slight i n c r e a s e in conductivity (a few per cent) below room tempera tu re as 

noted previously. Samples mounted after doping, or samples re-painted 

with solvent containing Elec t rodag, showed a monotonic dec rease in con­

ductivity with decreas ing t e m p e r a t u r e . Exposure to a i r had s imi la r effects; 

the weak maximum reduced in magnitude and shifted toward higher t empera tu re 

before disappear ing after ~ 30 minutes exposure . The wax coated samples 

showed sinnilar t e m p e r a t u r e dependences to those of the uncoated ones. 

Stabilization studies a r e continuing at the Universi ty of Pennsylvania 

and a t Rohm and Haas Company. Through coatings and ant i -oxidants , Rohm 

and Haas have achieved major improvements in long t e r m stability. For 

information on thei r work contact the following: 

Dr . War ren Niederhauser 
Di rec to r of Resea rch 
Rohm and Haas Company 
Resea rch Labora to r i e s 
Spring House, PA 19477 
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