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TIME, DYNAMICS AND CHAOS*) 

Integrating Poincare's "Non-lntegrable Systems" 

Ilya Prigogine,'>,*,> 

Time has always haunted man. Time is indeed our fundamental 

existential dimension. It has fascinated philosophers as well as 

scientists. It has often been stated that science has solved the problem 

of time. Is this really true? Indeed, a very fundamental property of 

r \ ^ the basic equations of physics, be it classical physics or quantum 

3 ^ physics, is time reversibility. We may, in these equations, replace t by 

-t without changing the form of these equations. In contrast, in the 

macroscopic world, we deal with irreversible processes: +t and -t do not 

play the same role. There exists an "arrow of time." We come, 

therefore, to the strange conclusion that in the microscopic dynamic 

^ world, there would be no natural time ordering in contrast of what 

i ' happens in the macroscopic world. For example, if we consider two 

^s positions of a pendulum, as represented in Figure I, we cannot say 

M) which position comes earlier. 

Figure I 
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With classical dynamics, time has lost its direction. Similarly, in 

quantum mechanics, we cannot speak about "older" or "younger" wave 

functions. But can this be the whole story? How can the time emerge 

from a time-reversible world? This conflict has become quite evident 

since the formulation by Clausius in 1863 of the well-known second law 

of thermodynamics. Clausius stated, "The entropy of the universe is 

increasing." This was the birth of evolutionary cosmology. 

Figure 2 

For every isolated system, entropy can only increase. Entropy 

expresses, as Eddington used to say, "the arrow of time." [The 

formulation of thermodynamics was the result of the work of engineers 

and physical chemists. The'great mathematicians and physicists'of this 

time considered it as the best as a useful practical tool however without 

any functional significance. The first to ask the question of the relation 

between entropy and the microscopic equations of motion was 

Boltzmann. Boltzmann was one of (he main founders of kinetic theory. ; . 

He tried to explain the increase of entropy as the result of molecular "'':-

collisions leading to molecular disorder (the Maxwell velocity 

distribution law). Boltzmann's approach is still of great importance 

today as it leads for dilute gases to results that are in excellent 

'.XJ 

CO 
agreement with experiment. Still, Boltzmann was defeated, as people fS^J* 

were quick to point out to him that his results clashed with dynamic 

lime reversibility (see i.e.')), Boltzmann was like a man in love with 

two women. He could not choose between his conviction that time \ n 
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irreversible evolution was an essential aspect of nature, and his 

confidence in the classical equations of motion which seem to prevent 

the existence of a privileged direction of time. 1 cannot go into details 

about this question, but let me stress that one of the aims of this lecture 

is to show that Boltzmann was right, but this involves quite recent 

results in which modern chaos theory plays an essential role. For 
i , 

Boltzmann's generation, as well as for the generations that followed, the 
-, • • • , ' l . ' i 

conclusion of this debate was that the arrow of time was not in nature, 

but in our mind. Einstein's saying, time [as irreversibility] is an 

"illusion," is well known.') 

I always found it curious that this conclusion did not trigger a 

crisis in science. How can we deny the existence of a privileged 

direction of lime? As Popper wrote "this would brand uni-directional 

change as an illusion. This would make our world an illusion and with 

it, alt our attempts to find more about our world." The ambition of 

classical science was to describe the behavior of nature in terms of 

universal, time-reversible taws. It is interesting to reflect on the 

relation between this ambition and the theological concepts that 

prevailed in the 17th century. For God, there is, of course, no distinction 

between past, present, and future. Is science not bringing us closer to 

God's like view of the universe?2) This ambition of classical science was 

never realized. Often, science seemed close lo this goal, and every lime 

something failed. This gives a dramatic form to the history of wesiern 

science. As you know, quantum mechanics is based on Schrodingcr's 

equation, which is time reversible, but it had to introduce the 

measurement process and with it to attribute a fundamental role to the 

observer to obtain a consislem description. General relativity started as 
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a geometrical, "timeless" theory, lo discover the need for some initial 

singularity or instability to obtain a consistent description of the 

cosmological evolution of our universe. To describe nature, we need 

both laws and events, and this, in turn, implies a temporal clement, 

which was missing- in the- traditional presentation of dynamics including 

quantum theory and relativity. Last year's Nobel conference in 

Minnesota had the provocative title, "The End of Science?" I don't 

believe we can speak about the end of science, but indeed we come to 

the end of a certain form of rationality associated to the classical 

ideology of science. As I want lo show here, in the building up of this 

new scientific rationality, non-equilibrium physics and "chaos" certainly 

will play an essential role. 

II. The Time Paradon Pwilds Up 

The 20th century is characterized by the discovery of quite 

unexpected features in which 'the arrow of time is essential. Examples 

are the discovery of unstable elementary particles and of evolutionary 

cosmology. 1 would like, however, first to emphasize in this lecture 

processes involving a macroscopic scale such as studied in non-

equilibrium physics. A first remark: Contrary to what Boltzmann 

believed, irreversibility plays a consiructive role. It not only is 

involved in processes leading to disorder, bill also can lead to order 

This already appears in very simple examples such as presented in 

Figure 3. Consider two boxes containing two components, say hydrogen 

and nitrogen. If ihc boxes were at the same temperature, the 

proportion of these two components would be the same in the two 

4 



compartments. If, on the contrary, we establish a temperature 

difference, we observe that the concentration of one of the components, 

say hydrogen, becomes larger in the, compartment that is at the higher 

temperature. 

Figure 3 

The disorder associated with the flow of heat is used in this experiment 

to create "order". This is quite characteristic. Irreversibility leads both 

to order and disorder. A striking example is the case of chemical 

oscillations. Suppose we have a chemical reaction that may transform 

"red" molecules into "blue" ones and vice versa. It has been shown both 

theoretically and experimentally that, far from equilibrium, such a 

reaction may present a time-periodic behavior. The reaction vessel 

becomes in succession red, then blue, and so on. Let me emphasize how 

unexpected the appearance of chemical coherence is. We usually 

imagine chemical reactions as the result of random collisions between 

the molecules. Obviously, this cannot be the case far from equilibrium. 

We need long-range correlations lo produce chemical oscillations. When 

we push such systems further away from equilibrium, the oscillations 

may become quite irregular in time. One then speaks about "dissipaiive 

chaos"; however, I shall not go into more details about this subject, 

which is treated adequately in many texts.3)4) What is important is 

that irreversibility leads to new spacetime structures (which I have 

called "dissipaiive structures"), and which are essential for the 

understanding of the world around us. Therefore, irreversibility is 

"real", it cannot be in our mind, and we have to incorporate it in one 

way or another in the frame of microscopic dynamics. Recently, there 

have been many monographs dealing with this problem, but I like to 

mention here the excellent introduction due to Peter Coveney and Roger 

Highfield, The Arrow of Time*) In this book, they called this problem, 

"time's greatest mystery." 

But how to go beyond this paradox? 

In the work done by my colleagues and me, we have followed the 

idea that the arrow of time must be associated with dynamical 

instability. Let me first present a very simple example of an unstable 

dynamic system, the so-called Baker transformation. See Figure 4. We 

consider a square. We squash it and put the right part on the top of the 

left as seen on Figure 4. This leads to a progressive fragmentation of 

the surface of the square. This is obviously an unstable dynamic 

system, as two points as close as one wants will finally show up in 

distant stripes. Such a system can be characterized by a Lyapounov 

exponent: 

(Sx), = (8x)0 exp(Xt) 

Figure 4 

The distance (Sx), between two neighboring trajectories increases 

exponentially with time. The coefficient, X, is called the Lyapounov 

exponent, and is, in the case of the Baker iransformation, equal to Ig2. 

The existence of a positive Lyapounov exponent is characteristic of 

"chaotic" systems. There exists, then, a temporal horizon beyond which 

the concept of trajectory fails, and a probabilistic description is to be 
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used. This is all well known. What I want to emphasize, however, is 

that in addition to the kinematic time t, we can introduce for such 

systems a "second, internal" time, T, which measures the number of 

shifts required to produce a given partition. For example, starting from 

the state [a] of Figure 4, we need two shifts to obtain state [c]. As has 

been shown by our group, especially in Ihc work of Prof. Misra,6) this 

internal time is represented by an operator that leads to a non-

commutative algebra very much like one we are using in quantum 

mechanics. Once you have the internal time, it is easy to construct an 

entropy and therefore to associate lo the Baker transformation an arrow 

of time. 

It is important to notice that the internal lime refers lo a global 

property as expressed by the partitions of the square. It is a 

"topological" property. It is only in considering the square as a whole 

that you can associate to it a given internal time or an "age." It is tike 

when you look at some person. The age you will attribute to him does 

not depend on a specific detail of his body, but results from a global 

judgment. A detailed presentation of the Baker iransformation and iis 

relation to the arrow of time can be found in my book with Prof. 

Nicolis.4) However, the Baker transformation corresponds to a highly 

idealized situation, and it is nol clear on this basis why the arrow of 

time would be so prevalent in nature as testified by the universal 

validity of ihe second law of thermodynamics. Thai is the problem to 

which I want to turn now. 

7 

III. Poincare's Theorem and the Science of Chaos-

Large Poincarl Systems 

In 1889, Poincarl asked a fundamental question.7) 8> I should 

mention that his question was not formulated in these terms, but this is 

the formulation 1 shall use for the sake of the discussion. Poincare 

asked if Ihe physical universe is isomorphic lo a system of non-

interacting units. As it is well known, the energy (the "Hamittonian" ll | 

is generally formed by Ihe sum of two terms, the kinetic energy of the 

units involved and the potential energy corresponding to their 

interactions. Therefore, Poincare's question was. "Can we eliminate the 

interactions?" 

This is indeed a very important question. If Poincard's answer 

had been yes, there could be no coherence in the universe. There would 

be no life, and no Nobel Conferences. So it is very fortunate that he 

proved thai you cannot, in general, eliminate interactions; moreover, he 

gave the reason for this result. The reason is the existence of 

resonances between the various units. 

Figure 3 

Everybody's familiar with Ihe idea of resonance. This is the way the 

children learn to swing. Let's formulate more precisely Poincare's 

question. We start with a Hamilionian of ihe form, 

H = H(p,q) (3.1) 
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where p,q are the momenta and the coordinates. We then ask the 

question if we can reduce it to the form 

H = H(J) (3.2) 

where J are the new momenta (the so-called action variables). In this 

form, the Hamiltonian depends only on the momenta. To perform the 

transformation from (3.1) to (3.2) Poincare considered the class of 

transformations which conserve Ihe structure of the Hamiltpnian theory 

(so-called canonical or unitary transformations). More precisely. 

Poincare considered Hamiltonians of the form 

H = HoO) + X V(J.o) (3.3) 

where X is the coupling constant and V is the potential energy which 

depends both on the momenta J and the coordinates a (called the 

angle variables). For two degrees of freedom the potential can be 

expanded in a Fourier series 

V<J1.J2.a1.a2) = I V . ^ J p I j ) j^l+W) (3.4) 
n,,n2 

where n,,!^ arc integers. The application of perturbation techniques 

leads then to expressions of the form 

V n ' n 2 (3.5) 
n|Q>|+n2b>2 
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with the frequencies u>l defined as to, =3ll0/3J i . Here we see the 

dangerous role of resonances (or "small denominators") 

n|Ci)| + n2<i>2 = 0 ( 3 . 6 ) 

Obviously we expect difficulties when (3.6) vanishes while the 

numerator in (3.5) does nol. This has been called by Poincare7) the 

"fundamental difficulty of dynamics". We come in this way to 

Poincare's classification of dynamical systems.7)8)'0) If there are 

"enough" resonances, Ihe system is "non-integrable". A decisive 

progress in our understanding of the role of the resonances has been 

achieved in the* SO's by Kolmogorov, Arnold, and Moser [the so-called 

KAM theory]. (See, i.e., ').) They have shown thai if the coupling 

constant in (3.3), X, is small enough, [and also other conditions which I 

.shall not discuss here are satisfied,"! "most* trajectories remain periodic 

as in integrable systems. This is not astonishing. Formula (3.6) can be 

written as 

<•>• 112 

= - a rational number 
W2 n , 

Now rationals are "rare" as compared to irrationals. However, whatever 

the value of the coupling constant X , there appear now in addition, 

random trajectories characterized by a positive Lyapounov exponent 

and therefore by "chaos". This is indeed a fundamental result, since it is 

quite unexpected to find randomness at Ihe heart of dynamics, which 
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was always considered to be ihe stronghold of a deterministic 

description. However, it should be emphasized thai the KAM theory has 

not solved the problem of the integration of Poincare's non-integrable 

systems. The statement by Arnold that dynamical systems with even 

only two degrees of freedom, lie beyond our present mathematics has 

been widely quoted. 

But there is a class of dynamical systems we call large Poincare 

systems [LPS], for which we may indeed eliminate entirely Poincare's 

divergences and therefore indeed "integrate" a class of Poincare's "non-

integrable systems. This result is the outcome of years of research with 

my colleagues in Brussels and Austin9); however, it is only recently thai 

the problem of Ihe integration of ,large Poincare systems has been 

solved. I want to acknowledge from Ihe start the fundamental 

contributions of Tomio Petrosky as well as of Hiroshi Hasegawa and 

Shuichi Tasaki.10)-'4) 

First, what is a large Poincare system? It is a system with a 

"continuous" spectrum. For example, Ihe Fourier series in formula (3.4) 

has now to be replaced by a Fourier integral. The resonance conditions 

takes then a new form. The resonance conditions for a small system 

with an arbitrary number of degrees of freedom are (see 3.4) 

n,*)! + n2W2 + ̂ 013 + ... = 0 (3.7) 

where the n, are integers. As mentioned, Ihe resonance conditions 

express the existence of rational relations between frequencies. For 

large Poincare systems, condition (3.4) has to be replaced by 

1 1 

k,<ii, + kjG^ +k3<i>3 + .... = 0 (3.8) 

where the k; are real numbers. Now resonances are "everywhere". The 

situation becomes similar 'to that in the Baker' transformations, where 

also almost' all motions are random motions. Moreover, large Poincare 

systems are characterized by inieractions involving integrations of 

resonances (examples follow). Before I shall consider examples, let me 

emphasize thai Ihe idea of targe Poincare systems remains meaningful 

in quantum mechanics. The frequencies <ai become then energy levels. 

For small systems, the resonance condition (3.7) would correspond to 

accidental "degeneracies." Bui for large Poincare systems, we have a 

Continuous spectrum and the situation becomes quite similar to that in 

classical mechanics. [Large Poincare systems have a surprising 

generality. We meet them everywhere both in classical and in quantum 

physics. Let me present two examples. The interaction between matter 

and electromagnetic fields leads to ihe emission of radiation (see Figure 

6). 

Figure 6 

The life time of ihe excited slates is given first approximation by what 

physicists call Fermi's golden rule which involves an integration over 

resonances 

JdklVkl25(o)k-w,) (3.9) 
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where a>k are frequencies associated to the radiation and C0| is the 

energy level associated to the unstable state. This is an example of 

integration of resonances. All many-body systems involving "collisions" 

are LPS (see Fig. 7) as collisions also involve resonances (see Section V). 

Figure 7 

Large Poincare systems are not integrable in the usual sense because of 

the Poincare resonances, but what we want to point out in this lecture is 

that we can integrate Ihem through new methods eliminating all 

Poincare divergences. This leads to a new "global" formulation of 

dynamics [classical or quantum]. As we deal here with chaotic systems, 

we may expect new features in this formulation of dynamics. Indeed, 

we shall find, as compared with the dynamics of integrable systems, an 

increased role of randomness, and above all a breaking of time 

symmetry and therefore the emergence of irreversibility al the heart of 

this new dynamics. We, in a sense, invert ihe usual formulation of the 

time paradox. The usual attempt was to try to deduce Ihe arrow of time 

from a dynamics based on time reversible equations. In contrast, we 

now generalize dynamics to include irreversibility. 

We may summarize the situation as follows. 

Diagram I 

On top we have the class of integrable systems (classical or quantum). 

This is the main field explored by dynamics. The basic structure of the 

dynamic integrable systems is expressed by celebrated laws (or 
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principles) such as the action principle which states that the trajectory 

is such that some functional (the action) is minimum. This structure has 

been the starting point both for quantum mechanics and general 

relativity. 

But Poincare's theorem limits the class of integrable systems. The 

basic question is then: what happens next? How nature solves the 

problem of the small denominators. Computer calculations do not lead 

lo infinites! 

As mentioned, a first step was the KAM theory. The physical 

effect of resonances is the appearance of random motion. For LPS 

almost all motions are random. The remarkable fact is that we then 

again can "integrate" the equations of motion. But now the structure of 

dynamics becomes radically different from thai of integrable systems. 

It is fascinating that we now have to deviate from ihe structure 

inherent in the dynamic scheme as associated with the classical 

tradition. 

IV. Poincare's Theorem and the Quantum Mechanical 

Eigenvalue Problem 

The first example I want to consider refers to quantum mechanics. 

As is well known, quantum mechanics has led to a kind of revolution in 

our thinking. In classical mechanics, "observables" are represented by 

numbers. The new point of view, taken by quantum mechanics, is to 

represent observables by operators. For example, the Hamiltonian H 

now becomes the Hamiltonian operator llUp . To this operator we 

associate eigenfunclions un and eigenvalues en 
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Hlun> = e , , ^ (4.1) 

The operator, Hop , acting on the eigen function, lun>, reproduces this 

function multiplied by the eigenvalue, en. The eigenvalues correspond 

to the numerical values of the physical quantity associated to the 

operator, H,,. . Once we have a complete set of eigenfunclions and 

eigenvalues, we have ihe "spectral" representation (we drop the 

subscript "op") associated to H 

H = S e ^ x u , , (4.2) 

Finding the spectral representation (or solving the eigenvalue problem) 

is the central problem of quantum mechanics; however, this problem 

has only been solved in a few simple situations and most of Ihe time we 

have to resort to perturbation techniques. We may start, as in the 

Poincare theorem, with a Hamiltonian of the form 

H = HQ+XV (4.3) 

where we suppose thai the eigenvalue problem can be solved for the 

"unperturbed" Hamiltonian HQ . We look then for eigenstates and 

eigenvalues of H , which we could expand in powers of the coupling 

constant X. It is here that contact with Poincare's classification can be 

made. For non-integrable Poincare systems, the expansion of 

eigenfunclions and eigenvalues in powers of the coupling constant leads 

to the Poincare catastrophe due to Ihe divergence associated lo Ihe 
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small denominators. The relation between Poincare's theorem and the 

quantum eigenvalue problem has been studied in a recent paper by T. 

T. Petrosky and the author10). 

Lei us again consider Ihe problem of quantum transitions (see Fig 

6).* When <we try lo solve this problem by conventional perturbation 

theory, we come lo Poincare's divergence associated in Ihe example to 

denominators of ihe forin 

' (4.4) 
l l , - U J k 

where to | is the energy of the excited slates and <ok the energy of a 

mode of the radiation corresponding lo wave vector k. To avoid the 

divergence, we have lo give a meaning to the denominator in (4.4). 

Here enters the basic element which makes Poincare non-

integrable systems "integrable" in a new extended sense. We introduce 

a "natural time ordering" of the dynamic states. To make clear what we 

mean, consider a trivial example. A stone can fall inio a water pond and 

produce outgoing waves. We may also have the inverse situation in 

which incoming waves would eject a stone. (See Fig. 8.) 

Figure 8 

In fact, only one of the situations is realized: the natural time ordering 

is ihc falling stone first, the outgoing waves next. Similarly, to give a 

We in fact tonsidct the sample version called ihc Fncdnihs model in which 
virtual processes arc oiniilcd ' 
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meaning to Poincare's denominators, we have to time-order the 

dynamical states — the unstable atomic state first, the emission of 

radiation later. This corresponds to Bohr's picture in which the 

radiation emitted by the atom corresponds to a retarded wave. More 

precisely, to the transition I -» k we associate the denominator 

1 
ii,-uik-

(4.5) 

and to the transition k -> 1 the denominator 

I 
coi-iOfc+ie (4.6) 

As we have shown11)'2), this simple rule leads to the elimination of all 

Poincare divergence when we integrate over the wave lengths of the 

radiation. It is a standard procedure in theoretical physics to express 

the difference between past and future through "analytic continuation". 

The general reader may just accept that we modify the Poincare 

denominators differently according to ihe type of process to which they 

are associated. We obtain in this way complex solutions of 

Schrodinger's situation. The eigenvalues contain now an imaginary part 

corresponding to damping and the eigenstates have a broken-time 

symmetry. We have chosen this simple example because in this case 

there exists a standard solution which is, however, not analytic in the 

coupling constant (the particle disappears from the spectrum'3). 

We can therefore compare our results with the standard 

treatment and see if our approach makes sense. We indeed recover all 
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known results, but in addition, as we have states with broken time 

symmetry, we can introduce a functional which plays the role of 

Boltzman's H function and which decreases monotonously when the 

particle emits the radiation and decays to ihe ground slate. (See Fig. 9.) 

Figure 9 

We can also, at least as a thought experiment, perform a time-inversion 

at time tg after the start of the decay. The result is represented 

schematically on Figure 10. At the time of the inversion tg , the H-

quantity has a jump _ exp(y tg), where l/y is the life-lime of the 

unstable state. Then H starts to decrease again, at 2tg we have 

K(2t0> = H(t=0) and Ihe decrease of H continues until the particle has 

decayed. 

Figure 10 

As we can associate an H-function to the particle decay the decay 

becomes an irreversible process. 

We may summarize what we have done as follows: to avoid 

Poincare's catastrophe we have enlarged the type of transformations 

which lead from the eigenfunclions of the unperturbed Hamiltonian H(l 

(see 4.3) to the eigenvalues of the full Hamiltonian. In more technical 

terms, the situation is as follows: Poincare considered only canonical (or 

unitary) transformations which among other properties keep the 

eigenvalues of 11 real. We introduce more general transformations 
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leading to complex eigenvalues. The specific choice of these 

transformation follows from our time ordering of ihe dynamical stales. 

The result is already of great interest in the perspective of the 

epistomological problems which plague quantum mechanics. Let us first 

remind that the basic equation of quantum mechanics is the 

Schrodinger equation for ihe wave function H* 

ay 
i ^ = Hop4' (4.7) 

The equation as shown in all textbooks on quantum mechanics is lime 

reversible and deterministic. (We exclude some "pathological" cases 

related to weak interactions.) The physical interpretation of ¥ is that 

it represents a probability "amplitude." In contrast, the probability 

proper is given by 

«|..4icc ,. m 2 (4 g) 

We shall come back in the next section to this transition from 

probability amplitudes ¥ to probabilities proper I* I2. 

Quantum mechanics is probably the most successful theory of 

physics, and still, the discussions about its conceptual foundation have 

never ceased. I recommend a recent book by J.S. Bell, Speakable and 

Unspeakable in Quantum Mechanics.*1*) Are they quantum jumps? This 

is quite a controversial problem. Schrodinger's equation (4.7) describes 

a smooth evolution. How then lo include quantum jumps. In addition, 

(4.7) is time symmetric: if there is spontaneous emission, there should 
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be also spontaneous absorption. The conventional Copenhagen 

interpretation is that quantum jumps result from our measurement. 

This would be rather strange, since all of chemistry and life are the 

result of quantum jumps. How then could life be as a result of our 

measurements? Our method solves this problem as il associates to the 

quantum jump an irreversible event which can only occur in (our) 

future. 

Before we come back lo these fascinating problems underlying the 

close connection between the conceptual foundations of quantum 

mechanics and dynamical instability, let us make the following remark. 

The example we have treated is a very simple one as we could 

introduce a natural lime ordering in the frame of the usual quantum 

description (the so-called "Hilbert space"). But in general, this is 

impossible (think about scattering where all stales play a symmetrical 

role). Then we shall see in ihe next section, we have to introduce a 

natural time ordering on the level of the statistical description. This 

leads to the integration of LPS in quite general situations and to a new 

form of dynamics, which breaks radically with the past. 

V. Poincare's Theorem and a Statistical Formulation of Dynamics 

From the example studied in Section IV, it should be clear how we 

may avoid Poincare's catastrophe: It is through introducing into the 

theory a time ordering of dynamical stales which leads to well-defined 

"regularization" procedures for the small denominators (see 4.5-4.6). 

Bui how to introduce this time ordering? Here as we shall see now, we 

have to turn lo Ihe statistical description. Curiously our approach 
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validates the way Boltzmann more than a century ago approached 

kinetic theory of gases. But Boltzmann could not guess the emergence 

of the chaos theory and did not know that he was studying "non-

integrable Poincare systems." (He, as well as Maxwell, placed therefore 

his hopes in ergodic theory which is indeed useful for the 

understanding of equilibrium, but not for dynamical purposes.) 

In the early days of statistical mechanics, Gibbs introduced a quite 

fundamental concept, the "Gibbs ensembles." Instead of considering 

single dynamical systems, he considered a large number of dynamical 

systems evolving in the phase space associated lo the coordinates q|...qN 

and moments pi...pN of the particles forming each dynamical system 

(see Fig. 11). 

Figure 11 

The description is then, in terms of the probability distribution p in 

phase space 

pCqi-qN'Pi-PN'') < 5 1 ) 

This description remains also meaningful for quantum systems. The 

probability distribution p is then called the "density matrix." Once we 

know p we can calculate both the velocity distribution of the particles 

as well as the correlations existing between the particles. 

How then does time enter into this description? 

Let us consider a classical gas. Particles collide and these 

collisions give rise to correlations. Sec Figure 12. First we have binary 
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correlations, then ternary correlations, and time going on, correlations 

involving more and more particles. 

Figure 12 

The formation of correlations is somewhat reminiscent to that of a 

couple which has a conversation [This would correspond to a collision]. 

Even when the partners go away, the memory of their conversation 

remains. The information associated to this conversation is time going 

on, spreading out to more and more participants. 

Suppose we look at a glass of water. In this glass of water, there 

is an arrow of time that will, in fact, persist forever and corresponds to 

the creation of new correlations involving an ever-increasing number of 

particles. According to the correlations which exist between the 

molecules, we can distinguish "young" water from "old!" Computer 

experiments have been performed recently that show that binary 

correlations appear very rapidly. Ternary correlations involve longer 

time scales and so on. This time oriented flow of correlations breaks the 

symmetry involved in the classical description. Let us go from state A 

(of a many-body system) with no correlations at 1=0 to a state B, a 

time t involving multiple correlations (.see fig. 13). 

Figure 13 

Obviously, the transition from A to B involves quite different physical 

processes, then the inverse transition, from B to A. 

1 T 



The time ordering of correlation has lo be introduced into 

dynamics lo avoid Poincare's catastrophes: Binary correlations come 

before ternary ones and so on. We have therefore to describe dynamics 

in terms of the time evolution of correlations. 

This corresponds lo a different point of view from that of classical 

dynamics: the question is no more to study the positions and moments 

of each particle time going on but lo follow the evolution of the relations 

between the particles.I?) In this conceptual framework we can avoid 

Poincare's catastrophe by treating transitions to higher correlations as 

"future oriented" and transitions to lower correlations as "past-oriented" 

exactly as we have done il in 4.5-4.6. 

Gibbs' ensemble theory leads to an equation for the time evolution 

of the density matrix p 

i •£ = Lp (5.2) 

which is formally quite similar to ihe Schrodinger equation (4.7). L is 

the so-called Liouville operator, which can be expressed in terms of the 

Hamiltonian both in classical and quantum mechanics. As we 

mentioned, Poincare's theorem deals with Hamiltonians of Ihe form 
i 

II = H0 + XV (5.3) 

This corresponds lo a decomposition of the Liouville operator 

L = Lg + XLy (5.4) 
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To solve Liouville'* equation (5.2) we need as in Ihe Schrddinger case to 

solve the eigenvalue problem (see 4.1) 

L V = tjtm> (5.5) 

For integrable systems, there is no problem. The Liouville's equation 

(5.2) is then of no special interest as the problem reduces to Ihe usual 

dynamical problems (finding trajectories or wave functions). However, 

Ihe problem changes radically for non-integrable systems. Then the 

Liouville equation describes the emergence of chaos due to the 

destruction of the invariants of motion associated to the unperturbed 

system. 

Again, Poincare's theorem prevents us from finding solutions of 

(5.5) through unitary transformations (preserving the reality of /„) 

which we could expand in powers of the coupling constant X . As 

already mentioned, we solve this difficulty by introducing a 

supplementary element into the theory: the lime ordering of the 

correlation. We then obtain a complex eigenvalue problem that can be 

solved and which leads to damping and to irreversibility through the 

occurrence of K -functions (see Section IV). This new dynamics has 

some distinct features which present a basic departure from the 

features of the dynamics of integrable systems as described in classical 

or quantum theory. 

To understand in qualitative terms what happens, let us analyze 

more closely what is involved in the idea of "collisions." In fact, a 

collision corresponds already lo a complex process in which particles 
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come close, exchange energy through resonance and depart. We can 

visualize a collision as a succession of stales bound by resonance (see 

8)). In a Hamiltonian system (the case of hard spheres as a limiting 

case which will not be considered here) a collision is not an 

instantaneous point-like event but has an extension both in space and 

time. 

As has been shown recently by T. Petrosky and the author, the 

spectrum of the Liouville operator L is essentially determined by the 

dynamics of the collisions. This implies a radical deviation from the 

usual methods of dynamics valid for integrable systems where the 

evolution can be resolved into a succession of instantaneous space-time 

events (remember Feynman diagrams).* For this reason the dynamics 

of LPS can only be formulated on the statistical level, as we cannot 

reduce it nor to trajectories in the classical case nor to wave functions, 

as in the quantum case. This deviation from the great traditions of 

dynamics not so astonishing; we deal here with an aspect of dynamics 

that is totally absent in integrable systems. It is, however, already 

present in the KAM theory but there the behavior is so complex that it 

defies any quantitative description (we have to use qualitative criteria 

for the collapse of resonant tori as Ihe result of the coalescence of 

resonances). It is precisely the main progress realized by the study of 

LPS to present a simple description of the physical processes due lo 

resonances and which lead to Poincare's non-integrability. 

For Ihc reader familiar with kinetic theory, let me mention that ihe 
tradmonal kinetic equations (Ihc Fokkcr-Planck equations) conlain second 
derivatives, this is precisely due to the description of the collision as a iwo-
sugc process 

-> <; 

Our approach has been confirmed by numerical calculations 

performed on simple examples; of LPS. We may start with a statistical 

distribution (as close as we warn from a point in phase space). We see 

then the system going to various stages corresponding to ihe 

appearance of Lyapounov instability (see 2.1), folding in phase space 

and then diffusion as due to "collisions." 

The main point I want to emphasize again is that instabilities 

destroy the very notion of trajectory (or of wave function in quantum 

mechanics) as the basic description is now in terms of statistical 

ensembles. 

Let us now present some concluding remarks. 

VI. Cwcltiding Remarks 

The integration of Poincare's non-integrable dynamical systems 

leads for LPS to a new form of dynamics encompassing irreversibility 

(broken lime symmetry) and exhibiting an increased role of probability 

both in classical and quantum mechanics. The lime paradox we have 

described in Section 2 is in this way eliminated (see Fig. 14). 

Figure 14 

In the "old" situation, we had to bridge the microscopic time 

reversible level lo Ihc macroscopic level equipped with an arrow of 

time (Fig. 14). But how can time arise from no-time? 



Now (Fig. 15) we have a new microscopic level with broken time 

symmetry out of which through averaging procedures emerge the 

macroscopic dissipaiive level. The "old" microscopic level has become 

unstable. 

Figure 15 

This leads to a better understanding of the role of chaos. In fact, 

there exist two quite different maniifestalions of chaos. When we study 

macroscopic equation which include dissipation, such as the reaction-

diffusion equation, or the Stokes-Navier equation for fluids, we are 

already facing situations for which the basic microscopic description 

belongs to LPS. In other words, Ihe very existence of such equations 

presupposes "dynamic chaos". This is not astonishing; indeed, 

properties such as friction or diffusion involve exchange of energy 

through collisions. These macroscopic equations may lead lo chaos 

(chemical chaos as turbulence). This dissipaiive chaos lies "on top" of 

the dynamic chaos. As we mentioned, dissipaiive chaos is pari of self-

organization as it appears in nonequilibrium and non-linear systems. 

Examples of chemical coherence are oscillating chemical reactions. In 

short, therefore, macroscopic order as manifested in non-equilibrium is 

the outcome of dynamical chaos. Even ihe approach lo equilibrium 

becomes the result of dynamical chaos. In all these cases, therefore, we 

have "Order out of Chaos" (see')). 
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Figure 16 

Let us also mention that LPS are evolving systems. Once initial 

conditions are given, they go through various stages such as described 

by Lyapounov exponents, diffusional processes ... However, 

irreversibility is not related to Newtonian Time (or its Einsteinian 

generalization) but to an "internal" time as expressed in terms of the 

relations between the various units which form the system (such as the 

correlation between the particles). We cannot stop the flow of 

correlations, as we cannot prevent the decay of unstable atomic states. 

Nabokov has written: What is real cannot be controlled, what can 

toe controlled is not real. This is also true here. In addition to solving 

the time paradox, the dynamical laws obtained through the integration 

of LPS lead to a number of consequences which go far beyond our initial 

motivation. We have already mentioned some relations with the 

epistomological problems of quantum mechanics in Section 4. We can 

now go further. As is well known, ihe basic quantity in quantum 

mechanics is the probability amplitude 4* which satisfies Schrodinger's 

equation (4.7) but we measure probabilities! Therefore, we need an 

additional mechanism to go from "potentialities" as described by the 

wave function to "actualities" as described by probabilities. In his 

introduction to "The New Physics," Paul Davies'9) wrole, "At the rock 

bottom, quantum mechanics provides a highly successful procedure for 

predicting the results of observations on microsystems, but when we 

ask what actually happens when an observation lakes place, we get 

nonsense! Attempts to break out of this paradox range from the 

i « 



bizarre, such as the many universes interpretation of Hugh Everett, to 

the mystical ideas of John von Neumann and Eugene Wigner, who 

invoke the observer's consciousness. After half a century of argument, 

the quantum observation debate remains as lively as ever. The 

problems of the physics of the very small and the very large are 

formidable, but it may be that this frontier - the interface. Of mind and 

matter - will turn out lo be the most challenging legacy of the New 

Physics." It is interesting that the solution to this fundamental problem 

may come from dynamical instability and chaos as in our new 

dynamical description we deal directly with probabilities. In this case, 

the breaking down of the superposition principle of quantum mechanics 

in LPS is due to dynamic instability without any appeal to esoteric 

considerations, such as the many-world theory or the existence of the 

new universal constant leading to a collapse of the wave function for 

macroscopic systems. We come to a realistic formulation of quantum 

mechanics eliminating the appeal to any observer situated outside 

physics. 

This century has been dominated by two new conceptual 

frameworks: quantum mechanics and relativity. As has been often 

emphasized, (see, i.e., M. Sachs^O)) the intrusion of subjectivistic 

elements through the measurement process leads to difficulties when 

we want to combine quantum theory and relativity. However, non-

integrable dynamical systems are likely also to alter relativity as the 

basic dynamical events (the collisions) do no more correspond to 

instantaneous and localized space-time events. 

I believe thai we are therefore indeed at the beginning of a 

"New Physics." Until now, our view of nature was dominated by the 
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theory of integrable systems, both in classical and quantum 

mechanics. This corresponds to an undue simplification. The world 

around us involves instabilities and chaos, and this requires a drastic 

revision of some of the basic concepts of physics. 

Let me conclude by expressing my conviction that, in the 

future, the non-integrability theorem of Poincare will be considered 

as a turning point somewhat similar lo the discovery that classical 

mechanics lead to divergences when applied lo the black-body 

radiation. These divergences had lo be cured by quantum theory. 

Similarly, Poincare's divergences have to be cured by a new 

formulation of dynamics in the sense I have tried to describe in a 

qualitative way in this presentation. 
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Legends 

Fig. 1: No'time ordering in classical or quantum dynamics. 

Fig. 2: Clausius formulation of the second law of thermodynamics 

Fig. 3:' Thermal diffusion experiment (see text) 

Fig. 4: Baker transformation (see text) 

Fig. 5: Resonance between coupled oscillators 

Fig. 6: Quantum transition 

Fig. 7: Collisions (see text) 

Fig. 8: Example of temporal ordering 

Fig. 9: K-function associated to the decay of an unstable particle (see 
text) 

Fig, 10: Time inversion experiment (see text) 

Fig. II: Gibbs ensemble 

Fig. 12: Flow of correlations 

Fig. 13: Breaking of time symmetry (see text) 

Fig. 14: The time paradox (see text) 

Fig. 15: Elimination of the time paradox (see text) 

Fig. 16: Chaos and Dissipation 
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