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In this note we discuss the possibility of studying the 

quantum electrodynamics of timelike photon propagators in muon or 

electron pair production by incident high energy \i or e beams from 

presently available proton or electron accelerators. 

2 

The lowest order Feynman diagrams for these trident pro­

cesses are shown in Figure 1. The virtual photon with momentum t 

is spacelike in diagrams 1(c) and 1(d) but timelike in diagrams 

1(a) and 1(b). The detailed calculation of the Bethe-Heitler graphs 

and complete numerical results which allow for the form factors and 

recoil of the nucleus, polarized leptons, and exchange terms for 
3 

identical leptons will be reported elsewhere. For simplicity, we 

discuss here the characteristic features of the triple coincidence 

cross section 

d (T/dO df2 df2 dE dE , 

4 
assuming the nucleus acts once as a static potential, the Compton 

5 

graph can be ignored, and all spins are summed over. For con­

venience, we consider a muon producing an electron pair, 

li+Z-^fi+Z + e + e", (1) 

although most of our results will hold for all four variations. 

In this paper we try to determine configurations which will 

insure that the diagrams 1(a) and 1(b) give the dominant contri­

bution to the cross section and at the same time give a production 

rate which is large enough so that experiments with present 
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machines may be performed. We thus try to obtain maximum sensi­

tivity to possible modifications of quantum electrodynamics for 

the timelike momentum region above 100 MeV/c. 

We have found it convenient to first select configurations 

whereby (A), the electron-positron pair is detected symmetrically 

with respect to the muon scattering plane and (B), the total 

momentum of the three final leptons is in the incident |J, direction. 

Since the nucleus is assumed to be a static potential, the total 

energy of the three leptons is equal to energy of the incident 

particle. Requirement A implies that the interference contribution 

between the spacelike diagrams 1(c) and 1(d) and the timelike 

diagrams 1(a) and 1(b) vanishes since it is antisymmetric under the 

interchange of the electron and positron momenta, whereas the cross 

7 
section is invariant for mirror symmetry. Requirement B insures 

that the momentum transfer to the nucleus is ninimized for fixed 

lepton energies and polar angles; 

(assuming small angles and zero lepton mass). With an incident 

10 BeV/c |x beam and 9 ̂  9 '^.1 rad, we have q '^ 50 MeV/c. Thus 

even in a high energy experiment, the nucleus acts as a Coulomb 

source, requiring only small unambiguous recoil and form factor 

2 
corrections, and the cross section is nearly proportional to Z . 

Feasible rates for a muon beam can thus be obtained from a high Z 



target if we choose events with (q| :̂  80 MeV/c. For simplicity, 

we will give results for Z = 10, where the Born approximation should 

4 
still be reliable. 

The triple coincidence cross section for the Bethe-Heitler 

diagrams can be written as 

dE^dE2(dfi)3 P 2-,'' ^^ ^^spin ' ̂  ^̂  q^ 

where 

M^ = M^ + Mĵ  = u (P^)J^u(P)u(p2)7^v(p2) (3) 

M^ = M + M, = u(P.)7,u(P)u(P_)J^v(P ) (4) 
s e c t 1 | J L ^ S J 

and u(P.) Jr'u(P), u(P )J v(P ) are the time-like and space-like 

conserved currents: 

(5) 
-rM- / ^ M- - 1 11/ - 1 . ^ |-L/„ -1 „ -1» 

•̂ s "̂  t^J^'V^l + r9iy^<^2 ^ "̂  27̂ (E2a3̂  + E^a)^ ) 

with 

u(Pj^)J^u(P)-(P2 + ^^)^^ = 0; u(P2)JgV(P2)-(P^-P)^ = 0. (6) 

The denominations are 

Oi^ = (Pĵ - P) (q + 2P2'q) 

0)3 = (P2+ P3)^(q^- 2P.q) 

CD̂  = (P2+ P3) (q + 2Pĵ -q) 

(7) 



For many purposes the above expression is the most practical 

9 
form for the numerical calculation of the cross section since m 

this form large cancellations of gauge-variant quantities do not 

occur. 

However, if we apply the requirements A and B, the cross 

section is obtained in a relatively simple analytical form: 

2 
,5 2 4 P,P^P, sin9, sin 9^ 

where 

dEj^dE2(djzJ)-^(d9)^ 2-K^ ^ ^ (8) 

S H ^ m ^ ' Z ( M j 2 = _4(P3^.P)2(P22 + P 2)q^2^-2 (9) 
^ ~ spin ^ 

T "(m^m"^ 2 )M (̂  = 32(P + P )^f(a^+ p^) (2P •?)+ 4aP6 
^ spin 

, 2 2^ . 2 2, -2 . -2,-T 
-4m B + 4m q (cô  + o). ) 

+ Hi^^" P3^^r(a^+ p^)(P^-P)+ 2a36 + m^(a^- P^)J . (10) 

with 

3 = -2(Eai3"''+ Eĵ o)"-"-) (11) 

6 = E-P - EP, 1 2 Iz 

If we ignore the lepton mass in the numerators of (9) and (10), 

^ = ^<^2x -̂  ̂ 2y><Pl-^>^K^ <12) 

T = (P2*P3) (P, •P)(a + p ) ^ . (13) 



The behavior of S and T can best be understood by con­

sidering the incident energy E, the pair angle 9.* and the desired 

2 

momentum transfer squared of the timelike photon, v = (P + P3) > 

to be parameters, letting the final electron energy, muon energy, 

or muon angle to be an adjustable variable to insure a large time­

like to spacelike ratio T/S and large cross section. If we con­

sider only small angles, then (12) and (13) give 

d^q ^ z V 16(1+S/T) A^^^(24-r)^ .^^. 
dÊ dE2(<ajzJ)̂ (dQ)̂  2-w^ E^92 v(2+?vr)^ 

with 

1 T A tt e \ 

S = _ ^ ̂  ^ -. (15) 
E^ yx{T+2) v(2+?\r) 

where the two variables 

A = 9^/92 and r = E^/E^ (16) 

are constrained by 

2 
V = v/E^9^ = ^=^^^^ • (17) 

(r+2)^ 

It is readily seen from equations (14-17) that the optimal 

condition for large T/S is given by large 9 (and hence small E. 

to satisfy condition B). In Figure 2a we have shown D(y(T) (as 

calculated from equations 8 and 10) and R, the fraction of the 

total trident cross section due to the square of the timelike 

graphs, as functions of E_ with 9 and v as parameters. Although 

the ratio R decreases slowly with decreasing E_, the partial cross 

section Djy(T) increases rapidly. 
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It must be emphasi2ed that the CrOss sections presented so 

far, although remarkably simple, are only valid when the symmetry 

conditions A and B are imposed. The requirement that q is in the 

incident direction in fact minimi2es the rate. In Figure 2b it is 

shown that if the direction of q is perturbed by varying e, by 

1 mrad, the cross section increases by a factor of 200. This fea­

ture holds quite generally at every point of Figure 2a: the 

maxima obtained by slighly relaxing condition B are roughly 

proportional to the minima. 

The same feature of the cross section is seen in Figures 

2c, d, and e where conditions A and B are relaxed as the momentum 

of the positron is changed. 

The trident cross section is suppressed for q in the inci­

dent direction because of a selection rule against the transverse 

polarization contributions of the virtual photon. If q is in the Z 

direction the matrix element for virtual transverse photons in the 

forward direction will vanish by angular momentum conservation since 

the muon helicity is conserved in a series of vector interactions 

at high energies. The pairs produced by this transverse photon are 

further suppressed in the forward direction since high energy vector 

interactions require the electron and positron to have opposite 

helicities. The timelike and longitudinal polarization contribu­

tions are small since the photon is relatively close to the mass shell. 

Requirement A does not imply a dip. If one destroys mirror 

symmetry while keeping q in the incident direction, the cross 



section still is slowly varying and stays close to the minimum. 

We have also shown the variations of the cross section for 

9- fixed at 5 and 10 mrad above the symmetry angle 9 , thus giving 

configurations where the cross section is large but slowly varying. 

-32 2 2 3 
The cross section is nominally 10 cm /(MeV) (ster) at 

P = 10 BeV/c, Z = 10, V = (100 MeV/c) for ranges A9 ^ A9 S' 

A9 = 20 mrad, t^ =^^3 ='40°, AE ^ AE = AE3 =1 BeV with the 

ratio R above 0.8. Therefore favorable rates for experiments 

sensitive to the timelike region are possible. 

In summary, we note that a triple coincidence measurement 

of reaction (I) in the kinematic region described in this paper 

enables one to study the quantum electrodynamics of the photon 

propagator and the vertex function in the timelike region above 

100 MeV/c. We further note that an important test of jx-e universali­

ty in the timelike region can also be easily performed by measuring 

three muons in the final state, taking into account mass differ-

3 
ences and statistics. 

The authors wish to acknowledge valuable discussions with 

Dr. M. Kugler and Professor L. M. Ledeirman. We also tJiank Professor 

D.R, Yennie for a careful reading of the manuscript. 
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FIGURE CAPTIONS 

Figure 1, Lowest order Feynman diagrams for the trident process 

of Equation (1). Figures 1(a) to 1(d) give the Bethe-

Heitler (Born approximation) contribution. Figure 1(e) 

represents the general Compton contribution. 

Figure 2. properties of the cross section of process (1) in the 

timelike region for incident momentum of 10 BeV/c and 

nuclear charge, Z = 10. 

(a): Behavior of the partial cross section D(y(T) due 

to timelike graphs 1(a) and 1(b) and the ratio R of 

this contribution to the total trident cross section 

under the restrictive symmetry requirements (A) and 

(B) of the text, 

(b): Behavior of the cross section and the ratio R when 

requirement (B) is relaxed; i.e.: q not restricted to 

* 
the incident direction (9̂  >̂  9 ) . The curves in 

2(a) and (b) are shown for virtual photon timelike 

2 2 
momenta squared v ^- (100 MeV/c) and v = (200 MeV/c) . 

(c),(d),(e): Behavior of the cross section for 

2 
V = (100 MeV/c) when requirements (A) and (B) are 

both relaxed by varying the positron coordinates from 

the mirror symmetrical arrangement. 

The three curves plotted in each figure correspond to 



* 
the three fixed values of e... For e, - ^-i ^^^ minima 

in these curves correspond to the cross section with 

exact symmetry conditions A and B. All points shown in 

Figure 2 have \q\ <80 MeV/c. 
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