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ABSTRACT 

Mack and Kastrup have proposed that broken scale invariance is 

a symmetry of strong interactions. There is evidence from the 

Thirring model and perturbation theory that the dimensions of fields 

defined by scale transformations will be changed by the interaction 

from their canonical values. We review these ideas and their con­

sequences for strong interactions. 
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Symmetry is of fiuidamental importance to our understanding of elementary 

particles. Lorentz invariance and isospin invariance are taken for granted. In 

the last decade we have learned from Gell-Mann the importance of broken sym­

metries: SU(2) X SU(2), SU(3), and SU(3) x SU(3). It is natural to look for further 

exact or broken symmetries, especially in strong interactions where SU(2) x SU(2), 

e tc . , are important and the dynamics is not understood. The search for further 

symmetry includes study of possible further space-time symmetries, extending 

Lorentz invariance. The study of free field equations (Klein-Gordon equation. 

Maxwell's equations, etc.) has provided two suggestions for such symmetries: 
2 

scale invariance and conformal invariance. I will discuss only scale invariance 

here for I have not studied conformal invariance in detail. Scale invariance is 

an invariance of the free field equations only for zero mass . The zero mass 

equations such as V V'^(p{x) = 0 contain no parameters with the dimensions of , 

a length; this fact leads to scale invariance of the solution. Since there are no 

zero mass particles in strong interactions, it is not obvious how scale invariance 

would be relevant. But with the success of the broken symmetry SU(3) x SU(3) 

one has learned to derive useful physics from symmetries which are far from 

exact. 

The hypothesis that scale invariance would be a broken symmetry of strong 
3 

interactions was first clearly stated by G. Mack. Mack was encouraged by 

H. Kastrup who had been writing about scale invariance in strong interactions 
4 

for some time. Since Mack's work, a number of people have become interested 

in the idea. However, to date the hypothesis has not been nearly so successful 

as broken SU(3) x SU(3). The problem has been to find experimental predictions 

resulting from broken scale invariance. At present the score is: one prediction, 

not yet tested; one explanation, which is untestable, and one clarification of 



theoretical interest only. The prediction is that the total cross section for e - e 

2 2 
annihilation into all possible hadron states will behave as l /q for large q , 

5 
where q is the four-momentum transfer to the hadrons. 

The explanation is an explanation of the AI=l/2 rule in nonleptonic wealc 

decays (K—^TTTT, e tc . ) . The clarification is the idea that there be an SU(3)xSU(3) 

singlet field w(x) in the Lagrangian which acts as a nucleon mass term and breaks 

7 8 

scale invariance, in addition to the SU(3) x SU(3) breaking terms which give the 

TT and K masses. 

There is one extraordinary feature of scale invariance which makes it 

interesting regardless of the little contact it has with experiment. The extra­

ordinary feature is the "anomalous dimension". When one makes a scale t rans­

formation on a field ^(x), it goes into < (̂sx) times a scale factor s ; s is the scale 

factor and d is called the dimension of the field. In quantum mechanics the t rans­

formation is accomplished by a unitary transformation U(s): 

U (s) (̂ (x) U(s) = s 0(sx) (1) 

The number d is a quantum number defining a representation of the group of scale 

transformations, just as the angular momenta j and m are quantum numbers for 

the rotation group. The unique feature of the dimension is that it can vary with 

a coupling constant. This is true only of scale invariance; the behavior of a 

field imder Lorentz transformations, isospin, SU(2) x SU(2), etc. is unchanged by 

varying coupling constants. The reason d can change while other representations 

do not is that d is a continuous variable ( i . e . , any value of d is permitted by the 

scaling group) while the representations of other symmetries are described by 

discrete variables like j and m. This distinction does not mean that d must change 

as a coupling constant changes; the initial discovery of the changes in d was a 

complete surprise. 
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Anomalous dimensions are found in the Thirring model (the Fermi interaction 

in one space and one time dimension) and in ordinary perturbation theory, ' 

In these examples they always arise together with an infinite wave function r e ­

normalization. The connection of anomalous dimensions to renormalization means 

that renormalization has a more fxmdamental significance than one might suspect. 

The anomalous dimensions are of practical significance: for example, they are 

crucial for the explanation of the AI=l/2 rule, and may determine the leading 

+ - 2 

corrections to the e e annihilation cross section at high q (see below). 

In the remainder of this talk, we shall first review some of the ideas of 

broken scale invariance. Then two examples of anomalous dimensions will be 

cited. Finally, the implications of anomalous dimensions will be sketched, for 

example, the nonexistence of a scale-invariant S matrix and an explanation of 

the AI=l/2 rule. 

To illustrate the ideas of broken scale invariance, consider a simple example: 
2 

a free scalar field 0(x). To start with consider the zero mass limit which is 

exactly scale invariant. The free field theory can be defined by a field equation 

7^V7^0(x)=O (2) 

and an equal-time commutator 

[0(x,t) , <^°(y,t)]=+i6^x-y) (3) 

One can also specify the Hamiltonian 

« 4 / d ' x ^ ' % t ) + F0^x,t) (4) 

The easiest way to see that the theory might be scale invariant is to note that if 

4>{x,t) satisfies the field equation, then so does ^(sx, st) where s is a constant 

scale multiplying x and t . (Similarly one motivates rotational invariance by noting 
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that 0(Rx,t) is a solution where R is any rotation matrix.) The field 

(^'(x,t) = 0(sx,st) however does not satisfy the commutation relations: one finds 

[(|)'(x,t), (/)°'(y,t)] = s[(/)(sx,st), ()i(sy,st)] 

3 -2 3 

= s i 8 (sx-sy) = s 16 (x-y) (5) 

It is easy to restore the commutation relations: we redefine 0 ' to be 

0'(x,t) = S(/)(sx,st) (6) 

The field equation and commutation relations uniquely define the quantum field up 

to a unitary transformation, so there must be a unitary operator U(s) satisfying 

U'*'(s) (^(x,t) U(s) = 0'(x,t) = s0(sx,st) (7) 

which is Eq. (1) with d=l. 

I have avoided discussing the Hamiltonian, because it is not invariant to 

scale transformations. The reason is that H has dimensions so when lengths are 

scaled, H must be scaled also. In fact, if H' is the Hamiltonian for 0 ' , then 

By changing variables from x to sx one finds 

H' = sH (9) 

This means that 

U'̂ (s) HU(s) - H' = sH (10) 

A sjmimetry whose transformations do not leave H invariant is nothing new. The 

Lorentz transformations are even more destructive, transforming H into a linear 

combination of H and the momentum operator P . However, in both cases the 
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transformation law for H is fixed by the symmetry. In the case of scale t rans­

formations one can see that U (s) nU(s) must be sH by considering the formula 

^•^(^'^)-[^(^'^)' "] (11) dt V 

+ 
Transforming this formula with U (s) , . . U(s) gives 

s^ i 1 ^ (sx, St) = [s0(sx, St), U"*"(s) HU(s)] (12) 

For this to agree with the previous equation requires that U (s) HU(s) be sH. 

The vacuum is invariant to scale transformations: 

U(s)lfi> =\n> (13) 

The transformations of particle states will not be discussed here. 

One can use scale invariance to determine scaling laws for vacuum expecta­

tion values. For example consider the propagator 

D(x) = < fi IT 0(x) 0(0) I fi > (14) 

For future use let d be unspecified in Eq. (1). Using Eqs. (1) and (13) and the 

imitarity of U, one can write 

D(x) =<filU"'"(s) T0(x) U(s) U'̂ (s) 0(0) U(s)in> 

2d 
= s <filT0(sx) 0(O)lfi> 

= s^ D(sx) (15) 

2,-d 
It follows that D(x) scales as (x ) . Another scaling calculation gives the be­
havior of the propagator D(p) in momentum space: 

D(P) = / e ^ P • ̂  D(x) d^x ^ / e ' P ' ̂  s^^ D(sx) d \ ; (16) 



a change of variable to y=sx in the integral gives 

_ , , 2d-4 f ip • (y/s) r., , A 2d-4 ^, -1 . ,.,„, 
D(p) = s J G^ ^^' ' D(y) d y = s D(s p) (17) 

2 d-2 which means D(p) scales as (p ) . With d=l this gives the usual zero mass 

2 -1 form of the free propagator, namely (p ) , From these formulae it is easy 

2 -d 

to see why d is called a dimension. The propagator D(x) behaves as (x ) 

times a dimensionless constant. Hence dimensional analysis gives the dimen­

sions of 0 as -d in units of length or d in units of mass (h and c are 1 as usual), 
2 -d 

The constant multiplying (x ) cannot carry dimensions because there are 

no dimensional constants in the theory; the vacuum state is dimensionless be­

cause of the dimensionless normalization condition <fi lfi>= 1. 

What happens to scale invariance in the finite mass free field theory? We 

can see from considering the propagator D(p) that for p ~ m the exact propagator 
2 2 -1 2 

(p -m ) is quite different from the zero mass propagator; but for p large 

( i . e . , large virtual mass) the propagator reverts to the zero mass form. In 

X space the equivalent result is that D(x) is almost scale invariant at small 

distances: 

= --— + (mVsTT^ j&i(mV) + . . . (18) D(x) 2 
47rx 
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for small x. The idea that scale invariance becomes exact in the limit of small 
12 distances is similar to the hypothesis that equal-time commutators are exact 

to SU(3) X SU(3). If scale invariance becomes exact only at large virtual masses, 

as is suggested by the form of the free propagator, it is a severe limitation on the 

usefulness of scale invariance, since it means the on-mass-shell S matrix is 

unaffected by scale invariance. We shall consider the S matrix problem later, 

concluding from more detailed analysis that there is indeed little apparent con­

nection between scale invariance and the S matrix if there are anomalous dimen­

sions. Problems such as e -e annihilation which involve only large virtual 

masses and noon-mass-shell variables can still be very much affected by scale 

invariance. 

There is much to be said about broken scale invariance which I must omit. 
2 

Further questions include defining the infinitesimal generator and the hypothesis 
3 

of a partially conserved dilation current, coupling of the dilation current to 

scalar mesons and possible Goldberger-Treiman type relations. Ward identities, 

13 e tc . , i . e . , all the apparatus familiar from SU(3) x SU(3). There are also 

questions of what scale invariance would imply for the S-matrix if the S-matrix 

14 
were invariant. Here we shall specialize on the idea of anomalous dimensions 

and its implications. 

First we should look at the evidence for the existence of anomalous dimen­

sions. Two examples will be cited here, one from the Thirring model and one 

from renormalized perturbation theory. Consider the exact propagator of the 
9 

Thirring model, derived by Johnson: 

G(z) = i <filT ip{z) lp{0) I n> = exp -47ribrDQ(z) -DQ(0)1J GQ(Z) (19) 



where G^(z) is the free propagator (in a space with one space and one time 

dimension) and D„(z) is the free propagator for a scalar field: 

DQ(Z) = -(i/47r) jen(-z^ + ie) (20) 

Also 

b = x V 4 / (1 - X^/47rV^ ; (21) 

where A is the Fermi coupling constant. 

The formula given above is the imrenormalized formula; subtracting 

D^(0) ensures that G(z) is consistent with the canonical commutation rules as 

z — 0 . Unfortunately D^(0) is infinite; to remove this infinity requires an in­

finite wave fimction renormalization, after which G(z) is inconsistent with the 
9 

canonical commutation rules (see Johnson ) . The exponential of OJz) is a 
2 

power of z ; as a result G(z) scales as 

G(z) ~ ( z V '̂  (22) 

This means the dimension of ip is 

2 , 2 9. . 2 - 1 
(23) d = | + A^/47r2( l -AV7rV^ 

So d varies with A, changing from 1/2 (the canonical value in one space dimen-

15 sion) for Â O to oo for A=27r. The singularity in G(z) at z=0 is spectacular for 

A near 2ir[ 
4 

What happens in ordinary perturbation theory? Consider the A0 interaction 

17 
of a zero mass pseudoscalar field 0 , This interaction is scale invariant ac-

18 
cording to canonical field theory : the added term in H is 

xfcp\x) d\ 



Under the scale transformation U this becomes 

A U'^(s)y 0^(x,t) d^x U(s) = A s ^ y 0'*(sx, St) d^x 

= s { A y 0 % s t ) d \ } (24) 

so it transforms lilie the res t of H. In order A the field 0 does not show an 
4 

anomalous dimension, but the composite field 0 (x) does. Consider the matrix 

element 

r iPj-x^ r ip^.x 
W(p^,P2.P3.P4) = / e ..J e ^ ^ <niT0(x^) 0(X2) 0(X3) 0(x ) 0^(x)in> 

^1 ''4 
(25) 

17 calculated to order A« The connected part W of W is foimd to be c 

W^(p^,P2,P3,P4) = 24 DQ(PJ^). . .D^ip^) |l+(3A/47r5 Sn [-(Pj+p//A^'j 

+ 5 permutations of p 's in the A term | (26) 

where A is a cutoff;D„(p) is the free zero mass px-opagator for the scalar field. 

The cutoff dependence can be removed by a wavefunction renormalization. If the 
4 

dimension of 0 is called d̂  and the dimension of 0 is 1, the scaling law for W 

is 
4+d^-16 

W^(sp^.. .sp^) = s W^(Pi- • •P4) (27) 

In order 1, d^=4, but in order A it must change to account for the logarithms in 

Eq. (26). The easiest way to see this is to note that to order A, Eq. (26) is 

equivalent to 

W^(p^,P2,P3,P4) = 2 4 D Q ( P ^ ) . . . D Q ( P ^ ) { [ - ( P ^ + P 2 ) W ] ^ '̂̂  X5 permutations 

(28) 

From this formula one has 

W^(sp^...sp4) - s ( ^ ^ / ' ' "^) Wc^Pl'^2'P3'P4) (̂ >̂ 
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Comparison of Eq. (29) with Eq. (27) gives 

d = 4 + 9A/7r̂  (30) 

4 
This means that 0 (x) no longer has dimension 4 in the presence of the perturbation. 

4 
This in turn means that the A0 term in H no longer scales properly: H does not 

go into sH under a scale transformation. As a result the theory ceases to be scale 
2 

invariant: the breakdown occurs in order A . (So one cannot expect Eq. (28) to 

hold beyond order A.) This breakdown of scale invariance for zero mass renor­

malized perturbation theory is true of other standard theories, e . g . , quantum 

electrodynamics or pseudoscalar meson theory. 

One sees in the second example especially the connection of renormalization 

to the anomalous dimension; with a cutoff the logarithm must involve the cutoff 

in order to have a dimensionless argument. 

What are the consequences of anomalous dimensions for strong interactions ? 

First , we observe that the prediction of the asymptotic behavior of the e -e 

annihilation cross section is unaffected by anomalous dimensions. The total 
5 

cross section for annihilation into hadrons is 

, 2 , ,„ 2 2. 2 - 2 f iq.x „u, , ,4 ,_,, 
o^TQ-p(q ) = - 167r a (q ) J Q^ pj;(x) d x (31) 

with 

P^^(x)= <fllj^(x) j^(0)in> (32) 

where q is the momentum transfer to the hadrons, a is the fine .structure constant, 

and j (x) is the electromagnetic current of the hadrons. The scaling law for j (x) 

is fixed by Gell-Mann's current commutators. For example, if j ^(x) is the 

charge + 1 component of the weak current, one has 

[J0^2> t) . j ;w(y ' t)] = j ;w(y. t) 6^x-y) (33) 
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Let 

u'^(^) J^(^ *) u(^) = '̂̂  J/.t(^-5' ̂ *) (^^) 

(It is assumed that all components of all SU(3)xSU(3) currents transform alike.) 

Transforming Eq. (33) gives 

2d 
s [JQ(SX, st), j ^^ ( sy , st)j = s^ JQ^(sy. st) S^x;-j) (36) 

But 

[jQ(sx,st), Jow(s^,st)] -il^{Bl,st) S^SX-SJ) 

For the two equations to agree one must have d=3. 

Substitution of the scaling law (34) with d=3 into Eqs. (31) and (32) gives the 

prediction that p (x) scales as x and 

With broken scale invariance the scaling law should hold for small x; this means 
2 

the scaling law for cr should hold for large q . The proportionality constant 

cannot be predicted. 1^ 

Second, we examine a negative consequence of anomalous dimensions. Namely, 

there are no single particle states in the scale invariant zero mass limit of strong 

interactions, if the fields of strong interactions have anomalous dimensions. The 

problem is the usual infrared problem; in the zero mass theory every particle is 

surrounded by a cloud of infrared particles, and one can never separate a particle 

from its cloud. One consequence of this is that there is no S matrix in the scale 

invariant limit. Thus there is no reason to expect the S matrix to be approximately 
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20 
scale invariant at large energies in the finite m a s s theory. To see that there 

a r e no single par t ic le s ta tes in the scale invariant limit consider the pion p ropa ­

gator D (p) as an example. By the analysis descr ibed e a r l i e r , D (p)is p ropo r -

2 A-2 
tional to (p ) where A is the dimension of the pion field. If A is not equal to 

2 
the free field value 1, it must be l a rge r than 1, since for large p , D ( p ) cannot 

2 - 1 21 
be smal le r than (p ) . But if A > 1, D (p)has no pole for finite or ze ro p; 

2 
it has only a branch point at p =0 which is less singular than a pole . This is a 

typical symptom of infrared p rob lems . 

With anomalous dimensions one possible application of broken scale invar i ­

ance is ruled out; one cannot look for scale invariance in high energy large angle 

p roces se s unless one can somehow disentangle infrared effects. Kastrup 

has worked on this problem but one is a long way from a solution. 

The absence of single par t ic le s ta tes in the ze ro m a s s l imit gives another 

negative r e su l t . Namely, one cannot predict the Bjorken scaling laws for deep 

22 23 
inelastic e lectron scat ter ing from the assumption of broken scale invar iance. 

24 
The validity of the Bjorken scaling laws has been shown by Callan and Gross 

to depend on proper t ies of the equal t ime commutator of j and d] /dt. If broken 

scale invariance holds, this commutator must be scale invariant . However one 

does not know a pr ior i what local fields will occur in the commutator , or what 

the dimensions of these fields will be, and this information is c ruc ia l . See a forth-

coming paper by G. Mack (Center for Theoret ical Phys ics , University of Miami). 

A third consequence of anomalous dimensions is that they make possible an 

explanation of a imiversal AI=l/2 r u l e . I can only give the essence of the explana 

tion h e r e . For simplicity imagine that the weak interactions a re mediated by an 

intermediate boson of m a s s m , „ . We assimie that m „ , is large compared to 
W W 

typical strong interaction m a s s e s , i . e . , m ^ » l GeV. The mat r ix element for 
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a typical nonleptonic decay is 

T = ( c m ^ c o s e sin 0//2^J<UT j^^y(x) j^s(0)li> W^^(x,m^) d \ (39) 

where G is the weak coupling constant, 0 is the Cabbibo angle, |i> and If > are 

the initial and final hadron states (e .g . , |A> and |p7r> ), j is the strangeness 

changing weak current, and W^^(x, m^) is the propagator for the intermediate 

boson. It is crucial to the analysis to discuss this matrix element in x space, 

instead of Fourier transforming the matrix element and integrating over the 

momentum space propagator. It is also crucial to observe that the boson propa­

gator is negligible at distances large compared to m™.. Hence only small d i s ­

tances X are important in the integral and one can expect scale invariance to be 

relevant. However, the states |i> and If > are low energy states and far from 

scale invariant; so to use scale invariance one must isolate properties of the 

product Tj ™.(x) j (0) which do not depend on the states |i> and If > . Such a 

25 
property has been proposed; it is an operator product expansion. The idea of 

the expansion is that for small enough x the product T j ^ x ) j _(0) is indistinguish­

able from a local field at 0. This expressed by writing the product as a linear 

combination of fields at the origin: 

T3;w^-)j.s(^)-E %.<-) V ) (40) 

where the fields O (0) are a complete set of local fields; the C (x) are functions 

of the separation x. This expansion is an operator relation independent of the states 

|i> and If > . Scale invariance malces predictions for the behavior of the functions 
-6+d 

C (x) just as it does for propagators. Namely, C (x) scales as x " where 

d is the dimension of the field O . Since x is small the largest term in the ex-n n '' 

pansion corresponds to the field O which has the smallest d . In some free field 
n n 

models, such as the quark model, the field of smallest dimension that contributes 
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is the Wick product :j^^(0) j g(0): which has both AI=l/2 and AI=3/2 parts . 

But with anomalous dimensions one can have the field of lowest dimension be 

2fi 
pure AI=l/2, with all AI=3/2 fields having high dimensions. If this is the 

case the AI=3/2 part of T j (x) j (0) will be smaller by a power of x than the 
[X u o 

AI=l/2 part. Since x is no larger than m ^ , the result is to suppress all AI=3/2 

( - 1 \ 27 m ^ ). Furthermore if m ^ is very large (> 10 GeV) 

the suppression could be enormous, with observed AI=3/2 amplitudes being 

electromagnetic. If the observed AI=3/2 amplitudes are not electromagnetic 

but come from the AI=3/2 part of the weak amplitude then probably m ^ cannot 

be terribly large; however we don't know what power of m„, occurs in the sup-
w 

pression factor so we cannot give a numerical bound for m™ .̂ 

The assumptions of this explanation are as follows: 

1. Broken scale invariance. This is the big assumption . 

2. Anomalous dimensions. The evidence for this is fairly compelling 

from known field theories. 

3. AI=l/2 dominance. See Ref. 26. 

4. Operator product expansion. The evidence for this from known 

field theories is compelling. (I have not yet completed a paper 

describing a thorough but nonrigorous study in perturbation 

theory.) 

Can anomalous dimension be measured? If the theory of corrections to scale 

invariance proposed in Ref. 6 is correct, then anomalous dimensions can be 
+ — 

measured in e -e annihilation, at least in principle. The theory of corrections 
28 

to scale invariance works as follows. The part of the Lagrangian which breaks 

scale invariance is assumed in Ref. 6 to be 

" ^ l " ^0^0 •*" ^8^8 "̂  ̂  ^ ^̂ ^̂  
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where AQO-^ + AgÔ g is the SU(3) x SU(3) brealting t e r m of Gell-Mann, Oalces, and 

Renner , except that the sca la r fields a^ and a- used he re a r e normalized by their 

shor t distance behavior and differ by a dimensional constant from the fields u„ 

and Uo of Gell-Mann et a l . The fields cr and cr have an unknown dimension A, 
o U 0 

the field w has unknown dimension A.,, but both A and A., mus t lie between 1 and 

4 . In the p resence of scale breaking one has dimensional constants , namely 

the cons tants , AA> AQ, and A, whose dimensions must be chosen so that ^ _ has 

dimension 4 in m a s s uni t s . This means AQ and An have dimension 4-A and A has 

dimension 4-Aj^, The ru le governing scale breaking cor rec t ions to p (x) at 

smal l X is that they must be power s e r i e s in A ,̂, Ac,, and A, and that they mus t be 

consistent with SU(3) x SU(3) symmet ry . The resu l t i s that there can be t e r m s of o rder 
2 

A^, Af,An, e t c . , but not of o rder \^ or An • If w c a r r i e s no internal symmet ry there can be 

29 
a t e r m of o rder A. An al ternat ive is that w i s not invariant to an axial baryon number , 

2 
in which case there is only a t e r m of o rde r A . A second rule is that the scale 

breaking t e r m s must be dimensionally c o r r e c t . Since p (x) has dimension 6 

this means the t e r m s of o rde r A in p (x) behave as (x )~ ^ D which leads 

to a correc t ion proport ional to (q ) 1~ in cr {e +e — hadrons) , Likewise 

2. A-5 
the re will be cor rec t ions proport ional to (q ) . So cor rec t ions to the asymptotic 

+ - 2 
form of the e - e total c r o s s section scaling as nonintegral powers of q would be 

experimental evidence for anomalous d imens ions . 

In the examples of anomalous dimensions cited ea r l i e r they were always 

accompanied by infinite wave function renormal iza t ions . If one is to have a m o r e 

detailed theory of anomalous dimensions , it will be necessa ry to solve the r e -
30 

normalizat ion problem for strongly coupled field t heo r i e s . It can no longer be 

wished awayl 
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For a brief discussion of these ideas see Ref. 3. See also, L. N. Chang 

and P .G .O. Freund (Ref. 7) and references cited therein. In broken scale 

invariance there are "soft or theorems" analogous to the soft pion theorems 

of SU(2) X SU(2), where the cr is a scalar particle of isospin 0. Such theorems 

give cr production amplitudes for off-mass-shell cr's of zero mass . The use­

fulness of these is unclear. 

See Refs, 4, 3, and N, F , Bali, D. D, Coon, and A, Katz, J . Math. Phys. 

10, 1939 (1969)jD. J . Gross and J . Wess, Report No, TH. 1076, CERN 

preprint (1969); C. W. Kim, W. W, Repko, and A. Sato, Johns Hopkins 

preprint (1970); D. G. Boulware, L. S. Brown, and R. D. Peccei, Report 

No. RLO-577, University of Washington preprint. 

In the presence of a cutoff the constant D„(0) is replaced by a finite but 

cutoff-dependent factor which will be of order DQ(A ) . In this case the 

unrenormalized propagator is not scale invariant because the propagator 

depends on the dimensional parameter A which spoils scale invariance. One 

can still perform dimensional analysis, in which A is scaled as well as x; 

the unrenormalized cutoff propagator has the dimensions one predicts from 

canonical commutation rules . When the cutoff propagator is renormalized 

- 1 -2b 

one divides it by the factor exp(47rib D„(A )) = A . Since this factor 

carries dimensions, the renormalized propagator has a different dimension 

from the unrenormalized propagator, I thanlc Dr. L. Stodolsky for a d is­

cussion on this point. 

For further discussion see K. Wilson, Ref. 9. 

A more detailed analysis of this example is found in K. Wilson (Ref. 10). 

See also, C. G. Callan, S. Coleman, and R. Jackiw, Report No, CTP 113, 

MIT preprint. 
- 19 -



For discussions of scale invariance and conformal invariance in canonical 

field theory, see G. Mack and A. Salam, Ann. Phys, (N, Y,) 53, 174 (1969), 

and references cited therein. See also C, J . Isham, A. Salam, and 

J . Strathdee, Trieste preprints (1970). 

Is it possible for the proportionality constant to be zero? This question is 

considered in P . de Mottoni and H. Genz, II Institut fur Theoretische 

Physik der Universitat Hamburg, Hamburg, Germany preprint. 

It is already made clear in Refs. 3 and 4 that there are infrared effects 

masking any possible scale invariance in high energy scattering processes. 

By "infrared effects" I mean the fact of multiple meson production, not 

any particular theory or precise analogy with soft photon production. 

This is a consequence of the Kallen-Lehmann representation, 

J . D. Bjorken, Phys, Rev, 179, 1547 (1969), 

There are two papers discussing deep inelastic electron scattering which 

assume single particle states do exist in the scaling limit; C, W, Kim, 

W. W. Repko, and A, Sato, Johns Hopkins preprint (1970); D. G. Boulware, 

L. S. Brown, and R. D. Peccei, Report No, RLO-577, University of 

Washington preprint. 

C. Callan and D. Gross, Phys, Rev. Letters 22, 981(1969). 

See Ref. 6; earlier references are cited therein. 

There is a priori a 50-50 chance that the field of lowest dimension contributing 

in Eq, (40) will have a AI=l/2 part. With anomalous dimensions it is unlikely 

that fields with AI=3/2 will be degenerate in dimension with AI=l/2 fields 

(see, e , g . , K. Wilson, Ref. 10), in which case the chances are close to 

50-50 that the field of lowest dimension has only AI- l /2 . 

- 20 -



If the matrix element <f IT j „-(x) j „(0) \Q> is finite as x -*• 0, then one 
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