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PREFACE 

These notes are part of a series of lectures delivered at Madras in December 1966 and 
January 1967. 

Chapter I, by &• Charpak, is an introduction to the most important facts in this very 
rich field of the neutral kaon physics. These notes do not pretend to be a comprehensive 
study of the neutral kaon physics. They overlook some of the very elegant and important 
experiments which started this field, and only the most recent ones are usually considered. 

The notes in Chapter I are an introduction to the second part, treated by M. Gourdin, 
where the theoretical significance of the experiments and the results are discussed in detail 
in Chapters II to IV. 

The authors are indebted to Profs. J.S. Bell and J. PrentkL for many clarifying discussions. 

They also wish to express their special gratitude to Prof. A. Ramakrishnan for the warm 
hospitality he extended to them at the Matscience Institute, and to the colleagues of the 
Institute for the stimulating atmosphere of the lectures and discussions. One of the authors 
(M.G.) is indebted to Dr. D. Schiff for her help in the numerical computations performed on 
the UNIVAC 1107 of the Faculte' des Sciences d1 Orsay. 

SIS/kw/jm-jsh 
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INTRODUCTION 

In 1957 there was established the non-invariance of weak interactions under parity 
transformation. It was the observation of the K decay into two channels of opposite parity 
(the d~r puzzle) which, in mid-1956, led Yang and Lee to question the validity of the parity 
conservation law. Ever since then, a great deal of attention has been paid to checking the 
conservation laws admitted in physics as simplifying logical hypothesis* 

It rapidly appeared that the weak interactions also violate C-conjugation invariance. 
It was admitted as a law of nature that for each particle described by the quantum numbers , 
Q the charge, B the baryon number, L , L the lepton numbers, Y the hypercharge, and I the 
third component of isotopic spin, there exists an antiparticle for which these numbers are 
of opposite sign with the same mass and lifetime, enjoying the same interactions. For the 
fermions, in addition, the parity is also opposite, while all other quantum numbers are the 
same. 

It is amusing to note that in 1932, when Oppenheimer suggested that the negative 
energy states of Dirac might be antielectrons, Pauli wrote ': "This explanation appears to 
be unsatisfactory because the laws of nature in this theory are exactly symmetric with respect 
to electrons and antielectrons ••• • Thus we do not believe this explanation can be 
considered seriously". 

The same year, Anderson's discovery of the positron gave the first experimental 
proof of this symmetry law which remained unquestioned until 1957* since it was based on the 
existence of the C-conjugate mirror pairs: K+K**, ju+/u** ir+tT p p, n n, etc. 

The violation of C "by weak interaction is illustrated, for instance, by the decay 
of the pion: the C-conjugate state of ir+ -> /i+ + v is TT -* \T + v • It was observed that 
the neutrinos emitted in the first reactions are left-handed. The C-conjugate reaction should 
correspond to antineutrinos that are also left-handed. Experiment shows that such a state 
never occurs in nature. The helicity states of the neutrinos are known from the helicity 
of the muons. 

2) 
As soon as P and C conservation appeared to be violated, Landau ', and indepen­

dently Lee and Yang ', put forward the hypothesis that all the laws of nature, including those 
governing weak interactions, were invariant under the combined operation PC* This restored 
the right-left symmetry of the universe. Since it is impossible to distinguish in a non-
arbitrary way between matter and antimatter, the violation of parity does not provide us 
with a means of telling, in an absolute way, right from left. 

The validity of the PC invariance was best illustrated by the interdiction of the 
decay into two pions for the long-lived neutral kaon, to the accuracy level of 1$ established 
in 19584\ and 0.3$ in 1961S^ • 

From Lorentz invariance, the hypothesis of local interaction, and the causality 
principle in field theory, it was established " ' that all the laws of nature are invariant 
under the transformation L = PCT. This law connects together the PC invariance and the 
invariance under time reversal. 

) These numbers are arbitrarily set to zero whenever they cannot be defined. 
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T invariance in weak interactions was checked in several experiments. The validity 
of this law seems to be established to the level of accuracy so far attained by difficult 
experiments. 

The K?K£ system was known prior to the discovery of parity violation. The hypothesis 
9) 

of two neutral kaons with short and long lifetimes was advanced in 1955 by Gell­Mann and Pais • 
After the formulation of the strangeness scheme of Gell­Mann and Nishijima in 1953* Fermi is 
quoted as having said to Gell­Mann ': "I wonft believe in your scheme until you have a way of 
telling K° from K° M. 

The K? was identified in 1955 • Until 1957, the K° and K$ were defined as eigenstates 
of the C conjugation and, after 1958, as eigenstates of the PC conjugation. In 1958, the K% 
were discovered by Bardon et al. '. The study of the decay states strongly supported the hypothesis 
that they were eigenstates of PC, both P and C appearing to be violated in the decay. 

In 1964, Christenson et al. ' showed that a small fraction of the K* can decay in a 
channel forbidden by PC conservation Kg ­» IT tr • 

Several hypotheses were put forward to save the PC conservation law. They were all 
discarded by experiment, which also established with great accuracy the amount of PC violating 
decay and the mass difference between the long­lived and the short­lived kaons. 

Finally, in the fall of 1966, the measurements done at CERN ' and at Princeton ' of 
the decay of K% into two neutral pions overthrew the superweak theory of PC violation, which 
had to admit the validity of the |Al| = J4 rule in the interaction responsible for the PC 
violating decays of the K%. 

In giving our lectures at this stage of the evolution, it appeared to us useful to 
make a more general analysis than the one used in some of the most frequently quoted papers on 
this subject in which, for instanoe, the hypotheses of PCT invariance or the Al = % law are 
introduced early in the analysis. Michel Gourdin has made this theoretical analysis which he 
will present in this same series of lectures, and we shall discuss the theoretical implications 
of the observed facts. 

The following subjects will be treated in these lectures: 

­ The K1K2 system under the hypothesis of PC conservation. The Al = 1/2 rule in the 
decay of the kaons. 

­ Properties of neutral kaons. Interaction with matter. Measurement of the mass 
difference and of the sign of the mass difference. Measurement of the parameters 
of the PC violating decays. 

­ G­eneral analysis of the K°K° system. Discussion of the observable consequences of 
the different conservation laws or selection rules. 

­ Theoretical implications. 

10
) 

*) Quoted by J.J. Sakurai ♦ 



CHAPTER I 

THE K°K° SYSTEM UNDER THE ASSUMPTION OF PC INVARIANCE 

K° and K° have a definite hypercharge (+1 and -1) • This is the only quantum number which 
distinguishes them. Weak interactions do not conserve hypercharge. There can be transitions 
between K° and K? , for instance through diagrams of the type. 

K° 

This situation is unique. It cannot occur for charged kaons, because of conservation of charge. 
It cannot occur for neutral baryons or leptons, because of the conservation of the baryonic or 
leptonic numbers. 
1.1 The K°< and K% states 

From the point of view of weak interactions, K° or K° cannot be considered as eigenstates 
of the Hamiltonian. Let us assume that PC is a good quantum number for the weak interactions. 
It is easy to construct two eigenstates of PC 

1 K? « 
and 

-K (K° + PC K°) PC = +1 

K * = 72 ( K° - ™ K<>) P C = ~1 

(I.D 

We can define K° = +PC K° or K° = -PC K°. 

The sign is a matter of definition. Strong and electromagnetic interactions conserve 
hypercharge, as well as P and C, and the matrix elements of these interactions between K° and 
K° vanish. This makes the relative phase of K° and K° arbitrary. In these lectures we are 
going to use as convention K° = PC K°. 

Energetically, K° or K° (mass ~~ 500 MeV) can decay into two or into three pions. Because 
of the constant reference in our discussion to the P, Cf and PC eigenvalues of such states, the 
properties of these pion states (globally neutral) of which we make use are established in 
Appendix A and summarized in Table 1 • 

Table 1 

Some properties of 2ir and 3w states, globally neutral. 

P a r i t y P 
Charge conjugat ion C 

Combined p a r i t y PC 

ir°7r° 

+1 
+1 

+1 

TT+TT 

+1 
+1 

+1 

IT IT ir° 

-1 

( - 1 ) ' , ( -1 ) I + 1 

(l: r e l a t i v e o r b i t a l 
momentum of IT+TT"* 
I : t o t a l i s o s p i n ) 

(-D« + 1 , (-D1 

TT°V0Vf° 

-1 
+1 

-1 
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We see from this table that the PC = -1 state: 

KS = jg- (K° - 5°) 
can never reach the trV state if PC is a good quantum number, while the 

K? = ̂  (K° + K°) 

can never reach a ir°irQir0 state In a strong interaction we produce the eigenstates of Y: 
K° and K°. They can be considered as superpositions of K? and K|. 

K° = 4 (K? + K§) 
V 2 (1*2) 

K° « ̂  (K? - K|) . 

Different channels are available for K° and K|, and there is no reason for them to have the 
same lifetime. The decay into 2xr being favoured over the three-body decay by the available 
phase space volume, one expects a shorter lifetime for the K°. 

Experimentally, one observes two neutral kaons with respective lifetimes 
T(K|) SB (0.843 ± 0.013)10 °sec and r(K2) = (5*15 ± 0.44)10~ sec, the first one decaying 
mainly by emission of two pions. 
1 .2 The time propagation of the neutral kaon states 

We have not proved at any stage that the PC = ±1 superpositions of K° and K° have a 
definite mass and a definite lifetime. The theoretical proof relies on the treatment of 
Wigner-Weisskopf and is described in several papers to which we refer our readers 5* '. 
Since, until 1964, experiments were showing the existence of a long-lived and a short­
lived component decaying into two channels with opposite PC parity, it was a natural step 
to identify these particles with the PC eigenstates defined by our relations. 

The Wigner-Weisskopf method introduces a complex mass matrix. For a stable stationary 
state the solutions of the wave equations contain the phase factor e ̂ ° ,- in the rest frame. 
For an unstable particle decaying with a lifetime l/r, the phase factor becomes e where 
M = mo - i/2 T. This introduces in the norm of the states the factor e describing the 
exponential decay. 

The next step is to consider a kaon as a superposition of the Ko and K° just in analogy 
with the two spin states of a spin Y2 particle. 

Such a state ijs = (K° K°) propagates according to a generalized two-component Schrodinger 
equation: 

If K and K were not coupled, this is equivalent to two independent Schrodinger equations, 
withD^i 2 =#{21 = 0. The coupling of the two states via the weak interactions leads to the 
coupling of the two equations. 
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A rotation of the basis in the K°K° space allows the definition of two new states K? and K£ 
which obey a Schrodinger equation with a diagonal M matrix. The diagonalization is done expli­
citly in Chapter II in the most general case. In other words, these states propagate with time 
according to the phase factors e 1 and e 2 , where Mi and M2 are the complex numbers 
Mi = mi - i/2 T) and M2 = ma - i/2 Y2, mi and T^ being the rest mass and the decay width of 
the short-lived component, while nfe and T2 refer to the long-lived component, r being the proper 
time* . These states are the PC = +1 and PC = -1 eigenstates we have already defined in the 
case where PC is not violated in the decay. 

As will appear clearly after the first lecture by Professor Gourdin, the mass matrix is 
simply 

M f 
AM -TT M 2 

when PCT and PC invariance holds, where AM = complex mass difference between K? and K2, and 
M = (M, + M2)/2# 

After a proper time r, a K° state will have the form 

K°(r) = 7? K? e -iMt + K| e ) 

If we square matrix elements obtained from such an expression, we are left with two factors 
e~F*r and e""̂ «T for each of the two components, reflecting the exponential decay of the states. 

If the two states K° and K2 are written in terms of vectors 

K? 

Time 0 Time x 

we see from the above formulae that with time the length of the Kt shortens because 1*1 » Tz 
and its phase changes relative to K£ by an angle 9 = Amr, where Am is the mass difference. 

This is the basis of all the interference effects and of the measurement of the mass 
difference. Whenever we produce a mixture of K° and K% we can look on any physical effect whose 
amplitude can be contributed by both K° and K2. The rotation of phase between the components 
contributions as a function of time will give rise to the interference effects dependent on 
An. 

*) The fact that a differencevin the lifetimes should correspond to mi / m2 was first pointed 
out by Pais and Piccioni1 7'. 
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1 .3 The origin of the mass difference between Ki and K2 

What can we expect a priori for Am? 

The virtual states corresponding to the rest masses of K? and K| are different and it is 
natural that their masses should be different. It is interesting to note that if the pions 
would have been of a mass higher than that of the kaons, thus forbidding the decay into real 
2ir or 3TT states, the masses of the K| and of the K2 would still have been different, although 
the experimental evidence for the two states would have been rather hopeless. If the mass of 
the pion would be such as to forbid the non-leptonic decays but allow the semi-leptonic ones, 
we would never have had such clear evidence about the PC properties, but the lifetimes would 
have been different and the semi-leptonic decays would have allowed a precise determination of 
the mass difference. 

The contribution of the above matrix elements to the mass must be of the order of &2 

(G is the weak interaction constant ̂ 10 /mp, Am = a G-2); a must have the dimensions m5• 
Since we are unable to calculate strong virtual states we have to make a guess and write 
a = m-ir. Then 

Am = 10~10 -| - 10~5 eV - 10+1° sec"-1 . 
"p 

The value of a depends on what is the energy of the virtual states playing a role in the self-
mass diagram. If these energies do not go beyond 1 GreV we have here a correct estimate of the 
order of magnitude. We are going to see that precisely Am ̂  10 eV. 

If we had direct transitions through AS « 2 currents from K° to K°, then Am « a G-, 
a ** nL-f and Am ̂  10 sec which is seven orders of magnitude away from the preceding value. 
We can thus understand the importance that was attaohed to a measurement of Am, even as an order 
of magnitude, as the best evidence for or against the existence of AS = 2 transitions in weak 
interactions. 

2. DECAY MODES AND SELECTION RULES IN THE KAON DECAY 

The decays of the charged and neutral kaons are connected together by some selection rules 
governing the weak interactions. Because of the importance of these selection rules in the 
discussion of the PC violation in K2 decay, let us first examine this connection between the-
decays of the charged and neutral kaons. 

In Table 2 are listed the decays of the kaons, in such a way as to illustrate the relative 
values of the decay rates. The errors are not quoted in this table, since only the orders of 
magnitude are important in this discussion. However, the accuracy in the determination of some 
of the decay rates plays a most important role in the final analysis of the PC violating decays. 
For this reason, we give in Appendix B the table of Trilling , where the errors are given. 
Some discrepancies among these values will give us the limits within which we have to accept 
certain conclusions about the selection rules. 
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Table 2 

Table of the decay modes of charged and neutral kaons 
Decay rates relative to the short-lived neutral kaon. 
Total rate: (1.18 ± 0.02) x 1010 sec ~1. 

K± 

m^ = 493*82 ± 0.11 

T (1 .23 ± 0.01 )10~8 sec 

Vrv 3 .8 x 10~3 

TTTIO 1 . 46x10" 3 

(# mode) 

ir~TT+ir~ 3.6 x 10 
(T mode) 
e±v°v 2 . 8 x 10"4 

yrv°v 2 .2 x 10~4 

i r V * 0 1.1 x 10~4 

irirox 1.4 x 10~6 

v+v+fv < 2 x 10"7 

e±v 1*4 x 10~7 

v+v"n+v 5 x 10" 
r V e - p 1 . 4 x 10~8 

*S 

m ^ = 497.87 ± 0.16 
(0.843 ± 0.013)10""10 sec 

T^TT 7 x 10"1 

77° ir° 3 x 10~1 

Leptonic decay modes not 
measured. I d e n t i c a l to 
Kĵ  i f PC good or PCT 
and AQ « AS good 

ir+ir<iro < 9 x 10" 5 

% 

mKL = 497.87 ± 0.16 
(5.15 ± 0.14)10"8 sec 

ir~ti+v 5*3 x 10~ 
n^v 3.7 x 10~4 

Tr°ir°Tf0 4 .2 x 10~4 

u r W 2.1 x 10"4 

ir*VV < 4 . 5 x 10~6 

*<>** 5.6 x 10"6 

* V " 2 .8 x 10~* 

Y + Y 1.1 x.10" 6 

+ -
e + e 

+ . < 5.5 x 10 8 

V + /i 

Scale with 
r e s p e c t t o T3 

10~1 

lo"2 

. . , „ . m " 1 

10 

10~4 

1 0 - 5 

1 Q - 6 

1 0 - 7 

io-8 

*) This table is organized in such a way as to present the relative rate of the different deoay modes 
with respect to the Kg total decay rate. Some values are approximate, since strong discrepancies 
exist between the published values. In Appendix B are presented the experimental values compiled 
by Trilling18 • 
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Table 2 c a l l s f o r severa l comments. 

i ) The phys ica l l ong - l i ved neu t ra l kaon i s not an e i g e n s t a t e of PC 

ir+ir™ and Tr°Tr° s t a t e s have been observed i n the decay of K$. This p a r t i c l e can then no longer 
be considered as the e i g e n s t a t e of PC. For t h i s reason , we keep the denomination K?* and K̂  f o r the 
PC e i g e n s t a t e s defined by the r e l a t i o n s (1.1), bu t i n the fol lowing use K^ and Kg fo r the l o n g - l i v e d 
and s h o r t - l i v e d p h y s i c a l l y observed p a r t i c l e s . They w i l l be def ined i n a general manner i n the 
f i r s t chapter t r e a t e d by Professor Gourdin. 

i i ) The Al = % r u l e 

The decay mode K- -» v~ + ir° is 690 times slower than the two-pion decay of Kg. This points 
towards the existence of a selection rule governing the interactions responsible for the decay, 

The total wave function of the two pions has to be completely symmetrical with respect to the 
interchange of the two pions. The orbital wave function is symmetrical, since the kaons have zero 
spin; but what about the isospin part of the wave function? Two pions can be in the states 
I = 0, 1, 2. Only 2 and 0 are symmetrical. 

In the decay K~ -> -a" + ir°, the final state must be I = 1 or 2, since Iz =±1.1 = 1 is excluded 
because it is the antisymmetric combination [IT(1 ) x ff(2)]. Thus only the 1 = 2 state is available. 
Since the initial isospin is I = % , only a transition Al = % or 5/z can lead to the decay of 
charged kaons into two pions. 

The K° or K° having a zero charge, their decay product V^TT or v°ir° can be in a state 1 = 0. 
In this case, a transition Al = % is permitted. This conclusion also holds for K^, since 

< xnr |H|K? > = - L < Tnr|H|K° > + < inr|H CPJK0 > . 

Assuming fo r the moment PC i s conserved i n t he i n t e r a c t i o n PC~ H PC = H, t h i s express ion 
equals 

4 p < iT7r|H|K° > + < TTirjCP H|K0 > = ^2 < mr|H|K? > , 

as 
CP|mr > = \7riT > (Table 1 ) . 

I f t he weak i n t e r a c t i o n s a r e governed by a s e l e c t i o n r u l e Al = % , we can understand why the 
K- decay i s s t r o n g l y i n h i b i t e d with r e s p e c t t o the n e u t r a l component K̂  • 

This ru l e has a f u r t h e r consequence i n the decay of K1 • The opera to r i n i s o s p i n space 
corresponding t o I = 0 i s 

5?(1) • ?(2) = TT°(1) ir0 (2) + i r + ( l ) T T ( 2 ) + * " (1 ) TT+(2) . 

So one s t a t e , out of t h r e e occurring with equal p r o b a b i l i t y , corresponds t o ir°ir° • One thus 
expects a branching r a t i o : 

r ( K s -> ifOfro) ^ 

" 3 r(Kg •* tr+iT) + r(Kg -* a°7r°) 

file:///7riT


- 9 -

A small phase space c o r r e c t i o n t ak ing i n t o account the (7r-f v°) mass d i f f e rence l eads t o a va lue : 
u = 0 .337. The importance of the Al = Y2 r u l e has l e d t o a s e r i e s of measurements of which the 
most p r e c i s e g ive : 

u = 0.335 £ 0.014 (xenon bubble chamber, measurement of both JTV* and -u°iP modes); 

u = 0.260 ± 0.024 (methyl- iodide chamber, measurement of ir°tr°) ; 

u = 0.288 ± 0.021 (hydrogen bubble chamber, measurement of ir"V"). 
18) 

Most of the r ecen t papers quote the r e s u l t of the compilat ion by T r i l l i n g ' : 

u = 0.309 ± 0 .02 . 

Owing to the slight inconsistencies between the measurements, it is worth keeping in mind 
that the experimental data still open a not too narrow door for some admixture of Al = % . Even 
if the Al = z/z transitions would be completely forbidden in weak interactions, electromagnetic 
radiative corrections may introduce Al = % admixture. These corrections cannot be calculated 
with accuracy, and simple application of perturbation theory leads to smaller decay rates for 
K- than those observed. 

If one assumes that the decay in K~ is due to an admixture of Al = % , which is also present 
in the K? decay, and neglecting any possible contribution from Al = 5/z, one finds [see Kail en ', 
p. 446] that the theoretical branching ratio % is changed into 

0.29 <, u £ 0.38 

which contains the experimental values. The importanoe of these considerations lies in the fact, 
established in the fall of 1966, that the branching ratio of the KL into the two possible modes 
v*iT and 7r°7r° is very different from that of the Kg, showing that the PC violating interaction 
responsible for these decays badly violates the Al = 14 selection rule, and excluding some of the 
theories put forward to deal with the PC violation. 

The Al = Vz rule was so far admitted to hold in weak interactions and was in rather good shape 
at the time of the 1966 Berkeley Conference. In Appendix C we review briefly the supporting 
arguments for this law, together with its bearing on the kaon decays. 

*) 
3. INTERACTION OF NEUTRAL K MESONS WITH MATTER ; 

3.1 The different types of interactions 
K° and K° have different properties in nuclear matter. Many more channels are available for 

K°f which is of the same strangeness as A or 2, than for the K°. 

The absorption of K| and K2 beams because of nuclear interactions is the same, since the K° 
and K° are absorbed independently and their norm is the same in K| and Ka. But the different 
elastic cross-seotions for K° and K° will change the phase relations existing between the K° and 
K°. 

*) We refer the reader to several articles where this problem is disoussed * 
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After a scattering, the Ka wave function is modified: 

i/s = J- [f |K° > - f |K° >] , 

where f and f are complex numbers. This can be written as 

* = £fi|rf>-;4i|K$> . 
If f / f we have a finite probability of again having K? after passage through matter. Three 
mechanisms of regeneration can be considered: 

i) interaction of the kaon with the individual nucleons from the nuclei; 
ii) interaction of the kaons with all the nucleons of the nuclei, acting coherently in the 

forward direction: this is called the diffraction regeneration; 

iii) interaction of the kaons with all the nuclei of the medium acting coherently in the forward 
direction: this is the coherent transmission regeneration which is the dominant effect 
with thick regenerators. 

3.2 The coherent transmission regeneration 
Let us consider a pure K§ beam impinging upon a slab of material of length L. Such beams 

are easily obtained from many accelerators. 

After a short time corresponding to a few centimetres from the point of production, the 
neutral K beams all consist of pure Ka. 

Typically, an accelerator like the Princeton-Pennsylvania one (3 &eV) gives intensities of 
5 x 104 Ka/sec at a mean momentum of 250 MeV/o, at 90° from the proton beam; while the neutron 
beam, which is the main contamination in such beams, is 5 x 107 at a momentum of 400 MeV/c. The 
Y rays are filtered by lead collimators, and sweeping magnets eliminate the charged particles. 

Consider a plane wave traversing a material medium. If we consider the scattering of the 
wave by a single atom we have 

*,,*-^™+£•"**(*>• 

To the incoming plane wave is superimposed a spherical outgoing wave. The question then 
arises whether we can add the contributions from the different scattering centres: 

A d B 
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Consider two centres having a distance d along the path of K2, d being typical of interatomic 
distances ~» 1 A = 10~8 cm. The path difference for two waves scattered at the angle # is 
AC - AB = d(#2/2). The two waves add coherently only if this difference is very small compared 
to the wavelength of the incident particle. 

Typically, at 1 GeV/c, X(K?) = 1 .2 X 10""13 cm and this condition means: 

d y « 1.2 x 10~13 cm #2 « 2*4 x 10~13 

# « 5 mrad. 

We see that it is only in a narrow forward cone that the coherent conditions hold for the 
adjacent atoms along the path. If we consider the coherent contribution from atoms all along 
the path in the material, this condition is even more stringent and only at zero angle can the 
contributions add. Consider a sheet dz, at z, inside the slab. We take as origin the point M 
where we measure the scattered wave 

The contribution, at M, to the scattered wave by the atoms placed at a constant distance r 
from M is: 

N dz 2uydy f(tf) & ikr 

where N is the number of atoms per cubic centimetre. 

We have seen that only very small angles are considered in this process, and to an 
excellent approximation f(#) = f (0). We call f and f the forward scattering amplitudes for 
K and K° . We have the relations y2 + z2 = r2, and for constant z, ydy = rdr. We have to 
integrate the expression e^1* dr from z to «>, and we shall have a diffraction pattern. At 
r' as r + v/k. (limit of the first Fresnel zone) the contributions are in opposite phase to the 
one coming from the axis region. The integration leads to the expression 

*[• ik» ̂  eikz 

in which the first term is an indefinite quantity. It is a olassioal problem in optics. 
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r = co 

# . / J** dr 
/ 

can be considered as an in f in i t e sum of very small vectors i n the complex plane (Fig. a), 

Im(<|>) Im(<|>) 

starting point r=z 

6=Kz 
Re(*) 

d6=Kdr 

starting point r=z 
♦ o o ) 

»^Re(*) 

(a) 
(b) 

As we continue to add vectors we shall come back to the starting point and go along the circle 
for ever. 

However, the physical situation is different. The regenerating plate does not extend to 
infinity. If we imagine that it decreases to zero progressively, or that some process suoh as 
absorption or decay reduces the contribution when r increases, then we add vectors of decreasing 
length whilst turning by the same angle (Fig. b). We thus spiral progressively towards the 
centre and for r « « the integral is just eik2/k. The increment in amplitude &p produced by the 
larger dz is then 

di/f s 2v i N dz f (0) *ikz 
(1.3) 

As can be cheoked easily, it is half the contribution from the first Fresnel zone. For a slab 
of finite length L the contribution will add linearity, and we have only to integrate this 
expression over the cell thickness L. A beam consisting of a superposition of K? and Ka will 
have a time propagation determined by the nuclear interactions in the medium and by the 
propagation in vacuum, defined in Section 1.2. 
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SLm(2£.) 
dt \ dt / vacuum ( * ) matter 

Taking into account that dz = v Y AT = (k/m)dr, 

#C)-**( )C) 0 f 

where a and a are the amplitudes of a state in the (K K ) basis, m being the mass of the neutral 
kaons. 

Combining this variation with the one in vacuum we obtain 

dT 

AMN 

M Y 

f i 
2TTN ° \ 

2TTN 

. / 
C) 

M ML f £M 
m 2 

2 m 

( - ) 

I f we s t a r t with a basis (Kt K2) we obtain 

dr 
matter 

/ f + f f - f x / a i — ( - . X 
m \ f - f f + f / \ a a 

leading to a total mass matrix 

Ma - 22 (f + f) f - f 
M . . + M matter vacuum 

f - f M, - a (f + f) 

where M2 = m2 - i r2/2$ U% = mi - i IN/2. Kt and Ka are no longer eigenstates of this 
operator. It is necessary to diagonalize the mass matrix, and this leads to the approximate 
values for the eigenstates [see Bell and Steihberger ' ] : 
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lKS>matt=|KS>+fg^ r |K? 

1 ' matt ' ' i ll : - II, ' ■ 

Ife = M2 - 2p (f + f) 

(1.4) 

(1.5) 

neglecting terms of the order of ( 2L. rj—~ .. J . Consider a K« incident on a piece of 
material . At the surface i t i s convenient to describe JKl > i n terms of the diagonal s ta tes i n 
the material since we know how they propagate. 

From the relat ions (1.4) 

W > - « >matt -$£=$ |W > ♦ ¥ £ r ! r « >] • 

and neglecting terms i n second order in f - ?, 

^>= |KS> f f l a t t - f i f^ |KS> . 

If i t takes a proper time r to t ravel in the matter, af te r th i s time we have in the 
matter 

* s e 'K8 ^at t - T £~Ti7 e |K1 >■»« 

or, in terms of the eigenstates YS\ and K* in vacuum 

, - I W T 

since M2 - M{ = M2 - Mt. 

*) In Appendix D we give the derivation of this formula. 
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There is regeneration of the state K?, the amplitude of regeneration being 

?i *-«[}#] 

where AM is the complex mass difference Am - i/2 Ti neglecting T2 with respect to Ti • 

This formula calls for the following remarks: 

i) The intensity of a K? beam after traversal of a slab is found by squaring this expression. 
It is, in the oase where Am = l/fif 

4 time in units of x, 

proportional to 1 + e" t - 2e~ 1 cos Amr. We see that if Am » 1/T, in a time of 
the order of 1/ti the cos Amr term will oscillate very stron&Ly during a lifetime. In 
the case envisaged above of Am a 107 Ti, this oscillation would prevent any measurement 
as a function of time, while if Am *>* Ti an oscillation in the appearance of Ki can be 
observed. 

ii) The forward amplitudes f and f are related to the total cross-section a and a by the 
optical theorem 

ototal = p- Im f • rK 

If one knows the cross-sections for K4" and K~ i n the material , they are the same for 
K? and K° by isospin symmetry in strong in teract ions . For a very th in regenerator, 

<pf » - arg i ( f - f) ; 
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for a thick one 

(i - e <pp = <pf + arg I—IES 
iMAT 

The second term can be calculated if one knows AM. The module of f - f is measured from 
the measurement of the regeneration amplitude (f - f). One can thus obtain the absolute 
value of the phase: 

i.lk f? - fl <p~ = COS 
tf - ? ] 

Im(f) 

< ° r °K)Pk/ATl 

Re(f) 

This re la t ion has been used by Rubbia and Steiriberger and Mischke et a l . , to derive cpp 
from the existing experiments on K+ and K scat ter ing. 

i i i ) The cross-section for coherent transmission regeneration wil l be proportional to N2 or L2, 
where L i s the length of the s lab , in the region where absorption processes are negligible. 

3*3 The diffraction regeneration 

If the conditions for additive effect in the forward direction are not ful f i l led, and i f 
the K° and K° undergo e las t i c col l is ions on nuclei i n the forward direct ion, there will s t i l l 
be regeneration of K°. But a t a given point m along the axis we cannot add the amplitudes 
from different points. We have f i r s t to square the amplitude for each individual element 
of volume and then in tegra te . The cross-section for the production of a Ki i s proportional to 
|f - f|2. After scattering in the forward direction we have 

f IK0 > - f |K° > 
72 
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Two cases have to be considered: 

i ) transmission regeneration: one adds the amplitudes; 
i i ) diffraction regeneration: one adds the cross-sections. 

The number of K? generated in a layer dz and traversing the thickness z in the direction 
of the incident beam is : 

dz \ % ) = | f - f | * N e - r i T 

0 
where 

T B Y ' v , T = v7 

£ ( § ) = Nlf-?l2«~ri(a/vr) 

If we integrate for a slab of length L we find 

( g ) . |,-,!■.[,-.*.']. 
where r is the time taken by the K° to traverse the slab r = L/vy. Comparing this with the 
previous result, one finds: 

R A* AX
2 1 + e~* ­ 2 e~*/2 cos 5 

" doTdQ = 52 + YA 1 . e­* 

where 
* = r t r , 
5 = Am/r, , 
X = 2ir/k , 
A = decay length = pf/Vi = vyr , 

- = lab time t . 
v 

This ratio is independent of the scattering amplitudes. We see that the thicker the 
slab the more important i s the coherent regeneration, up to the point where absorption 
processes are negligible. 

Typically, in iron, 

( S ) - 37mb/sr 

( f e ) =280mb/sr. 
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4. DISCUSSION OF SOME RECENT IMPORTANT EXPERIMENTS 
IN NEUTRAL KAON PHYSICS 

t3,26) 
4»1 The study of regeneration, by Christenson et al. 

For 30 &eV protons bombarding a 0.5 mm beryllium wire target, a beam was chosen at 30° to 
the incident proton defined by a lead collimator at 4«3 metres from the target (Fig. 1). The 
angular divergence accepted is 4 mrad. After the collimator, a bending magnet sweeps the 
charged particles, and the y rays are filtered by passing the beam through 4 cm of lead, up­
stream from the collimator. The K$ beam passes through the materials in which the regeneration 
was studied at 18 metres from the target. The positions and momenta of the decay pions coming 
from a regenerated K$ are measured in a pair of magnet and spark chamber spectrometers, thus 
determining all kinematic properties of the K? and its decay. 

An event is accepted whenever there is a coincidence between the two spectrometers, anti­
coincidence counters and Cerenkov counters giving the additional guarantee that the event is 
produced by a neutral particle decaying into two fast particles (v/c > % ) • The main source of 
background in such beams comes from the neutrons, and they were used to monitor the K§ intensity. 
By placing a regenerator and calculating the mass of the K? from the kinematics, it is found 
that 

m^ = 498.10 ± 0.52 MeV 

in good agreement with the accepted value m^ = 497*8 ± 0.6. 

4*1 «1 The regeneration. Figure 2 shows a typical distribution of 00s #-, where d is 
the angle between the line-of-flight of the parent particle and the beam axis for these events 
of mass in the interval 483-513 MeV. 

The narrow forward peak contains the regenerated Ki, the forward incoherent diffraction 
peak, and some background• 

If one reduces the density of the regenerator by one-half, the transmission regeneration 
should decrease by a factor of 4» This was done by comparing regeneration from 7»5 cm of 
copper with that from a stack of 12 x 3 mm plates separated by 3 mm air gaps. It is an ideal 
half-density regenerator in the limit where the gaps are small compared to the wavelength of 
the mass difference oscillation. In this case it was 11.5 cm. The observed ratio in the 
coherent peak should be 3»88, taking into account the small correction from the air gap. 

For the incoherent peak, the attenuation should be 1.95 (instead of 2 for the same 
correction)• 

The observed values ares 
Sexp s 4 # ° 5 ± °0h8 

A (cos d) 8 0.00004 . 

This establishes firmly the correct interpretat ion of the Ki in tens i ty . To give an idea 
of the orders of magnitude, l e t us l i s t some to ta l forward regeneration cross-sections 



19 -

Mater ia l 

Carbon 
I ron 
Copper 

^ ( m b ) 

273 
970 

1080 

We see t h a t they a r e very h igh . They agree very well with op t i ca l model c a l c u l a t i o n s . These 
c a l c u l a t i o n s a r e based on the f a c t t h a t t h e forward s c a t t e r i n g c r o s s - s e c t i o n s a r e r e l a t e d t o t h e 
t o t a l K-nucleon c r o s s - s e c t i o n , whi le charge independence r e l a t e s K+n t o K°p and K+p t o K°n. One 
c a l c u l a t e s independently the s c a t t e r i n g ampli tude f o r K° and K°, the K2 ampli tude b e i n g h a l f t h e i r 
sum. 

4*2 The 2v decay of the l o n g - l i v e d n e u t r a l kaon 

4 .2 .1 The decay i n t o charged p i o n s . I t i s i n the course of t h i s l a s t experiment on the 
O JD 1 2 ) 

regenera t ion of Kt from K* beams t h a t the doubly charged pion decay mode was found ' . Even 
wi thout any r egenera t ion , a small p ropor t ion of 2v decay was found i n t h e beam. The very narrow 
angular acceptance of the K2 beam, as well a s the h i ^ i accuracy i n t h e measurements of d i r e c t i o n 
and momenta of t he p ions , make i t poss ib le t o determine with accuracy the a n g l e between the 
incoming K2 and t h e outgoing K| and a l s o t o determine t he i n v a r i a n t mass. This i s necessary 
because of the ve ry l a r g e background from the semi- leptonic decays of K 2 . 

Figure 3 shows the evidence obtained by these authors f o r the ex i s t ence i n helium gas of kaons de­
caying i n t o two p ions , i d e n t i c a l both i n mass and i n angular spread t o t hose obta ined from coherent 
r egene ra t ion . The helium gas has such a low dens i t y t h a t i t can be s a f e l y cons idered as vacuum 
f o r t h i s experiment. 

Their value 

R = 
K2° + tr + ir 

K| -* a l l charged modes 
= (2.0 ± 0.4)10~3 

has been oonfirmed by a l l succeeding measurements, which a r e p resen ted i n Table 3» 

Table 3 

(KS « n + v /Kz -+ a l l charged modes) 

Authors 

Christenson et al- ' 
Abashian et al. ' 
Galbraith et al.28) 

29) 
de Bouard et al. 
Rubbia et al.30' 

(1.87 ± 0.18) x 10~3 

(2^3) x 10"3 
(2.08 ± 0.35) x 10"3 

(2-24 i 0.23) x 10~3 
(1.96 ± 0.35) x 10""3 
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In discussing the methods used for the measurement of the mass difference Am we will say a word 
about how the most accurate results are obtained. 

4.2.2 Measurements of the decay rate K° ­» ir° + irQ. This effect is very difficult to measures 
a neutral particle goes in and two neutral particles come out. To measure this rate in an absolute 
way, one needs to have an absolute monitor far the K 2 and absolute measurements for the TT°, which 
decay essentially into 2y. These difficult tasks have recently been fulfilled by two groups, one 
at Princeton [Cronin et al.14

^] and another at CERN [Geillard et al. 1 3
']. 

The two approaches have been very different. In the CERN experiments, the four Y ravs are 
detected by conversion into 1hick spark chambers. The absolute calibration is done by comparing 
the number of events with ­those produced by K| from a carbon regenerator* 

At Princeton they use a particular feature of the accelerator. The beam is split into short 
bursts so that the time of detection of an event gives its time­of­flight. This knowledge of the 
momenta of each kaon allows the use of only one y rav from the ir0. The spectrum of the ir° in the 
centre of mass is so different in the 2ir° and 3^° decays, that one can very well separate the 

*) 
Y rays in a given geometry • The energy of the Y rays is measured by a spark chamber magnetic 
spectrometer. The same group also made accurate measurements of the decay mode KT ■* Y + X* 

The results are: 

i'-i ■ £ £ £ : £ : £ ■ ^*°-5> io~3 <**—*«> 
and 

+ 1.1 
|T]OO| = ( 4*3 ] 10 (CERN) 

\ - 0.8 / 

These values d i f f e r conclus ively from 

l n
+ J = (1*94 ± 0.09)10""3 (world ave rage ) . 

Such a result also discards the theories attributing the K­ ­* 2v decay to a regeneration of K g by 
any type of unknown interaction. 

The Princeton group also finds 

tllifi : 11 lies) - (7.4 * 1.6)10-

in strong disagreement with the value of Criegee et al. ' who found (1.3 ± 0.6)10~4. This 
disagreement is worth noting, and shows how difficult are the experiments in which decay rates of 
neutral particles into neutral particles are measured. 

4.2.3 The measurement of Am. The mass difference,mass (K£) ­ mass (Kg), has been measured by 
a great variety of methods. They are described in several review articles3 • 

) The knowledge of the precise momentum of the K° is essential in order to do the transformation 
to the centre of mass. 



- 21 -

Table 4 gives a l i s t of methods and resul ts from a report by Myron I*. Good given a t the 
Argonne Conference on Weak Interactions (1965) • 

Table 4 

Experimental determinations of Am 
Mass difference between Ki and K2 in units of r, 

Strangeness oscillations 
1) 1.9 ± 0.33 

2) 1.5 ± 0.2 

3) 0.62 + °'33 

- 0.27 
Coherent regeneration (compared 

4) 0.84 + 0.29 

Thickness dependence of coherent 

5) 0.72 ± 0.15 

"Gap" method 

6) 0.55 ± 0.13 

Fitch, Perkins and Piroue, 
Nuovo Cimento j>2, 1160 (1961). 

Camerini, Fry, Gaidos, Huizita, Natale, 
Willman, Birge, Ely, Powell and White, 
Phys.Rev. 128, 352 (1962). 

Meissner, Crawford, Crawford and Golden, 

to incoherent) 

R. Good, Matsen, Muller, Piccioni, 
Powell, White, Fowler and Birge, 
Phys.Rev.Letters 124. 1223 (1961). 

, regeneration 
Fuji, Jovanovitch, Turkot and Zorn. 
[Earlier report in Phys. Rev .Letters 1^, 
253 (1964).] 

Christenson, Cronin, Fitch and Turlay, 
Int.Conf. on Weak Interactions, 
Brookhaven (1963) P« 74; corrected for 
CP violation. 

Lentonic decay charge ratio versus time 

7) 0.47 ± 0.20 

8) 0.15 + °-35 

- 0.50 

Ecole Polytechnique 

Padua J# Steinberger's 
talk, Oxford Conf., 
1965 

It would be impossible, within the frame of these lectures, to describe all these methods. 
As a function of time the values are stabilized around the value 0.5« Because of the systematic 
trend shown by some methods to give hi^ier values, one first thought that there migit be an 
anomalous strong mass difference introduced by absorbers. They were repeated recently, and the 
values reported at the Berkeley Conference in 1966 were all around 0.5; this can be seen from 
Table 5« ^bis table includes values obtained by a new method making use of the 2v decay of 
K? in interference experiments. 
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Table 5 

Values of Am = |nuo - in o| 

Author 

CERN (Bott-Bodenhousen et al.) 
" (Alff-Steinberger et al.) 

La Jolla 
BNL (Fujii et al.) 
Carnegie (Canter et al.) 

" (Hill et al.) 

Am 
( T O 

0.480 ± 0.024 
0.445 ± 0.034 
0.44 i 0.06 
0.35 i 0.15 
0.55 i 0.15 
0.63 ± 0.16 

Technique 

Counter 

" tt 

Counter 
B. Ch. 
B. Ch. 

All tha t has been said in the preceding l ines makes i t easy to understand the principles 
underlying a l l the methods using regeneration. 

Let me just sketch in a few words some of the methods and describe more fully some 
experiments because they i l l u s t r a t e a t best the reason for the recent progress. 

4«2.4 Strangeness osc i l la t ions . One s t a r t s from a beam containing a given re la t ive propor­
t ion of K° and K°, for instance by reactions suoh as 

K+ + n -> K° + p 

p + p-*K°+K # 

In the case of the K° beam we have at time 0 

K ° = jz(K? + K%) ' 
At a time t , the s t a t e will propagate according to 

# = ^ (K? e_iM<T + K| e-W*T) 

* u \ [K°(e- i M 'T
 + e-m'r) - K°(e- i M 'T - ~m*T)) . 

The intensi ty of a given component K or K varies l ike 

( e~m*T ± e"^27" V « e ^ 7 * + e^*7" ± 2 cos Amr x e~<r* + r * ) r / 2 

For times small compared to l/p2> t n e intensi ty of any oomponent varies as 
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1 + e~TiT ± 2 cos Amr e"TiT/2 

One determines the intensity as a function of tame of any of the components by requiring a sig­
nature of K° or K° in a strong interaction. This is a popular method in bubble chambers where one 
can easily observe the K? close to the production point. The K° are detected by looking at hyperons 
produced by the neutral kaon. 

4*2.5 The leptonic decay charge ratio versus time. This method has some analogy to the 
preceding. In so far as the AQ « AS rule is verified, the K° and K° states are identified by 
their decays 

K° -> C + v + tr+ 

since the decays with the opposite charges are forbidden. In this case, we obtain the same formulae 
as the preceding one for the intensity of the positive or the negative components. However, it is 
more as a check of the rule AQ = AS that these decays have been studied, and the interpretation of 
the results is rather complex '. 

4#2.6 Methods based on regeneration. There are several ways to make use of the regeneration 
mechanism in order to determine the amplitude and the sigi of the mass difference. As an example, 
let us mention the method suggested by Fitch. 

A regenerator oonsisting of two pieces of copper separated by a variable gap is used, keeping 
the total amount of material in the beam constant. As one piece is moved upstream along the beam, 
the resultant K? amplitude is the sum of the contributions from the two pieces. The amplitude of 
the K? pair regenerated in the first slab is proportional to e" 1 , where r is the proper time taken 
from the end of the first slab to the exit of the second, while the contribution from the regeneration 
in the second slab is proportional to e" 2 , which is the amplitude of the K$ at this position. This 
gives rise to the interference term in the amplitude of K°. Figure 4 shows the variation of the 
coherent regeneration with the gap length, from which the authors ' conclude that 

<-(°-u ::::;)r* 
However, it should be pointed out that a zero mass difference has a probability of 32$» What such 
an experiment proved is, in fact, the unacceptability of the early high values for Am. Since more 
precise determinations of Am have been made, which we shall mention later, we do not want to discuss 
the mat 
length* 
the matter here and refer the reader to the article of Good where these methods are analysed at 

SIGN OF Am 

Several ideas have been proposed to measure the sign. Four independent experiments have now 
demonstrated that M(KT) > M(Kg)35~38'- As example, let us give the method of Kobsarev and Okun39 ) 
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Consider two slabs of different regenerators u and c . Take as origin of time the exit time 

from c . 

The amplitude of Kg a f ter c i s the sum of two contributions, neglecting the absorption: 

+iM*r -iMir 
* pu e + P c > 

where p and p are the regeneration amplitudes in u and c. The intensity of the Kg component 
is: 

p2 e Or. - r 2 ) r + pa + |pj ,pj C08 [̂  + % _ f J 

If we interchange u and c we have 

P* e ( r ' " r a ) T + , 2
 + | p u | | p j COS [ t o r - (<PU - <PC)] 

The difference between the two expressions gives r i s e to a term 

sin Amr sin (<PU - <PC) 

If the sign of 9 - 9 is known, the variation of the intensity as a function of r gives the sign 
of Am. The sigi of <p - <p is calculated from optical model theory. The experiment has been 
performed recently by Jovanovitch et al. '. Figure 5 shows the variation of the Kg intensity 
as a function of the distance between the two absorbers. The positive sign of K-. - K« is clearly 
demonstrated. 
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All the other methods rely on some different techniques to have a sin Am term appearing in 
33) 

the amplitude of the component being measured ' • 

6. INTERFERENCE EXPERIMENTS IN THE 2v DECAY OF Kg AND K^ 

The fact that Kg and K~ can both decay in the common 2xr channel has opened the way to a series 
of important experiments based on the interference between the two components when they are mixed 
coherently. 

To have K q and K mixed coherently, the most straightforward way is to use a K° or K° beam. 
After some metres only 1C are left, and such experiments are restricted to a region close to the 
target where the neutral kaons are produced. For this reason the counter experiments have been 
slow in this approach, since usually the targets are inside the accelerator, and large backgrounds 
prevent working so close to the machine. In bubble chambers, however, the target is in the sensitive 
volume itself, and small intensities of secondary beams are sufficient to produce enou^i neutral 
kaons, the decay region of which is inside the sensitive volume of the chamber. This is why the 
first interference experiments were done with bubble chambers, using the leptonic decay as a channel 
common to both components. 

The availability of proton beams extracted from the accelerator and impinging on external 
targets has now opened the way to counter techniques (also for experiments close to the target), and 
at CERN, Rubbia and Steinberger have put forward an important experiment along these lines. 

Another way to produce a coherent mixture of Kg and K. is to regenerate Kg by coherent transmission 
through matter of a L beam. Such beams are easily produced by simply having a hole in the shield­
ing walls of the accelerator viewing an internal target. 

We have seen that the coherent regeneration gives rise to a Kg component, the amplitude of 
which is given by the parameter of regeneration 

M A ­iAmr 
P
 = F 1 <f " f

) ­lAm * 

A proper time r after the traversal of the matter, the particle beam can be described by 
the amplitude 

­iMTr -rmr 
e

 h K^ + p e b . 

If we define 
a amplitude f or IL «* IT + rr~ 

a amplitude for Kq ■* ir + IT 

the ir IT decay rate per unit time can be written in terms of the K„ decay width T_ 
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-JJ- - rs,+- ̂ p e S + n̂ _ e L J 

s,+-| i"i e + l"+-l2 e (1.6) 

2|p||u+ I e~(lS + Tl)r/* cos (^ - , - ̂ r)J , 

cp and <p are the phases of the complex numbers p and n. 
40 ) 

Fitch et al. ' gave evidence for strong constructive interference between K-. and K^ by 
comparing the 2ir intensity from two regenerators of different densities. 

The most accurate recent results are obtained by measuring the intensity of the xr TT decay 
as a function of the time travelled by the beam after the regenerator. 

The amplitude of the interference oscillations depends on Am while the phase of the oscillation 
depends on 9 - 9 • 

Several experiments have been performed giving the very accurate values for the mass differences 
reported in Table 5» 

The large improvement in the accuracy comes from the fact that a clever use of the kinematical 
properties of the 2ir decay allows a considerable increase of the acceptance of the detecting system 
for 2ir decay, with respect to the leptonic decay. 

As an example, let us consider the system put forward by Rubbia and Steinberger. If a K° 
decays into two pions, their transverse momenta in the laboratories are equal: 

Pi sin #1 ss p2 sin dz = p sin # , (l«7) 

where p and d are the momenta and the angle of emission in the cm. system. 
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If the two pions pass through a uniform magnetic field B, with a length of trajectory t9 

the momenta are rotated by an amount 

radius e/o H 

Let us consider only small curvatures so that the length of the track I = width L of the magnet. 
Suppose that we choose H and L such that one of the momenta d\ becomes parallel to the initial 
beam. For small curvatures we have 

The second pion will rotate by 

"-*-;9A 

92 = p2 
L 

e/c H « Pa Pi (1.8) 

Now, since we are dealing with pions of several G-eV/o while the transverse momentum is at most 
210 MeV/c, the angles &% and dz are small so that sin ti ~~ d and relation (1.8) shows that 92 = #2» 
In other words, the second pion is also parallel to the beam. 

If the triggering system is such as to select events giving rise to two parallel pions, it will 
be highly selective for 2v decay, since the relation (l.7) does not hold for two charged particles 
emitted in the leptonic decays of a kaon. Such a system has the advantage that the relation of 
parallelism holds, irrespective of the decay point along the path, thus permitting a large acceptance. 
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The field parameters are chosen so as to hold for those pions emitted at 90° in the cm. system. 
Because of the very small transverse momentum, the relation (l«7) still holds for pions emitted 
around 90° within a large solid angle. 

Using this technique, 6% of the triggers correspond to 2ir decays, while the branching ratio is 
only 2 x 10"*3. The efficiency for detecting a 2ir decay is 50$. 

The delicate point of these methods is that the acceptance of the system is a function of the 
position, and Monte Carlo calculations are necessary to determine the efficiency of the system along 
the path. Figure 6 shows the experimental results and the relative importance of this efficiency 
correction. 

We have analysed the principle of this experiment (although so far it is not the one which has 
given the most accurate value for An), because of its simplicity and elegance. It is continuing at 
CERN with the K? beam from an external target with the ambition of achieving an accurate measurement 
of Am and 9 ^ . 

Figures 6 and 7 show the results of the interference experiments done simultaneously at CERN. 
We see in both cases the importance of the efficiency corrections. The strong differences in the 
triggering systems reinforce our confidence in the two accurate values of Am, since the systematic 
errors have little reason to be equal. 

From the formula (1.6) we see that these experiments require a knowledge of the regeneration 
phase 9 to extract 9 , which is a most important parameter to know. 

We have seen that arg 9 can be computed from arg i(f - f), where f and f are the forward 
scattering amplitudes of K and K. Using the arguments given on page 18 of this text and relying 

+ - + - 25) 
on the data for K n, K n, K p and K p scattering, Mishke et al. ' obtain 

9 s + 0.44 i 0.44 rad. 

The contribution to the error from the uncertainty in 9 is considerable (0.28 rad). 

This result takes into account the independent determination of the sign of Am ' to which 
these interference experiments are not sensitive. Using the same arguments, Rubbia and Steihberger 
obtained 9/ v = 0.60 ± 0.23. After the appearance of more accurate data of kaon scattering this 
result is modified to 9 =1 .41 ± 0.34, while the interpretation of the other experiment done at 
CERN by Bott-Bodenhausen et al. ' along the same lines gives 9 = 1.22 ± 0.36. 

This shows that a direct measurement of the phase 9 would be gratifying. 

One experiment is under way at CERN to get 9 directly. Rubbia and Steihberger thought to 
study the 2v interference effect in a pure K° beam. After 10 to 14 lifetimes, the two-pion 
intensity from the Kg is reduced to the same level as the one coming from the YL , and interference 
effects can be studied. The extracted proton beam impinges on a target, and at 6° from it the 
neutral kaon beam is used. There still remain serious problems of background. The initial kaon 
beam does not consist of pure K°, but the cross-section for K° is seven times larger than the one 
for K°. The uncertainty about the exact initial composition does not directly affect the accuracy 
of the measurement, since the K or K° are initially not coherent in phase; it merely reduces the 
amplitude of the observed effect. However, because the interference is observed between 10 and 14 
half-lives from the target, it is necessary to have a very high accuracy in the term AMr to have 
a good precision on 9 . 

.»«) 
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Am w i l l c e r t a i n l y be determined with the utmost accuracy by t h i s experiment , bu t whether or not 
i t w i l l match the r equ i r ed accuracy i s one of the unknowns of t h i s experiment , the r e s u l t s of which a r e 
l i k e l y to appear t h i s y e a r . 

7 . CONCLUSION 

We may conclude t h i s incomplete and r a t h e r a r b i t r a r y choice of t o p i c i n the n e u t r a l kaon phys ics 
by s t a t i n g some of the important r e s u l t s r e c e n t l y obtained by the e x p e r i m e n t a l i s t s : 

- The long- l ived n e u t r a l kaon can decay in to two charged pions wi th an amplitude n _ r e l a t i v e 
to the decay of the s h o r t - l i v e d kaon, where 

U+J = 0.94± 0.09)10""3 , 

9 , x s 1 #41 t 0 .34 and 1.22 ± 0.36 ( i n d i r e c t measurements) . 

- In t e r f e rence i s observed between K- and regenera ted K~ i n the 2v decay . 

- The l o n g - l i v e d kaon i s heav ie r than the s h o r t - l i v e d one . 

- The most accura te de terminat ion of the mass d i f fe rence i s HL - KL = (0.480 ± 0 .024) /T q # 

- Two measurements give the modules of the amplitude of the decay of the l o n g - l i v e d kaon 
i n t o two n e u t r a l p ions : 

|noo | « (4 .3 1 J*J )10" 3 and (4.9 t 0.5)10*"3 . 

- The phase 9/ \is not known but its measurement is under way. 
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CHAPTER II 

STRONG AND ELECTROMAGNETIC INTERACTIONS 

1) In strong and electromagnetic interactions the strangeness (or equivalently the hypercharge Y) 
is conserved. The mesons K and K? have a hypercharge Y = 1; the mesons K~ and K° have a hyper­
charge Y = -1 

< K°|Y|K° > = 1 

< K°|Y|i? > = -1 . 

For strong and electromagnetic interactions we have a superselection rule due to the hypercharge 
conservation. All the matrix elements of observable quantities between a K° state and a K° state 
vanish, and all the physical states are eigenstates of hypercharge. In particular, the relative 
phase between the states | K° > and |K° > is completely arbitrary. 

2) Let us define as Ho the total Hamiltonian for strong and electromagnetic interactions. 
The mass of a stable particle with respect to strong and electromagnetic interactions can be 
defined as the eigenvalue of Ho for a one-particle state at rest 

< K°|HO|K° > s mo 

< K° | Ho | K° > = mo . 

Because of the superselection rule for hypercharge 

< K ° | H O | K ° > = 0 

< K° |HO|K° > a 0 . 

On the basis of | K? > | K? > it is then possible to define a mass matrix Mo which is diagonal 
and real 

(ii .D 

3) The equality of the masses mo and m© is obtained as a consequence of some discrete 
symmetries: 

i) particle-antiparticle conjugation C; 
ii) CP, where P is the space reflection; 
iii) TCP, where T is the time reflection. 

WEAK INTEREACTIONS 

1) The weak interactions are responsible for the decay of the K mesons. The various modes of 
decay can be classified as follows: 

a) Hadronic decays: hypercharge violating in IT mesons 
i) (2ir) observed IT IT" and v°ir° 

ii) (3ir) observed ir TT""IT0 and TT°IT0IT0 . 
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b) Semi-leptonic decays: charged IT mesons and leptons 
i) K, type in IT - t - v 
ii) K type in 2ir - I - v . 

c) Leptonic decays 
Whereas the charged K mesons can decay into leptons 

K - * / i + y ; K -» e + i> , 
H ' e ' 

corresponding decay modes for the neutral K mesons have not been observed. This experimental 
fact is understood as a suppression, at first order in weak interactions, of a neutral 
leptonic current 

K° -f* »v~ , K° r* e V K° * v l \ 
d) Radiative decays 

The 2y mode has been detected. 

2) Self-energy 
The self-energy of the neutral K mesons is modified because of the presence of weak 

interactions. Let us call F a physical final state observed in the decay of neutral K mesons. 
We now have four types of transitions with real intermediate states as shown in the graph 
below. 

- ^ * -
K° 

K° 4£ K° -^= K° 

These transitions occur at least at second order in weak interactions. Because of the 
existence of real intermediate states, the self-energy becomes complex and the imaginary part 
is related, by unitarity, to the decay amplitudes. As a second consequence there now exist 
non-diagonal transitions. 

3) Basis K°K° 
In the absence of weak interactions, the states K°(t) and K°(t) satisfy separately a 

time-dependent Schrodinger equation 

d 
d t 

K°(t) 

K°(t) 
= Mo 

K°(t) 

K°(t) 
(H.2) 
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The introduction of new channels F, now open through weak interactions, completely modifies this 
simple situation, and for the amplitudes K°(t) and K°(t) gives rise to a complicated system of 
coupled equations. 

The two basic ingredients used to formulate the problem are: 

i) the superposition principle in the K° K° space; 
ii) the time-dependent Schrodinger equation. 

A solution of the system of coupled equations has been given by Weisskopf ana wigner. We do 
not discuss here the details of the calculations, and instead of Eq. (II.2) we simply write 
a matrix equation 

dt 
K°(t) 

K°(t) 
=m K°(t) 

K°(t) 
(H.3) 

where tYl is independent of time. 

The Hermitian part of Hi is the mass matrix M, and the skew Hermitian part of 1% is the decay 
matrix T, as will be shown in Section 4 of this chapter: 

. r 7H (II.*.) 

The matrices M and V axe both Hermitian. The matrix Y and the difference M - Mo are due to 
weak interactions. 

In the following, the indices 1 and 2 will be used for the states K? and K° 

on K° |»1| Kp IW12 = < K°fm|r > 

?n21 =< F\7n\i? > to K°pn|K° 

4) Physical states for weak decay 
The operator "L can be represented by a diagonal matrix after a linear transformation in 

the two-dimensional space K° K° . The eigenvectors of m. are the observed decaying states which, 
as usual, we call K~ and K~.. 

a) The new basis is defined from the original one by a complex 2 x 2 regular matrix C 

C = 
-q 

with det C = ps + qr / 0. 

We then have 

|KL> = p|K° > - q|K° > 

|Kg > = r|K° > + s|K° > . 

b) In its diagonal form the operator Wl is simply represented by 
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ftt = 
0 

where My and Ms are two complex numbers directly related to measured quantities. 

The relations between the matrix elements of 7)1 in the two bases are easily obtained 
using the transformation C 

tof1 %* 0 
C . 

This equality contains four relations 

*■• - 1 <^ ♦ "s> - i <«L - "s> J r f f 
(U.5) 

L ps + qr 

^ , = (« ­ u ) — E S _ ­ . 
v S 1/ ps + qr 

We can easily check the conservation of Tr m. and det 1H: 

Tr %m%% +%2 = 1^ + Ms 

dot % * % , * * „ ­»,a^i = M L M S 

which are the two conditions sufficient to obtain the eigenvalues of ift in terms of the 

THio'
3
* 

The two other relations give the constraints on C to put "l in its diagonal form 

Hii2 a»fei. _nn -H* m 
qs ~ pr qr ­ ps 

c) Normalization conditions 

The states K° and K° are normalized to unity 

< K°|K° > = 1; < K°|K° > = 1 

and are orthogonal because of the strangeness quantum number 

< K°|K° > = 0 = < K°|K° > . 

By assumption we normalize the physical states | K­ > and | Kg > to unity 

< Kg|Kg> = 1; < KL|KL> = 1 . 
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The corresponding conditions on the C-matrix elements are 

|p|* + kl 2 =15 Ir|a + |s|2 = 1 . 

In general |K-. > and \K„> are not orthogonal and the scalar product i s given by 

< KglK^ > = r*p - s*q . 

DISCRETE SYMMETRIES 

1) Strong interactions 
For the strong interactions of hadrons it is possible to define three discrete symmetries 

commuting with the strong interaction Hamiltonian: 

i) space reflection P 
ii) time reflection T 
iii) particle-antiparticle conjugation C. 

The same situation does not hold in weak interactions where at least P and C do not commute with 
the weak interaction Hamiltonian. 

2) TCP theorem 
Let us call L = TCP the product of the three discrete symmetries. The transformation L 

seems to be valid for all the types of interactions. The theoretical basis of such a statement 
is the TCP theorem. 

In quantum field theory, the TCP theorem has been proved independently by Luders and 
Pauli. The L transformation is equivalent to the product of a strong reflection by a Hermitic 
conjugation provided the following assumptions are satisfied in a local field theory: 

i) invariance under the proper Lorentz group L|; 
ii) connection between spin and statistics; 
iii) commutation or anticommutation of the kinematically independent fields depending on the 

statistics. 

In the Fock space, L acts in the following way: 

i) energy-momentum four-vector invariants; 
ii) spin-direction reversed; 
iii) all the charges: electric, baryonic, leptonic, change of sign. 

Moreover, the transformation L is antilinear and the c numbers are changed in their complex 
conjugate. 

We have a reciprocity relation for the S-matrix elements 

< f|s|i > * < ijslfj. > (II.6) 

where the index L indicates that in the states | i > and | f > the transformation L has been applied 
changing spins and charges in their opposite. 
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3) L symmetry in the K° K° complex 
The particles K° and K° are exchanged in an L transformation. Because of the reciprocity 

relation (II.6) the diagonal transitions K°-K°and K°-K° of fYl are equal: 

Such a result is obviously independent of any choice of phase for K° and K° . 
From Eq. (II.5) it follows that 

ps = qr . 

(H.7) 

(II.8) 

It is now convenient to define the phases of K_ and K„ with respect to K?, such that p and 
r are real and positive. 

Using the normalization conditions 

P2 + kl* = U r2 + |s| 2 = 1 , 
Eq. (II.8) can be immediately solved 

r = p ; s = q 

and the matrix C takes the form 

-q 

q 
with p2 + |q|2 =1 

Equation (II.5) reduces simply to 

**„ A . =1(ML-MS) 

q2 P 2 2pq 

The s c a l a r product of | K. > and |Kq > i s r e a l 

< K g l ^ > = p2 - | q | 2 . 

Let us notice that the relative K°-K° phase remains arbitrary, giving us the possibility to 
absorb the phase of q in the definition of the K° state. In fact the phase of q cannot be 
experimentally measured. 

4) Time reversal invariance 
Let us now study the consequences of the time reversal invariance. The reciprocity 

theorem gives us an equality between S matrix elements analogous to Eq. (II.6) 

f|T|i gsif, (H.9) 

where the index T indicates that in the states |i> and |f > the time reversal transformation 
has been applied, thus changing the spins and the momenta to their opposite. 
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As a consequence, the non-diagonal K° K° and K° K° matr ix elements of Jjl a re equal up to 
a phase . We define the r e l a t i v e phase of K° wi th r e spec t t o K° such t h a t 

4n„ -to., 

From Eq. (II.3) we immediately deduce 

pr s qs 

(11.10) 

(11.11) 

We now define the relative phases of Kg, K-, K° such that p and s are real and positive. The 
normalization conditions are simply written as 

P2 + k l 2 = 1 ; IH 2
 + s2 = 1 . 

The solution of Eq. (II.11) is given by 

p = s ; q = r 

The C-matrix takes the form 

C = 
p -q 

q p 

Equation (II.5) takes the simple form 

with p2 + | q|2 = 1 

4ft p 2 M L * * M 8 

P 2 + q2 

q2 MT + p 2 MQ 
^ 2 » L S 

p 2 + q2 

^ 2 K i %i -K* 
pqa pq q2 - P 2 

The s c a l a r product of | K- > and | K« > i s pure ly imaginary 

< KglK^ > = p ( q - q) . 

5) PC invariance 
Even if we know that the PC invariance is not valid in the neutral K-meson decay, it is 

useful to study the consequences of the PC invariance as giving an approximate description of 
the physical situation. 

Because of the strangeness superselection rule, the relative phase between K° and K° is 
not determined by the strong interaction. We choose this phase such that 

PC|K° > 8 |K° > ; PC|K° > = |K° > . 

http://II.11
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We now define two eigenstates of PC by 

PC|K? > * |K? > ; PC|K£ > s - |K2 > . 

If PC invariance holds that the decaying states Kg and K­ are eigenstates of PC, we identify 
with Kj and K| as follows: 

I Kg > ­ |KS > ; ll^ > ■+ IKS > . 

We then obtain 

|KL> = ^ { |K° > ­ \JP > ] 
»/2 

| K > = ̂ § { |K° > + |K° > j , 

where TJ and n are two arbitrary phases we can incorporate in the definition of Kg and K.. 
The matrix C takes then the well­known form 

c . 1 
& 

1 ­1 

1 1 

The TCP invariance condition W11 = 7rtZz and the time reversal invariance condition ̂ 1 2 = ^z\ 
are then automatically fulfilled: 

W „ . » „ =­|(M s­M L) . 

6) The violation of PC invariance in neutral K­meson decay has been observed experimentally 
to be very small. It is then convenient to define the matrix elements of C referring to a 
PC invariant situation. 

Let us study the cases of L or T invariance. We introduce the two PC violating 
parameters X and a: 

p ss cos f r­ ­ X) = — (cos X + sin X) 

* A % \ ­2ia 1 / ■* * ­v \ ­2ia 
a = sin r ­ X e « — (cos X ­ sin X) e 

\h ) & 

a) With L invariance 
­2ia 

det C = cos 2X e 

< KglKĵ  > = sin 2X . 
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b) With T invariance 

< KgllC > s i sin 2a cos 2X 

det C = [cos 2a + i sin a sin 2X] e" 

4. UNITARITY CONDITIONS 

1) The unitarity properties of the S matrix or, equivalently the conservation of probabilities, 
will give the relation between the skew Hermitian part of 171 and the transition amplitudes for 
decay. 

2) The transition matrix T is defined on the mass shell from the S matrix by: 

< f|s|i > = < f|i > + i (2JT)4 54(Pf - P±) < f|T|i > 

where Pf and P, are the energy-momentum four vectors for the final and the initial states. 
As previously, we call |F > an arbitrary physical state occurring in the decay of neutral 

K mesons. 
We introduce |^(t) > as an arbitrary mixture of the two basic states |K?(t) > and 

|K°(t) > . 
The conservation of the probabilities, at a given time t, is simply written as a com­

pensation between the decreasing of the norm of iff and the transition probability of decay of 
f/f into the states F: 

_d 
dt < #(t)|*(t) > + V | < F|T|#(t) > |2 = 0 (11.12) 

where 

Y * Y i^(2Tr)4 S4(?F "p) 
F spins 

F 

Here dp_, is the density of final state F, P_ the total energy momentum of F, and P the initial 
energy-moment urn. 

3) Equation (11.12) must hold for an arbitrary initial state ̂ (t) and is then equivalent to 
a set of four relations; one immediately writes, using Eqs. (II.3) and (II.4): 

i(%n -ft*i) = V I < F |T |K> I2 =r , , 
p 

t(7nzZ -K.) =y I < F|T|K > |2 = r22 

p 
(u.13) 

i(^i2 -Wffi) = y < P|T|K >* < P|T|K > = r,2 = r | , 
F 

iWbi - W«) = y < F|T|K >* < P|T|K > = r21 = r?2 . 
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These relations show why the Hermitian matrix Y is called the decay matrix and they can be 
directly obtained with the Weisskopf-Wigner formalism. 
4) The unitary conditions can be written in the physical basis K ,K_ using the transformation 
C and Eq. (II.5). For ̂ (t) it is equivalent to use an arbitrary mixture of K«(t) and K-(t) and 
to apply, as previously, the conservation of probabilities. We then obtain four equations 
equivalent to (II.11): 

i(Ms - M*) = \ | < F I T ^ > |2 = rg 

I(ML - M£) = V I < FJTIK^ > |2 =r L 
L 1 
F 

i(Mg - M£) < KjKs > = V < F|T|KJ. >* < FlTJKg > 

(11.14) 

i(Mj. - M*) < Kgli^ > = x < F|T|KS >* < FITIE^ > . 
F 

In order to satisfy the two equations, we define the real parts and the imaginary parts of 
Mg and 1L as follows: 

MS,L = mS,L " x ~2~ ' (11.15) 

The last two equations, which are complex conjugate to each other, can be transformed into 

S
 2
 L - iCm^ - ms) i < KjjKg > = V < FIT|K^ >* < F|T|KS > 

F 
r- r + r -1 V-N 

b
 2

 L + ifo - m ) ; < K g l ^ > = ) < F|T|K S >* < F|TIK^ > 

(11.16) 

5) The Schwartz inequality gives an upper bound for the right-hand side of equations (II. 16): 

y < F | T | K S >* < FITIK^ > |2 < j \ I < F I T I E ^ > I | | > I < F | T | K ^ 

We then ob ta in 

[("J-2-Jl)2 + <"L " V"] I < * A > I2 i rS h ' 

http://II.11
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Experimental ly: 

rT 
wF a (1.36 ± 0.16) 10~3 

S 

- * p ss 0.47 ± 0.02 
S 

I t follows 

| < Kgll^ > | < 6 x 10"2 . 

The s t a t e s |K-. > and |K« > a re nea r ly or thogonal . 

* * * 
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CHAPTER III 

1. THE VIOLATION OF PC INVARIANCE 

1) A 2nr-meson state has a well-defined value of PC equal to PC = +1. If PC is a good 
symmetry of weak interactions, the long lifetime component K_ is identified with the eigen­
state of PC, K£ , and then cannot decay into 2ir. 
2) The experimental observation of the two decays: 

Y^ -> ir+ ir" JL -> TT°TT° 

is evidence against the conservation of PC in weak decays. Moreover, it is still the only 
unambiguous evidence because of the existence of a selection rule if PC invariance holds. 
3) It is now convenient and usual to define the violation of PC in weak interactions for 
K -* 2rr decay in terms of two measurable complex parameters 

< ITVITIK. > , ( i, 
n+ * , , / » \n+ I e +- (ni.1) 

< IT ir |T|Kg > 
< ^ ° l T | ^ > . , i<P00 , . 

7700 = a j7?oo| e . ( I I I . 2 ) 
< i r 0 i r ° |T |Kg > 

Experimentally we have information about three of these quantities, and the last one will 
soon be available: 

h + J = (1.98 ± 0.06) 10"° 

hool « (4.9 ± 0.5) 10~3 

V+- = 8o° ± 20° • 
As a first conclusion the violation of PC in K •* 2TT decay is small compared to the separate 
violations of P and C in weak interactions. 
4) A complete analysis of the K -> 2tf decay can be done introducing a new parameter connected 
only with the IC component: 

R . r f a - » » ° / ? . (III.3) 
T(KS - 77 ir") 

If the |Al| a Jz rule holds, R =s / 2 up to phase space corrections due to the Tr~-7r° mass , 
difference. The experimental s i tuat ion for R i s not absolutely clean (see page 9) 

R = 0.447 ± 0.043 . 
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2. UNITARITY CONDITION 

1) Let us now study in some detail the unitarity condition written in Eq. (II.16) of the 
previous chapter: 

g—- + i ^ - mg) < KllŜ  > = \ < FlTlKg >* < FiTlKj. > . (III.4) 

The sum Z can be split into the various types of decay modes 
F 

£ + ) + > + / ' L-j L-j l-j L~J Lu 
F 2ir 377 lept rad 

2) For each particular decay mode G-C F, we have a Schwartz inequality 

I y < F|T|KS >* < FITIK^ > I <, r(Ks » <*) r ^ -> c) 
L / 

G 

giving an upper bound fo r |Z | . 
G 

The sum £ is obviously zero in a PC invariant theory where K. and K cannot decay in the 
same state G. Each sum is a measure of the PC violation in the corresponding K -» G decay. 
3) The first term is easily studied using the definition of 77 , ?)oo and R as given in the 
previous section. We simply obtain 

I 
2n 

r(Kg -> 2a) 
F I T U Q >* < F|T|K- > = £ [77 + Rr? ] 

b li 1 + R +- 00 

4) The experimental data for the 3rr-meson decay mode are the following: 

V(\+ >) 3 r ( K - » 
= Z 0.65 x 10 ~ < 10 . 

( I I I . 5 ) 

An upper bound of l^l i s obtained us ing the Schwartz i n e q u a l i t y 
3TT 

3ir 

< 2.6 x 10" 

Detailed analyses of charged and neutral K meson decay into three pions have been performed. 
They do not exhibit a strong PC violation and the |Al| = V2 rule seems to be satisfied. 
Therefore it is very unlikely that | 2 | can reach its upper bound. 

3TT 
5) For the semi-leptonic decay mode the experimental branching ratios are the following: 

r(K. - lept) r(Kg •* lept) _3 
T, ^ T, 2S 10" . 
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The upper bound of L ^ J as deduced from the Schwartz inequality is relatively important: 

± 10 

lept ' 

Careful analyses of K decay for charged and neutral K mesons have been performed in order to 
estimate the violation of the PC invariance and to test the validity of the AY = AQ rule. In 
both cases there is no proof of violation. 

In the framework of TCP invariance, the AY s AQ rule gives the following predictions: 

r(K^­ lept) ­ r(Kg ­> lept) « 1 ^ 

£ < F|T|Ks>*<F|T|KL> = < K s | K L > r i e p t . 

lept 

In this case the ^ contribution is very small compared to the left­hand side of Eq. (ill.4). 
lept 

It is then reasonable, on this basis, to expect the ^ sum to be very far from its 
lept 

upper bound. 

It should be noted that the AY = AQ rule in the framework of TCP invariance gives another 
useful result. The scalar product < K̂ IIC. > can be directly obtained measuring the asymmetry 
in L (or Kg) leptonic decay 

T ( K L -* IT" + l+ + v ) - r ^ ■+ ir+ + r + v ) 

r ( i c -* IT"" + C + v ) + T ( K L -> ?r+ + C + v ) 
■ P2 - Ul2 = < \ \ \ > . 

A good determination of < Kgî r > necessitates, of course, very accurate experiments and high 
statistics. 
3) The 2y* radiative decay mode has been recently observed and we have an upper limit for 
the IT 7ry branching ratio. We deduce 

r(KL -* rad) 
< 3 x 10 

Assuming a comparable result for T(r ■♦ rad) — non­experiment ally observed—we obtain as an 
upper bound 

r I 
rad 

< 5 x 10 

which allows us to neglect £ in the discussion of 2 # 
rad F 

7) Summarizing the discussion of the experimental measurements of the various decay modes, 
the sum ̂  can be written as 

F 

+ rr s . 
2ir 
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A reasonable estimate of JYI is then 

IYI « io~3 • 
8) 7/e now assume in the following of this section, that the (2JT) contributions dominate the 
unitarity- relation (ill.4). Using Eq. (ill.5) the scalar product < Kq| K_ > can be determined 
from the experimental measurements of 77 , 7]0o, and R 

T(ic -* 2TT) 2 r n + R7700 -N 

where 

2 ( V ms) 
A = rs 

Inserting the experimental information on 177 J , 1770 0 I , and R, we deduce 

| < Kgll^ > | < 4 x 10~3 . 

9) Let us consider the case of TCP invariance. As has been explained in the previous chapter, 
the scalar product < KJ K_ > is real: 

< K J K _ > a sin 2X 21 2X . 

Equation (ill.7) gives two relations: 

sin cp + r sin 900 
tg 8 = i= (III.7) 

COS 9 +7" COS 9oo 

, , n- 'r 1 
A. = ' j cos 9 + T cos 900 

1 + R I J 
(III.8) 

where 

5 = arc tg A r = R | ̂  | 
^+-

5 2s 44° ± 1° T 2? 1.1 ± 0.22 . exp exp 

Experimentally R, 77 , and |n0o| have been measured. Equation (III.7) gives a prediction for 
the phase 900 in the framework of TCP invariance, and a direct experimental measurement of 900 
is then highly crucial. Equation (ill.7) has two solutions: 

cp̂ o = 5 + arc sin - sin (5-9 ) 

(in.9) 
(pio' s tr + 5 - arc sin - sin (S - <p ) . 
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Inserting the experimental numbers with their large errors: 

- 25° ̂  9oi ̂  < +32° 

-124° ̂ 9oo^ £ -67 . 

The parameter X is then obtained using Eq. (ill.8): 

0.88 x 10"3 ̂  \ 1̂ ' < 2.2 x 10~3 

-0.46 x 10"3 i \(2' < 0.25 x 10"3 . 

A graphical solution of Eqs. (ill.7) and (ill.8) is given in Fig. 8. The angle 9 is taken 
as 80° and the angle 5 as 44°. 

Because of the large uncertainties on 9 and r, it is possible to obtain approximate 
solutions of Eqs. (III.9), replacing r by unity: 

9oo =* 25 - <p+_ 

(2) «. 9oo - 9+_ + v 
(III.10) 

10) We can study, in an identical way, the implications of time reversal invariance. As has 
been explained in the previous chapter, the scalar product < KQIKT > is now purely imaginary: 

< K J K ^ > s i sin 2a cos 2X ̂  2i a . 

Equation (ill.6) gives again two relations 

-ctg 5 » 
sin 9 + T sin 900 

cos 9 + T cos 900 
(111.11) 

a s [sin 9 + r sin 900 } . 
1 + R +" 

(III.12) 

The two solutions of Eq. (III.11) are given by 

(O 
9oo = IT + 5 + arc co 

9o (
2) 

ho' = if + 
5 - arc cos 

- cos (S - © ) 

- cos (5 - 9+_) 

(111.13) 

Inserting the experimental numbers with their errors the two solutions cannot be separated, 
and we obtain 

-201° < 900 £ -71° • 

The parameter a i s then es t imated us ing Eq. ( i l l . 12): 

- 0 . 6 x 10"3 i a i l . 9 6 x 10"3 . 

http://III.11


- & -

A graphical solution of Eqs. (ill. 10) and (III.11) is given in Fig. 9. The angle 9 is 
taken as 80° and the angle 5 as 44°. 

For the same reasons as given previously, we replace r by unity to obtain a good 
approximation of Eq. (ill.13): 

25 - IT - 9 9do' = 

(2) 
9oo = 7T + 9 . 

(III.14) 

11) In Figs. 10 and 11 we have represented the variation of 900 and 9 0 0 - 9 as a function 
of 9+_ for 5 s 44° and r = 1.1 + 0.22. The connection between L = TCP invariance and time 
reversal invariance is given by 

(L) (T) IT <T ' - 9V ; = 2 • 

The approximate solutions [Eqs. (III.10) and (III.14)] correspond to straight lines. 
(2 ) With the present accuracy of experiments, the solutions 900 obtained in the framework of 

TCP invariance lie in the range of values predicted by time reversal invariance. More 
generally, from Eqs. (ill.10) and (III.14) the solutions 900 deduced with TCP invariance 
and T invariance almost coincide. If, experimentally, 900 is close to ir + 9 it will not be 
possible to reach any conclusion and to choose between these two discrete symmetries. 

IS0T0PIC SPIN ANALYSIS 

1) A 27r -meson state of angular momentum J - 0 can only have a total isotopic spin 1 = 0 
and 1 = 2 because of the generalized Pauli principle. We then introduce four amplitudes to 
describe the decay of neutral K mesons into 2ir 

< 0|T|Kg > , < 2|T|Kg > , < 0|T| K^ > , < 2 ^ 1 ^ > , 

where the final state is characterized by its isotopic spin. If the |Al| = A/2 rule holds, 
only the final state with 1 = 0 can be reached at first order. 

It is then convenient to define, as usual, three complex parameters: 

€ 

€' 

0) 

< o | T | K^ > 

< 0|T|Kg > 

< 2 ^ 1 ^ > 

< O I T I I ^ > 1 

< 2 | T | K 3 > 1 

< O|T|Kg > 

(III .15) 

The quantities € and e'/<*) measure the violat ion of PC invariance. The ra t io e'/e and the 
quantity w measure the violation of the |Al| = 1/2 rule in K̂  and Kg decays. 

http://III.11
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2) Using the Clebsch-Gordan c o e f f i c i e n t s to p r o j e c t the phys ica l s t a t e s IT IT" and ir0ir° on 
the e i g e n s t a t e s of i s o t o p i c spin 1 = 0 and 1 = 2, i t i s easy to express 77 , 7700, and R i n 
terms of e , el, and w. 

72 

e - Jz e' 
7?10 -

1 - J2 61 

» = 1 1 
1 + U) 

2 

(111.16) 

The experimental determination of 77 , 7700, and R gives five real numbers. This is not 
sufficient in order to know the three complex parameters e, €*' , and o>. From the system of 
Eq. (ill. 16) we can only obtain a one-parameter set of solutions. Supplementary assumptions 
are needed to fix the remaining free parameter as, for instance, the existence of discrete 
symmetries. 

3) The quantity 0) measures the violation of the |Al|= Y2 rule in K- -* 2nr decay. Defining 
p = ̂ 2R , the equation 

p s 
1 - JZ u 
" 1 1 + — OJ 

72 

is easily resolved. In the complex plane of CJ and for a fixed value of p, 0) is located on a 
circle 

JL 
4 - p̂  

{2 + p2 - 3P e-i^ } . (111.17) 

The experimental value of p is 

Poim * 0.947 ± 0.045 exp (III.18) 

and the allowed values of co are shown in Fig. 12. 

4) The transition from a K-meson state to a 2rr-meson state of total isotopic spin 1 = 2 can 
occur with a change in isotopic spin |Al| = 3/2 or |A1!| = % . In general there is no relation 
between the amplitudes < 2|T|K+ > and < 2|T|K? >, and the experimental data on K -+ IT IT0 

cannot help the present analysis. 



­ 50 ­

In order to obtain information about the phase parameter £ introduced in Eq. (III.17), we 
have to make a new assumption. Experimental data on non­leptonic decay (except the pathologic 
case of K^ ­* 2rr decay) are in agreement with the prediction of the |Al| = 1

/2 rule with a good 
accuracy. It is generally believed that such an agreement is not the result of accidental 
cancellations in each particular situation, but is due to the dominance of the |Al| = /2 

transitions with respect to the other possible ones. If such a point of view is valid for 
Kg •* 2JT decay, the order of magnitude of the < 2| T| K° > amplitude is given by the K ■* IT IT 
width and found to be very small with respect to the < O|T|KP > amplitude. It is the reason 
why all the present analysis of neutral K­meson decay assume 

M2 « 1 , 

or in the £ language 

e « 1 . 

As an illustration of the previous considerations, a quantitative approach giving |w|2 and 
£
2 can be developed assuming that the amplitudes < 2|T|K > and < 2|T|K° > are both dominated 
by a |Al| = 3/2 transition. We use the TCP relation for the matrix element < 2|T|K° > and an 
approximate PC invariance for Kg (p ^ q ̂  1//2) and we obtain 

. r(<­7T+ir°) 
|o,|2 » it 2 a (1.95 + 0.05) 10"3 . (ill.19) 

3 r
s 

On the other hand Eq. (HI.13) gives 

, 3 i n 2 f = - k ^ (111.20) 
2 3P(2+P3) I 2 \ 2+p / J 

The modulus |w| is fixed by Eq. (IIL19) and we have a second circle in the complex plane of 
a) • The previous assumption is physically acceptable if and only if the two circles intersect 
or, equivalently, if sin2 (£/2) > 0. Equation (III.20) requires 

Using the evaluation (ill. 19) of |w|2 we deduce 

P * 0.91 

which i s consistent with the experimental data quoted in Eq. ( i l l . 18). 

The angle £ turns out to be very small; using Eqs. ( i l l . 1 8 ) , ( I I I .19) , and ( I I I .20) , we 

obtain an upper l imit for £ : 

e £ 10"3 . 

The phase of w, 9 , can also, in principle , be calculated from Eqs. (III .17) and ( I I I .20) : 
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w 2+p
2 I |u|

2 V 2 +p/ J 

Unfortunately, because of the large experimental uncertainty on p, 9 is consistent with all 
the values between - ir/2 and 7r/2. 

5) Equations (ill. 16) and (ill. 18) allow a one-parameter determination of e ande': 

€ = ~ f(2 - p e~^)2>7+_+ (2e~^ - p)p7700] 

, -JL 
4-P

2 
f(2 - P e*"i€)7?+_ - (2e-1* - p)p77oo] 

(III.21) 

If, now, the parameter £ is very small (as discussed in the previous section) the quantities 
e, e' , and Re CJ are essentially independent of £ and we obtain, instead of Eq. (ill.21), 
more simple expressions: 

~ - JT7 [^ + pr,0°] 

(in.22) 

Re 
2 + P 

The f dependence is exhibited only in Im w: 

• • ■ A < i - ' > . 

Im « * i ^ * . 
4 - P* 

6) Let us now study the problem of the |AI| = J2 rule in K-. •* 2JT decay in a way independent 
of any assumption about <w. Using Eqs. (ill.15) and (ill.16) we obtain: 

r^-nrV) 1 
T ^ ->ir°iT0) ~ R 

" + -

*7oo 

2 
1 

= 2 

1 +72 f r 

1
- ^ * " 

2 

(111.23) 

We then have to resolve the equation 

1 -yif 
Again in the complex plane of e/e', for a fixed value of 0*, e/e' is located on a circle: 
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fr = ̂ L _ r 3ae i < , >-2-aO . (111.24) 

The experimental value of o is (a = p/r): 

a z 0.86 ± 0.13 . (III.25) 
exp 7 

The value a = 2 predicted by the |AI| = 1/2 rule is excluded by the present experiments. As 
a trivial consequence €* cannot be zero. 

* * * 
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CHAPTER IV" 

THE TCP INVARIANCE 

1) In order to study the implications of discrete symmetries such as TCP, T or PC, it is 
convenient to work in the K°K° basis and to define four amplitudes: 

< O|T|K° > , < O|T|K° > , < 2 |T |K° > , < 2|T|K° > . 

We then have the obvious relations 

< X|T[K^ > = p < I | T | K ° > - q < I | T | K ° > 

< ilTJKg > = r < l|T|K0 > + s < l|T|K0 > . 

2) The constraints due to PC invariance are simply obtained by observing that a 2n -meson 
state is an eigenstate of PC with PC = +1. With the phase assumption made in Chapter II 
we have 

or, equivalently 

< I|T|K£ > = 0 

< I|T|K? > = J2 < I|T|K° > . 

3) The L = TCP invariance implies a reciprocity relation 

< f|T|i > = < ijT|fL > . (IV.1) 

The states |i > and |i_ > are one-particle states, and Eq. (IV.1) is useful if and only if 
T possesses some properties. 

In order to take into account the strong interactions occurring in the final state, we 
must distinguish outgoing and ingoing states. Prom the S-matrix definition 

< . IS = < J ; S*| . > = | . > . in' out1 ' ' in ' out 

Equation (IV.1) must be written as 

< f ,|i. > = < fT . |iT . >* . (IV.2) 
out' in L in' L out v J 

For the one-particle states | i > and | iT > there is no difference between ingoing and 
outgoing states 

l i*a >-l 1 > 5 K o o t * " l*L> < 
and Eq. (IV.2) is simply written as 
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In order to interpret the right-hand side of Eq. (IV*. 3) as a decay amplitude we must relate 
the states < f_ . | and < f- . | . To do that, we must remember that the decay amplitudes 
we are considering can be evaluated at first order in weak interactions and we obtain a 
factorization of Eq. (IV.3) following 

< f |i > = < f JjL >* < fT J fT . > . (IV.4) 
out' L out' L L out1 L in v **-/ 

The extra factor < fT ,IfT . > describes the final-state interaction and is the S-matrix L out L in 
element for the transition fT •+ f T • In our case |f > is a 2JT-meson state and we introduce the 
phase shift 5- for TT-TT scattering in an S-state at the energy of the K-meson mass, the total 
isotopic spin being I 

< I . I. > = e l ; 

out' in * 

The states | K° > and | K° > are exchanged in a TCP operation 

TCP|K° > = |K° > ; TCP|K° > = |K° > . 

Equation (IV.4) takes two equivalent forms 
< I | T | K ° > = e x I < I | T | K ° >* 

(IV.5) 
e " l 5 l < l | T | K ° > = [ e ~ l 5 l < l | T | K ° > ] * 

I t i s then convenient t o define four reduced ampl i tudes : 

Aj = e" I < l | T | K 0 > 

Aj. = e 1< I|T|K° > 

The TCP invariance condition (IV.5) is then simply written as: 

Aj = Aj* • (17.6) 

4) In the framework of the TCP invariance, the transformation C has been written as: 

p s r = — (cos X + sin X) 
J2 

1 , . . ,v -2i a q s s = — (cos X - sin X; e . 

The reduced amplitudes AT and AT are related by Eq. (IV.6). We define two parameters #6* and 
tiz for the PC violation: 

Aj . |AX| e X; Ax = |Aj| e I . 

Only the sum 

& u $' + a 

is measurable, and the computation of e, e', and to is straightforward 
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€" s 
s i n 2X + i cos 2X s in 2&0 

1 + cos 2X cos 2&0 

e' = 
s i n 2X cos (#2 - 0o) + i [ s i n (#2 - #o) + cos 2X s i n (#2 + #<>)] 

1 + cos 2X cos 2&Q 

cos (#2 - #o) + cos 2X cos (#2 + #o) + i s i n 2X s i n (#2 - # 0 ) 

1 + cos 2X cos 2#0 

(IV.7) 
The t h r e e complex q u a n t i t i e s €, e', and w a re g iven i n terms of f i v e r e a l parameters : 

Aa 

I Ao 

Ae 

Ao 

e i (S * - So) 

e i ( 8 2 - So) 

* , !70 , VZ 9 Ao 

The TCP invariance implies one relation between €, e' , and w. In order to explain such a 
relation it is convenient to use the ratio €' /w very similar to € 

(0 

< 2 | T | K - > s i n 2X + i cos 2X s i n 2#2 

< 2|T|Kg > 1 + cos 2X cos 2#2 

(IV.8) 

The compatibility relation is then easily obtained as: 

1 < K \K * I «*« ox - Re g ^ gV« 
1 + |e| 

and the other two parameters of PC violation are given by 

2 Im € 

1 + — 
0) 

tan 2#0 = 
1 - \€\ 

(IV.9) 

(IV.10) 

tan 2#2 2 Im (e'» 
1 - — 1 w 

e' |2 (IV.11) 

Relation (IV.8) determines the parameter £ introduced in Chapter III as a funotion of 
the experimental quantities 77 , n0o , and R. In a TCP invariant situation the problem is 
then completely determined, and as a consequence the quantity w can be obtained from 
neutral K-meson decay only without any reference to K -meson decay. 

In fact the only test of TCP is the existence on a real angle £ such that the compatibi­
lity relation (IV.9) is satisfied. We will see later that this problem has always two 
solutions. 

The ratio € is a linear combination of n+_ and n0o . It follows that Re € and Im € are 
both of the order 10~3 . We then have 

kl* « 1 
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and a first order calculation in X and #0 is obviously sufficient 

€ 2i X + i #0 . 

Equation (IV.9) and (IV.10) are then simplified into 

-v t> ^ Re e* /a 

1 + iq2 

(IV.12) 

(IV.13) 

&o = Im e (IV.14) 

5) The 2JT contributions to the unitary condition (ill.5) can be expressed in terms of e, 
€' , and u) using the identity 

n + R 7700 € + €' cJ 

1 + R 1 + l«la (IV.15) 

If the unitarity relation is saturated by the 2xr contributions—as expected from a previous 
discussion—we can write Eq. (ill.6) as 

X(1 + i A) = € + e' oT 
1 + ki* 

and the real part of this equation gives a new expression for X 

Re e + Re e' to 

(IV.16) 

X = 1 + M J (IV.17) 

On the other hand, we have obtained X = Re € in Eq. (IV.12) and, as a consequence of the 
unitarity condition we deduce a second compatibility relation 

X = Re e a Re e' /oo 

Equations (IV.13) and (IV.18) agree if and only if 

« 1 

(IV.18) 

(IV.19) 

e.g. if the PC violation angle #2 is also small 

05 « 1 

but not necessarily of the same order of magnitude as X and #0 • 

We now assume, in the following, the condition (IV.12) to be satisfied. Equation (IV.17) 
becomes a consequence of the compatibility relation (IV. 18), but we do not use the imaginary 
part of the unitarity relation for the moment. The expressions of €' and (0 reduce to 

e' =(\+it? 2) i(S2 - So) 
(IV.20) 

Agl i(S2 - 80) 
Aol * 



- 57 -

From Eqs. (IV.15) and (IV. 18) the compatibility condition takes the very simple form 

n + + R 7700 
Re € = Re "1 + R . (17.21) 

We int roduce the s o l u t i o n ( i l l . 1 8 ) f o r e , and the equat ion determining £ as a funct ion of 
7l+mmy T?OG , and R i s 

Re (n+_ - 7700) cos £ + Im (IJ+_ - 7700) s i n f » —2fi— R e fa - 7700) . (IV.22) 
2 + p2 

It is convenient to define an auxiliary parameter $ measurable experimentally 

* = arg (n+_ - r?oo) . 

As an equation in £, the compatibility relation (IV.22) has always two solutions because of 
the experimental unequality p 4 1. We immediately obtain 

+ 
£~ = $ + arc cos JB-

2 + pz 
cos $ (IV.23) 

where we have chosen for arc cos |[3P/(2+P 2)] cos $j the determination close to $. In the 
extreme case p = 1, the solutions (IV.23) reduce to 

£+ * 2$ J £" » 0 . 

The phys ica l s i t u a t i o n i s 0.91 *> P * 1* and the s o l u t i o n £~ remains always small and the 
so lu t ion £ l i e s around 2$ . 

In F i g . 1 3 we have rep resen ted £ and £~ as a func t ion of $ . We n o t i c e the following 
symmetry p r o p e r t i e s 

£"(* + *) - *"(*) 
f+(7r + §) = 2ir + £+($) 

r <-*) »roo 
£+(-*) - ^ + ( f ) . 

To the two values £ and £ correspond two sets of solutions for e, €', and w. It is easy to 
prove the interesting relation independent of $: 

to co = 2 
4-p* 

The phases of w and w~ are opposite. If we have some information about the sign of 52 - S0 
it is then possible to choose between w and a"". In the complex plane of <*> the situation is 
described in Fig. 14* 
6) If the 2JT contributions saturate the imaginary part of the unitarity relation, the phases 
of 77 and 7700 are not independent and satisfy the relations (III.19). 
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The argument $ becomes a function of 9 • The knowledge of (77 |, 17700 I, R,and cp is 
now sufficient to solve the problem. In the framework of TCP invariance we obtain four 
solutions, two associated to £ and called large <o solutions, and two associated to £~ and 
called small co solutions. Table 7 gives the numerical results for: 

R = 0.447 , k 1.98 x 10" Uool » 4.9 x 10" 80° 

Table 7 

9 + ~ 
9oo 

103 X 

10 3 #0 

103 dz 

JAa 

s2 - So 

103 \e\ 

* C 

103 k ' | 

V 

80° 

12° 

1.7 

1.5 

22 

0.10 

73° 

2 .3 

41° 

2 .3 

158° 

small | OJ | 

3.1 

- 1.4 

0.66 

- 73° 

3.5 

61° 

1.5 

- 113° 

l a r g e \OJ\ 

So lu t ion I 

- 103° 

- 0.11 

- 0.2 

119 

0.027 

- 12° 

0.23 

- 120° 

3.2 

78° 

small |<y| 

' 8 

- 1.4 

2.55 

12° 

8 

91° 

3.5 

- 82° 

l a r g e |w| 

So lu t ion I I 

The constraints (III.9) between the phases of n and 7700 imply a relation between the 
real parameters of this TCP invariant analysis. Such a relation expresses the PC violating 
parameter of the transformation matrix X in terms of the two other PC (or T) violating 
phases #0 and #2 . Using Eqs. (IV.12), (lV.16) and (IV.20) we easily obtain 

tfo + 
XA IAO 

|Ao 

and we have only two independent parameters for the PC violation associated to the isotopic 
spin states 1 = 0 and 1 = 2 . 



- 59 -

2. TIME REVERSAL INVARIANCE 

1) If the TCP invariance is broken we have, as an alternative, the possibility of a time 
reversal invariance. We now perform the analysis of a neutral K-meson decay under such an 
assumption. The method of calculation is identical, and we given only the results. 

2) We first write the reciprocity relation 

< f|T|i > = < i ^ T l ^ > , (IV.24) 

and we introduce the final-state interaction as in Section 1 of this chapter. We obtain 

< I |T|K° > = e
 1 I < I |T|K° >* 

9'8 (lV-25) 

< l|T|iC0> = e I < l|T]K0 >* . 

As is well known, the reduced amplitudes AT and I are real. The PC violation is exhibited in 
the fact that A_ j£ A- . 

3) We follow the phase assumptions of Chapter II where p is real and q complex 

ll^ > = p|K° > - q|K° > 

|Kg > = q|K° > + p|K°> . 

The parameters €" and €* /(a are given by 

p AQ - q Ao * =,z:;z (iv-26) 

w q Aa + p lz UV.^O 

We have a compatibility condition due to time reversal invariance 
e' 

1 1 Im e Im — — < K A > - — P (5 - q) « T72 * FIT ' (lV-28) 
2 i 2 i 1 + k|2 1 + — 2 

|2 

Equation (IV.28) determines the parameter ̂  of Chapter III as a function of n+_, 7700,and R. 
Again, in the framework of time reversal invariance €, e' , and w can be computed from neutral 
K-meson experiments. 

A first order calculation with respect to the PC violation parameters is sufficient for 
€, and Eq. (IV.28) can be simplified into 

1 Im — 
p ( 5 - q ) = I m e = rp-T • (IV. 29) 

2 i 1+ H 2 

4) The imaginary part of the unitarity relation is saturated by the 2JT contributions if and 
only if 

« 1 . (IV.30) 
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Using now EqT (lV.15) we finally obtain a very simple form for the compatibility relation 

" + R "00 
Im € = I m — = . (IV.31) 

1 + R 

The equation determining £ as a function of n , n0o , and R is 

Im (n+_ - Hoo) cos £ - Re (77+_ - 7700) sin f = — ~ — Im (n+__ - 7700) . (IV.32) 
2 + p2 

With the auxiliary parameter $ defined in the previous section, the two solutions of Eq. (IV.32) 
can be written as 

£ = IT + $ + arc sin Jfi. 
L 2 + p 

sin $ 

(IV.33) 

£ si $ - arc sin 
L 2 + p2 J 

where we have chosen, for arc sin £[3p/(2 + p2)] sin$j the determination close to $. 

In the extreme case p = 1, solutions (IV.33) reduce to 

£ + = T T + 2 $ ; £~ = 0 . 

The phys ica l s i t u a t i o n i s 0.91 & P ** 1 , and the s o l u t i o n £"" remains always small and the 
s o l u t i o n $ l i e s around IT + 2$ . 

In F i g . 15 we have represen ted £ and £~ as a funct ion of $ . We no t i ce the following 
symmetry p r o p e r t i e s 

T ( i r + *) « £"(*) 

£+(?r + <£) = £ + ($ ) + ir 

r(- *) = - r(*) 
£ + ( - «) = 2rr - £ + ( $ ) . 

As in the previous case the phases of w and (*)~, for a given value of $, are opposite. 

In general the predictions of time reversal invariance and those of L a TCP invariance 
are connected by the following relations: 

<PV ' - 9 

V* (T)) 

«T(<p ( T )) 

eT(<P(T)) 

"* 2 

= ^ ( L ) ) 

- « L («p ( l ) ) 

-K<« ( 1 )> 

(IV.34) 

,<(,<*>) = H(<P ( L )) 
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5) We perform the calculation of e, e', and w at first order with respect to the PC violating 
parameters 

€ ^ P - q + Ao - fo 
p + q Ao + Ao 

£ l * P - q + Ag - Ag 
w P + q A2 + 2g (IV.35) 

co - ^ + ^ e
 i ^ 2 " 5 o ^ 

Ao + Ao 

In a first order calculation the deviation of p/ | qj and AT/AT from unity are not separated. 
Let us define 

A - A 
ai - A~nq + X J X - °-2 

ana we obtain for e, €', and o the following expressions 

€ 2r a0 + i <x 

(iv.36) 

— 2s a2 + 1 a 

^ A2 + Ag i ( 5 2 - S0) 
Ao + Ao (IV.37) 

If the 2TT contributions saturate the real part of the unitarity condition, the phases of 77 
and 7700 satisfy one of the equalities (ill. 13). In the framework of time reversal invariance 
we obtain four solutions. Table 8 gives the numerical results for 

R = 0.447 , h I = 1.98 x 10" Wool = 4.9 x 10 cp = 80° . 

The constraints (III.13) between the phases of n+_ and 7700 imply a relation between the real 
parameters of this time reversal invariant analysis. Such a relation expresses the only 
measurable PC violating parameter a of the transformation matrix in terms of the two other 
PC violating parameters ao and a2 . Using Eq. (lV.37)we easily deduce 

- aA 
ao + aj 

1 + 
j 

Ag + h 
Ao + Ac 

kz + Az 
to + Ao 

2 

Relations (IV.34) take now the form 

«(<P ( T )) 

a> ( T )) 

X(<P(L)) 

T(,(L)) I = 0.2 

Ao + AO/T 'Ao L 

(«. -So)T(<P(T)) = (8, - 80)L(<P(L)) . 

New calculations are not needed to obtain the variation of these parameters with respect to 9 
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Table 8 

9+~ 
9oo 

103 a 

103 ao 

103 a2 

A2 + As. 
Ao + Ao 

103 | e | 

*e 

103 k ' | 

V 

80° 

181° 

1.32 

- 1.34 

91 .4 

0.028 

21° 

1.88 

- 224° 

2.58 

22° 

small \(o\ 

5.06 

- 2.40 

2.42 

- 21° 

5.22 

15° 

6.64 

130° 

l a r g e |w| 

So lu t ion I 

- 94° 

- 0.15 

- 0.38 

19.36 

0.166 

77° 

O.38 

- 159° 

3*20 

77° 

smal l | a | 

1.46 

- 7.6 

0.412 

- 77° 

1.46 

- 6° 

3.12 

104° 

l a r g e \o)\ 

Solu t ion I I 
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APPENDIX A 

SOME PROPERTIES OF THE 2rr AND 3ff FINAL STATES 

FROM THE DECAY OF A KAON 

1 . C(TT ir") a (ir~ir ) 

Changing the sign of the pion is equivalent to a reflection with respect to the centre of 
mass, so 

C(irV) = P(irV) = (-1)* = +1 , 

where I is the relative angular momentum of one pion with respect to the other (l = kaon spin = 0), 
Before 1957, K° was defined as the eigenstate of C = 1, K*? = (l/v/2)(K° + C K°), while 
Ks> = (l/v2)(K° - C K°). The weak interactions were supposed to conserve C, and K° was identified 
with the short-lived component decaying to two pions, while the K| could not decay to this state 
which is the most favoured from the point of view of phase-space volume. 

Parity of three-pion states 
Call L the relative angular momentum of the dipion system 
{IT if) relative to ir°, and I the relative angular momentum 
of one of the charged pions relative to the others. 

In the rest system of the kaon, the three momenta are 
coplanar and the angular momenta are all parallel, per­
pendicular to the plane, and independent of a translation 
of the reference system. The total orbital momentum in the 
kaon rest system is thus L + I. The parity is 
(-03(-0 l+L - - 1 s ince I + L = 0 . This was the b a s i s of 

system has P 
the d-T puzzle, since the 2ir system has P = +1, the 3^ 

-1, and the decay of the charged kaon into these two channels was observed. 

3. CUVTT0) = (-IT 
C interchanges the positions of the two charged pions and is thus equivalent to the parity 

operation in the dipion system. The eigenvalue is dependent upon the angular momentum of the three 
pions. It does not have a well-defined C-parity. However, because of centrifugal barriers, one 
can expect I = 0 to be favoured. In this case C = +1, as for the two-pion system. The observation 
in 1958, by Lederman and co-workers, of the abundant decay mode IT ir~ir° for the long-lived component was 
thus a further indication of C-violation in the decay. 

4. PC(TTV) = (TTV) 

PC is equivalent to changing the charge and space coordinates of the pions. Since they obey 
Bose statistics, PC = +1 independently of the angular momentum states. 

5 . PC(7r°7r°) = ir° IT0 
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6. PCfTrVy) = ( -1 )** 1 (ir+iTir°) 

We have seen that P(ir ir ir°) = -1. C interchanges IT and IT and is equivalent to a parity 
operation in this system, thus resulting in a factor (-1) . 

7- Some relations between the C-parity and the G-parity of pion systems: 
C(iT) = TT+ 

C(TT°) = TT° . 

The charged states are not eigenstates of C. 

Consider the vector isospin space subtended by IT, TT2 IT3 where the physical states are 
defined by 

n = "1 + i"2 

Applying C gives 
IT 

IT 
+ 

IT 
0 

: is, ~ to the 

i 7 T l 2 
e ir -> — 

±irl2 „ ^ -

±ifl2 
e ir -* -0 

= C \ 

= C 77_ 

= C IT . 
0 

, . i 7 T l 2 operation e 

IT, - i7T2 ^ 

f2 

1T° . 

In other words, all the charged and non-charged pion states are eigenstates of G = C e 
with the eigenvalue - 1. In all interactions conserving isospin and charge conjugation, the 
G-parity is a good quantum number. It is a multiplicative quantum number. The G-parity of 
n pions is (-1) . 

8. C-parity of three pions in a neutral global 
state as a function of the total isospin 

Since the charge of the system is zero, the isospin vector lies in the x-y plane. A rota-
n be replaced by a re 
Since G = -1 we have 

tion around I2 can be replaced by a rotation around any vector in that plane, for instance I: 
i77l2 i7Tl 

c = (-DI+1 

The three-pion system with zero charge can be in states of isospin value 0, 1, 2, 3* 
* * * 
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APPENDIX B 
Tables from Trilling's 
report UCRL-16473, 1965. 

Table 1 
K rates 

Mode 

a ) A l l modes J 

K -* ii + v ' 

K+ - ir+ * TT° a ) 

K+ -» e +
 + *° + v o ) 

K+ - / + ir° + i; d ) 

„+ + + - e ) 

K+ - ir+ + jr° + ir° f > 

K+ - e +
 + v a > 

+ + ~ + 
K -» IT + tr + e + v 
_+ + - + 
K -* IT + IT + /i + V 
v + + o a ) 
K -* IT + IT + Y + + + -
K ->7T +7T +7T + Y _.+ + + - -K -+ IT + IT + e + v 

+ + + 
K -+ IT + IT + (J. + V 
~+ + + - a ) K -> ir + e + e 7 

__+ + + - a ) 

a ) 

a ) 

a ) 

a ) 

a ) 

B r a n c h i n g r a t i o 

63.5 ± 0.798 
2 1 . 6 + 0.6% 

4 . 4 9 ± 0 . 2 5 $ 

3 . 1 7 ± 0 . 3 5 $ 

5 . 5 9 ± 0 . 1 1 $ 

1 .68 + 0 . 0 6 $ 

- 1 .6 x 1 0 " 5 

(3.6 t 0 . 8 ) x 

( 7 . 7 ± 5 . 2 ) x 

( 2 . 2 ± 0 . 7 ) x 

( 1 . 0 ± 0 . 4 ) x 

< 2 x 1 0 " * 

< 3 x 1 0 " * 

< 1.1 x 10""* 

< 3 x 1 0 ~ 6 

1 0 " 5 

10"* 

1 0 " 4 

icf4 

R a t e ( s e c " 1 ) 

( 8 . 0 4 5 ± 0 . 0 2 7 ) 

( 5 . 1 1 ± 0 . 0 6 ) 

( 1 . 7 4 ± 0 . 0 5 ) 

( 3 . 6 1 ± 0 . 2 0 ) 

( 2 . 5 5 ± 0 . 2 8 ) 

( 4 . 5 0 ± 0 . 0 9 ) 

( 1 . 3 5 t 0 . 0 5 ) 

- 1 .3 x 1 0 3 

( 2 . 9 t 0 . 6 ) 

( 6 . 2 i 4 . 2 ) 

( 1 . 8 ± 0 . 6 ) 

( 8 . 0 t 3 . 2 ) 

< 1.6 x 1 0 2 

< 2 . 4 x 1 0 2 

< 0 . 8 x 1 0 2 

< 2 . 4 x 1 0 2 . 

x 1 0 7 

x 1 0 7 

x 1 0 7 

x 10* 

x 10* 

x 10* 

x 10* 

x 1 0 3 

x 1 0 2 

x 1 0 4 

x 1 0 3 

] 
j 

Remarks 

55 MeV < T^ + < 80 MeV 

E > 10 MeV 
Y 

AS/AQ = -1 t r a n s i t i o n 

I n v o l v e s n e u t r a l 
l e p t o n c u r r e n t s 

a) See text for discussion. 

b) Calculated from 1 - sum (other branching ratios). 

c) Input data on branching ratio: 
4.7 ± 0.3$ (Ref. 5) 5.12 ± 0.36$ (Ref. 14) 
5.0 + 0.5$ (Ref. 4) 4.04 ± 0.24$ (Ref. 15) 

Values measured relative to the r mode have been renormalized to the r rate quoted in the 
table. 

d) Input data: 

e) Input data ; 

f) Input data: 

3.0 + 0.5$ (Ref. 5) 
3.52 ± 0.20$ (Ref. 62) 
2.82 + 0.19$ (Ref. 15) 
5.54 ± 0.12$ (Ref. 17) 
5.71 ± 0.15$ (Ref. 18) 
5.10 ± 0.2f% (Ref. 5) 
5.7 ± 0.3$ (Ref. 4) 
5.2 t 0.3$ (Ref. 19) 
1.8 ± 0.2$ (Ref. 5) 
1.5 t 0.2$ (Ref. 19) 
1.7 t 0.2$ (Ref. 4) 
1.71 ± 0.07$ (Ref. 20). 

NOTE: The reference number corresponds to Trilling's article. 
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Table 2 
UCRL-16473 

Input data for K2 rate determinations 

total 

charged 
r 
e r + r 
e u r^-o) 
rw(ooo) 
rA 
P„(+-O) 

charged 
r (000) 
charged 

= 
= 
= 
= 
= 
= 
-

= 

f 

(1.85 

(1.47 
(0.81 

(0.94 

(0.254 

(0.53 
0.70 

0.152 

0.25 

± 0.18 ) x 

± 0.18) x 

± 0.10) x 

t 0.13) x 

± 0.025) x 

± 0.09) x 

*± 0.05 g) 

t 0.005 h) 

± 0.06 ^ 

107 

107 

107 

107 

107 

107 

-1 a) sec ' 
-1 b) 

sec ' 
-1 c) sec J 

-1 d) 
sec ' 

-1 e) sec ' 
- 1 f ) 

sec ' 

a) Input data on mean life: (5.3 t 0.6) x 10~8 sec (Ref. 23) 

(6.1 l]'l) x 10"8 sec (Ref. 24) 

b) Ref. 22 with correction due to the new value of the K° mean life. 

c) Ref. 25. 

d) Ref. 21. 

e) Input data: 

f) Ref. 27. 

g) Input data: 

h) Input data: 

j) Input data: 

( 1 . 4 t 0 .4 ) x 10* s e c " 1 (Ref. 21) 
(3.26 t 0 .77) x 10* sec" 1 (Ref. 26) 
(2 .57 ± 0.30) x 10* sec" 1 (Ref. 2 7 ) . 

0 .73 ± 0.15 (Ref. 28) 
0.81 ± 0.19 (Ref. 29) 
O.85 ± 0 .18 (Ref. 30) 
0.680 ± O.O53 (Ref. 65) . 

0.157 ± 0.03 (Ref. 28) 
0.151 ± 0.02 (Ref. 29) 

°'15 ! °0;°0l (^f. 30) 
0.159 ± 0.015 (Ref. 31) 
0.144 t 0.006 (Ref. 32) 
0.178 ± 0.017 (Ref. 33) . 

0 .24 ± 0.08 (Ref. 34) 
0.25 t 0 .08 (Ref. 35)• 
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UCRL-16473 

Table 3 

K° r a t e s 

Mode 

A l l K? modes a ^ 

K? «* ir° + 1f° ' 

^o + - b ) 
K? «♦ 7T + IT J 

A l l KS modes ° ' 

Kg -* tr" + e + + v ' 

KS - t r 1 + / i * + v c ) 

Ki - TT+ + TT" + TT°
 c ) 

KS - 7T° + TT° + 7T° C ) 

KS - 7r+ + Tf" + Y ^ 

Kg -> TT+ + i r " e ) 

K£ -* /J + / T 

K | ■* e + + e " 

K£ -» e 1 + u* , 

, f ) 

KS - 2r s ) 

Branching r a t i o 

30.9 

69.1 

38.4 

26.6 

11.8 

23.2 

(1.58 

+ 2.2$ 

± 2.2$ 

± 1.4$ 

± 1.3$ 

± 0.5$ 

± 2.0$ 

< 0.3$ 

± 0 . 1 2 ) x 1 0 " 3 

< 10" 4 

< i o " 3 

Rate (sec ) 

(1.155 ± 0.019) x 

(0.357 ± 0.025) x 

(0.798 ± 0.025) x 

(19 .9 ± 1.0) x 

(7 .64 ± 0.44) x 

(5.30 ± O.38) x 

(2 .34 ± 0.13) x 

(4.60 ± 0.50) X 

< 5 x 10* 

(3.15 ± 0.17) x 

< 2 x 10 3 

< 2 x 104 

1 0 1 0 

1 0 1 0 

1 0 1 0 

10* 

10* 

10* 

10* 

10* 

104 

Comments 

Normalized so 
t h a t t o t a l 

y branching r a t i o 
fo r these modes 
= 100$ 

CP v i o l a t i n g 

Involves n e u t r a l 
l ep ton cur ren t s 

a) Input data on l i f e t i m e s : (0.90 ± 0.05) x 10"1° sec (Ref. 36) 
(0 .94 ± 0.05) x 10"1° sec (Ref. 36) 
(0.885 ± 0.025) x 10"1 0 sec (Ref. 36) 
(0 .85 ± 0.04) x 10"1 0 sec (Ref. 36) 
(0 .87 ± 0.05) x 10"1° sec (Ref. 36) 
(0 .86 ± 0.04) x 10"1° sec (Ref. 36) 
(0.848 ± 0.014) x 10"1° sec (Ref. 2 1 ) . 

b) Input data fo r [Y(2JT° )]/[Y(2JT)]I 33.5 ± 1.4$ (Ref. 66) 

28.8 ± 2.1$ (Ref. 67) 
26.0 ± 2.4$ (Ref. 6 8 ) . 

c) From fit of data in Table 2. 

d) Ref. 63. 
e) Compilation by J. Cronin, presented at Argonne Weak Interactions Conference. 

f) Refs. 40 and 61. 

g) Ref. 64. 
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UCRL-16473 

Table 4 

Rate comparisons fo r K •* 3^ modes 

Mode 

+ + + 

K •* IT + IT + IT 

K "*■ IT + TT° + TT° 

K£ -» tr + 7r" + 7T° 

Kg -+ 1T° + 1T° + 7T° 

P h a s e - s p a c e 
f a c t o r , $ 

1 .00 

1 .24 

1.22 

1 . 4 9 

Y « R a t e / $ ( s e c " ) 

( 4 . 5 0 ± 0 . 0 9 ) x 10* 

( 1 . 0 9 ± 0 . 0 4 ) x 1(f 

( 1 . 9 2 ± 0 . 1 1 ) x 10* 

( 3 . 0 9 ± 0 . 3 4 ) x 1CP 

T e s t s of | A l | a y2 

Mode 

Y (ir IT IT0 ) 

2r ( T T V V ) 

Y (ir° 1T° 1T° ) 

f(ir IT IT") - Y (ff ir°ir° ) 

Y (IT tf ir ) 

4Y (IT ir0ir°) 

Y (ir07r°ir° ) 

E x p e r i m e n t a l 

0 . 8 8 ± 0 . 0 7 

0 .91 ± 0 . 1 2 

1 . 0 3 ± 0 . 0 4 

1 .07 ± 0 . 1 2 

P r e d i c t e d 

1.00 

1.00 

1.00 

1.00 
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APPENDIX C 

THE Al a 1/2 RULE IN THE DECAY OF K MESONS 

In the decay of a hadron (strongly interacting particle ) , the hadrons in the initial 
and final states can be characterized by the quantum numbers: Y the hypercharge, Q the 
charge, and I the isospin. Calling AY, AQ, AI3 the difference between the final and initial 
states of these quantum numbers, a relation between these quantities is introduced by the 
Gell­Mann­ Nishijima formula: 

A Q = A I 3 ­ f . 

The decay of the hadrons to purely hadronic final modes, or hadron + lepton final modes 
(semi­leptonic decays), or pure lepton modes shows up some selection rules. 

1 • AQ 4- 0 in the semi­leptonic decays 

This expresses the absence of "neutral currents" in weak interactions. A decay to a 
state involving leptons is always accompanied by a change of charge of the hadron state: one 

+ + ­ + + + « . + ­

has never observed K ­* IT + vi;, or K -+iree, or K--*uii . 

2. ]AY[ < 2 in the non­leptonic decays 

If AY = 2 would be allowed, direct transitions from K? to K° would be allowed to first 
order, while in the absence of transitions with AY > 1 a second­order transition is required. 
The two hypotheses differ by a factor of 10 in the evaluation of the mass difference 
between K? and K? , and the determination of this mass difference, which we have discussed at 
length in Chapter I, Section 4, eliminates the AS = 2 transition. This rule is also borne out 
by the fact that transitions S ­> n + IT are not observed. 

3. AQ = AS in semi­leptonic or leptonic transitions 

This selection rule allows 

K° ­* IT"I v9 amplitude f 

K° ~+ IT l~v, amplitude f' 
AY = AQ 

but forbids 

K° •+ IT I v9 amplitude g 
AY = ­AQ 

K° ■* IT l~v, amplitude g' 

If one admits PCT invariance 

f' = f* , g' = g* , 

and if PC invariance is admitted, these coefficients are real, since 

f' = f , g' = g • 



- 70 -

Since only K? and K| are physical observable states in the decay, one has to look into the 
effect of the admixture of the f and g' terms to the leptonic decay. They appear clearly in 
a rather heavy expression. In this section it is sufficient for us to say that the violation 
of the AQ/AS rule is expressed in terms of the complex parameter. 

X = g/f = X e i § , 

and that Fig. 8 shows the distribution of the values so far for X and $# It is clear that 
although these experiments are not in contradiction with X » 0, their spread forbids one to 
draw strong conclusions from them. The importance of this check is that AQ = AY leads to 
AIj = ±Yz from &ell-Mann-Nishijima formula, but not Al = %/2 • If, however, it appeared to 
be violated it would kill the | Al J = ]/2 rule, since this rule leads to AI3 =: 1/2 and AQ = AY. 

For the purpose of our discussion it is sufficient to say that the experimental study of 
the leptonic decay as a function of time of a pure K° or K° state, leads to the fact that the 
order of magnitude of the leptonic decay rate of the Ki is the same as the one of K2 . 

On the other hand, the AY = AQ rule is checked in other weak decay. For instance, out 
of 208 events 

+ + » + K -* IT + ir + e + v , 

no event 
K" -*► ir+ + ir+ + e" + v (AY a ­AQ) 

has been found. 
If the AY = AQ law holds as well as PC invariance, we have exactly T(K^ ■* irlv) s T(K? -* irlv)i 

where I stands for lepton; if, in addition, |Al| = A/2 we have 

T(K^ - irtv) = T(K^ - irlv) = 2T(K+ -+ irlv) 

to be compared with the experimental data: 

T(K£ -+irlv) s (12.94 ± 0.60) 10* sec"1 

2 (K+ ­* irlv) = 12.32 ± 0.68 . 

In the decays of the 2 the following limit has been obtained 

Rate (2^ ­» n + e^ + v) < Q ^ # 
Rate (2" •* n + e" + v) 

4. I All = I/2 law in non­leptonic modes 
For K ­> (pions) we have always AQ = 0, AY = ±1, and |AI3| = 1

/2 . The more general rule 
|Al| a V2 that has been proposed explains, as we have seen in Chapter I, Section 2, the 
inhibition of the KT* decays into two pions, as compared to the Ki decay mode and the observed 
branching ratio of K^ into ir*ir~ and ir°ir°. In the decay of kaons into three pions the 
implications of the |Al| = 1

/2 rule are more complicated and, referring the reader to 
detailed calculation in various books1 ' , I will merely quote the results of the analysis 
and the experimental checks. 
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Table 6 

Some predictions of the |AI| = */2 rule in 
the decay of kaons into three pions 

K - + + -
IT IT IT 

Tf° , K ? 1 
TT°1T TT~ 

Ka -> JT IT 1T° 

K + * 1T+1T01T0 

Predictions 

No phase space 
corrections 

0.25 

1.5 

2 

Phase space 
corrections 

0.311 

1.82 

1.96 

Experiment 

0.300 ± 0.013 

1.90 ± 0.25 

1.75 ± 0.12 

The |Al| a %/z rule also predicts relations in the decay of K and K? between the energy 
distributions of the pions in the kaon centre of mass; however, we will not discuss this here. 
We only want to mention that within the experimental errors it seems that the predictions of 
the |Al| = y2 rule are verified in the kaon-three-pion decay, except for the last number of 
Table 6 where theory and experiment are separated by 1.5 <*• 

However, I wish to point out that for the second number there was for years a strong 
discrepancy because of experimental errors, and the conclusions drawn by some theoreticians 
was that the admixture of JAl| = 3/2 necessary to explain the discrepancy was of the same order 

+ of magnitude as the one necessary to explain the KT decay into two pions. However, they had 
to put forward an hypothesis leading to predictions, later discarded by experiments. The 
relatively good agreement between the |Al| S y/z rule and experiments in K decays compares with 
the relatively good agreement also found in other types of strange particle decays: branching 
ratio T(A -+ p + TT")/T(A •* n + ir°), relations between the asymmetry parameters of 2 and 2 . 
This makes more striking the considerable violation of the Al = Yz rule in the branching 
ratio of r(K? -+ ir+ir'm) with respect to T(K£ -» ir°ir° ). 
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APPENDIX D 

CALCULATION OF THE EIGENVALUES OF THE MASS MATRIX IN MATTER 

We go from the (K° K° ) system to the (K. K~) system by the transformation 

p -q 
C = 

(See Chapter II, Professor Gourdin.) 
The operator 

f 0 

0 f 

becomes 

f 0 

0 f 2pq 
qf qf 

-pf qf 

f + f f - f 

f - f f + f 
2 2 

Thus the additional term introduced by the matter becomes in the (K^ K ) system 

TTN / 
m ^ 

f + f f - f 

f - f f + f 

We want to diagonalize. 

\ -?e**> 22 (f - ?) 
m x ' 

The new basis will be 

2S (f - ?) M. - 22 (f + f) 
m J S m 

«T - K - h+« 
*TX - % - %+ P \ 
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(% ° 
\ 0 

= C MC 

1 a 

~~(B J C
"
, =
T~M^ ,) 

This leads to the four relations 

^-7^[«L-?(' + ? ) ^ ? < ' - ' ) - « T ( f - r ) - ^ ^ - ? < ' + 3p)]] 

M' = T-i-s \ M. - 22 ( f + f) + a 22 (f . f) _ p Hi ( f . f) . a/S 
S 1 - a/3 S m v ' m v y ^ m v ' r 

1L - 22 ( f + f) 
L m v y 

[«,;-?('*?)]-?('-»)-[> M s - f ( f + f ) + a2 21 ( f _ f) 

0 = /3 r ^ - f (f H . ? r j + j 9 . i s ( f - - ? ) . / J M s - f ( f + f ) 22 ( f _ f) 
m v ' 

The two last relations reduce to 

TTN 
a (Mg­V + (a2 ­ 1 ) ^ (f ­f) = 0 

(M L­Mg) + (/32 ­ 1 ) ^ " (f ­f) = 0 . 

These relations require a = ­/3 

^ - ^ K - ? (f+f)+^?(f-f)^ 2MS-f (f+f)i 
1 + /? L J 

^ - « L - T < ' + ? ) - 7 f - r ^ - - s ) + 7 f j ? ( f" ? ) 
1 + 

^".-^♦flT^-v-T^?^?) 
1 + 

If /32 « 1 then p = (7rN/m)[(f ­ f)/(MT ­ Mq)] leading to the relation (1.4) and (1.5) in the 
text. 

We know by experience, that a = ­$, the amplitude of the regenerated short­lived neutral 
kaon is at most a few per cent since the maximum of the intensity of regenerated kaons is 
10~

3 in any material. This justifies the approximation p2 « 1 • 
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FLOOR PLAN OF EXPERIMENT 
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Fig. 1 : The experimental layout of Christenson et al. . 
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Fig# 8 : TCP invariance solutions for 9 ^ = 80°; 8=4^°; r = 1.1 t 0.22. 



Fig. 9 : Time reversal invariance solutions for 9 =80°; 8 = W>; r = 1.1 i 0.22. 
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Fig. 12 J Allowed values of <y in the complex u plane. 



TT/2 IT $ 

Pig. 13 : The angle £ as a function of $ for TCP invariance. 



Fig. 14 : The two solutions u and uT for u. 



Fig. 15 : The angle £ as a function of $ for time reversal invariance. 
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