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FPROGRESS REPORT
“The Bebavior of Matter under Nopequilibrium Conditions:
Fundemental Aspects and Applications”™

Clur report contains a brief summary of what bas been achieved over ihe period of the coniract. We
have studied the behavior of matter under nonaquilibrium conditions on three lavels: (1) on the microscopic
leval in the frame of clamical mechanics of of quantum theory: (2} on the stochastic level, which includes
Auctustions; and (3) on the phenomenological, mazroscopic level desaribed by nonlinsar equations. We first
repart ou the level (1), then report on the levels (2) and (3).

Microscopic description

The resilty obtained in this portion of the project are due to 1. Prigogine, T, Petrosky, H. Hasegawa,
S. Tagaki, D.J. Dyisbe and W. Saphic. In ehort, we have shown that Poinearé's calebrated ¢lxeaifieation of
dynamical systamy mto integrable and nonintegrable systems hae wide ranging conssquences for the very
formulation of dynamies.

The dynamica of ncnintegrable systems appears to lollow rew laws, presenting quite specific featurss,
Poincaré's theorem preventa the existence of solutions of the eigenvalue problem associated with the liamil-
tonian {(or to the Liouvitle operator) which are analytic in the coupiing constant. These analytic sojutions
diverge a1 a result of resonances. Ik is our conviction that in the future, the nonintegrability theotvem of
Foinzaréd will be considered am a turning poiot somewhat similar to the discovery that clagsical mgchamcs
ieads to divergences when applied to black-body radiation,

Let us recpbl that the work of Kolmogorey, Arncld and Moscr (the so-called KAM theory) bas ahown
that for aufBeiently amall values of the coupling constant (as well a¢ ather conditions which <an be found
in every textbook dealing with the “new” mechanics), the majority of trajeciories remain pericdic. In this
sense the KAM theory shows that in some situations Poincaré's divergences are “Earmiess™. However, this is
not o for Large Poincaré systems (LPS) which are characterizad by a continuous spectrum and cootinuous
selg of resonances,

Tha general philotcphy behind our approach is formulated in Appendix 1, Time, Dynamics and Chass
- [ntegrating Pomncaré’s Nonintegrable aystems. In Appendix 2, we deseribe in detail the relation between
Peoincard's theotem and the cigenvalue problem,

An important tool for the solution of the eigenvalue problens in LPS, subdynamics, is described in
Appendix 3. To make the reader more familiar with subdynamics, two applications have been included in
Appendices 4 and 5.

Appendices 6 and 7 deal with the maiu contept of our new approach, which ¢ures Poincaré’s divergences
through the introducsion of & suitable time ordering of dynamical seates. In simple cases, such as the
Friedrichs model, this reordering may be performed in the Hilbart space (see Appendix 6). We have (o
expreas the face that the unatable state oocurs before the smission of photons. However, in general we nead
the introduction of & “second” internal time to order the dynamical etates. The basic idea of cur work is
that this second time corresponds to the Aow of correlations aa it acoyrs, for example, in many-body sysiemns
leading to correlations involving an ewer increasing number of particles (or degrees of freedom). That means,
however, that this time ordering can only be performed in the density matrix space (on the level of Gibbs
ensembias). A basic peanlt is that in thig way we eliminate all Poincard’s divergences and obtain a new
formu)ation of dynamics on the level of the statistical snsembles, which ineludes broken Lime symmetry and
irceveraibility. Specifieally, in the ¢age of quanturn theory, we show that the concept of wave functions is not
spplicable to LPS (and thecefore to systeme involving interacting ficlds).

K is well known today thai irreversibility piays an essemtial role in the description of fundarmental
aspects of pature. Still, the microacopic deacription, both in classical and qurantim mechanies, is in terms of
time-reversible lawe {see Appendix 1). This may be called the time paradox, and has been at the center of
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the work of our group for many yenss. A turning point in our research was the realization that Poincaré's
classification of integrable and ponintagrable systema may play 3 major role in this context. Poincaré’s
thearem is of obvions relevanes for the theoty of itrevamible procesaes, as Poincoré’s integrability prevents,
so to speak, dissipativity. However, the close relation betweoen Poincard’s theorem, kinetic theery and field
theory is & recent result. Indeed, as shown in Appendix 2, there existe a close relation beiween Poincaré’s
theorem and the so-ealled collision operator of kinetic theory, We may thereiore expect that once we would
be able to intcgrate LPS, we would automatically obiain a formulation of dynamics including irreversibility.
A first step towards the integration of LPS was the development of the *subdynamics” theory, which shows
that we can split the dynamical evolution of LPS into independent ewolutions, earvespending to subspaces,
charactetized by B sat of complete orthonormal but nonbermitian projection operators. Agsin, while the
idea of subdynamics had been developed by our group slready in 1988, the relation with Poincard’s theorem
wag only undertood recently. The theory of subdynamica is summarized in Appeadix 3.

Appendix 4 deals with the evolution of a dilute gas towards equilibrium, including both the appearance
of disorder (in the velocity) and order (in the spatiasd correlations), time gaing cn. For dilute gases, it has been
cusiomary since Boltzmann to associate the approach to equilibrivm to an increase of disorder. However, {or
finite denaitien, wa have alsc to include the appearance of ordar as axpreszad in terma of spatial corrsfations.
Thersfors, the spproach to equilibrium in classical Guids presents both aspects: preduction of discrder in
the velocity distribution, and produciion of order in the spatial distribution of mclecules. This interplay of
arder and disorder can be elegantly described by subdynamics,

In Appendix 5 we consider a situation wsually atadied by mapping theory on the level of trajectories,
Hers we usa subdynamics to deacribe the evolution of a statistical ensembie, in which particles are deflected by
a periodie potential regularly distributed in & one-dimersicnal system. With a suitable choice of parameters,
we can follow in detail the appearance of chaoe, throagh positive Lyapunov exponents, and the transforma-
tion of motion (described by elassizal trajectories) into diffiive motion (deseribed by Fakker-Flanck type
squations). We show that for short times there is & near compansation of difusion and anti-difusion terms.
Time going on, the anti-diffusion terme are damped, and we chiain an auto-catalytic mechanbm, bringing
the aystem 10 a Lime evolution described by diffusive moticon.

We come now 1o the main part of this report: the darivation of 2 new formulation of dynamies for LPS.
Let us emphasize the difference between the approach which we use now and what hae been done by our
group before. In cur previous work it was tacitly sssumed that the Lisuivillian, being hermitian, has only
real eigenvalues. To include dissipation we therefore introduced a non-unitary, non-factorizable transition A
leading from g to & new “physical” pP
& = Ag.

‘This physical ¢* would then satisfy a modified Liouiviile equation which would include dissipation and the
second law of theemodynamies. Unfortunately there exista a whole class of transformations 4 and it appeared
impossible antil now o ntroduce supplementary conditions which would fix A uniquety. .

Quz present approack is based on the obeervation that the time ordericg as mentioned above leada to
an extension of the Liourille space aliowing the appearance of complex sigen-distzibutions without any nead
to petform firet a transformation. We consider succemsively two situations. The fiest corvesponds to the
case in which we may introduce the time opdering i the Hilbert space. As mentioned, thia ia pessible for
the so-called Friedrichs model. The nalural time ordering expresses that the emission of radiation occurs
after the preparation of the unstable atate. This leads to a generalization of quantum mechanics in which
ibe usual Hamittonian sigenvalue problem is replaced by a complex etgenvalua problem which can be solved
exactly. The usual Hilbert space is in this way extended to include generalized sigenstates involving complex
distributions. In this way we may integrate & class of Poincaré’s nonintegrable systems. In the case of the
Friedtiche model we may compare sur solution to the original Friedrichs’ sclution which is not analytic in
the coupling constant {the unsiable particle is dissolved in the continuum whatever the value of the coupling
constant). it i remarkabls that the Hamiltonian in the extended Hilbert space remains hermitian and the
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time evolution remains unitary in epite of the decsy of the unstable partizle.

In our metbod the quantum mechanical state & expressed as a superposition of basis states with a
broken time aymmetey. This leads to & temporal descripison for the evolution of the guanium state which is
quite appealing. The particte decays, time going on, and produces a field corresponding to ouigoing waves.
Thin decay i irreversible in the sanse that we can introduce an operator corresponding o a Lyapounov
function whose avernge valve txken over an arbitrary state decreasss monotonically and takes ita minimum
vajue when the unstable particle hag decayed. In thin way, spantanecas deeny becomes indeed an irrevarsible
event. We have hers a very simple example of a dynamicsl description which incorporates irreversibility.
Also, it should be emphanized that cur complex specteal represeptation can be obtuined by & perturhation
calculation. This is of great importance as beyond the Friedrichs modsl the usual methoda {sil to produce
an explicit spectral representation.

However, aa mentioned, it in only in very simple situations such a8 the Friedricha model that sur “time
ordering” ¢an be performed in the frame of the Hilbert space. The general case involves tiroe ordering in the
Liouville space of density matrices. The quantum state hae then to be deseribed by & danaity matrix whoss
titne evolution can be expressad in termu of & complete basis formed by density matrices with & broken time
symietey. Here the time ordetiog is based on the ides of o flow of correlations which was alteady previously
widely used in the formulation of nonequilibriom statietical mechanize, starting with the monograph by the
main investigator (Nonequilibrivm Statistical Mechanics, Wiley—Interscience, New York, 1862).

In LPS, correlations involving an ever increasing number of particles {or degrees of freedom) build up,
time going on. OQut time ordering meaos that ereation of higher order correlations is “future-criented” while
the transition to lower-order correlations is “past-oriented”. This distinction is reflected by differant analytic
continuationa for the propagators associated with the variows procsesss. The bastc result of our theory is
that we can now derive 2 complete sed of eigen-distributions of Ly which sre non-factcrizable in contraat
to what happens for integrable systems. The main example studied in Appendix T refers to scatiering.
"This is a simple cxample where we can follow the maio leatures of our approach, such as the asymptotic
disappearance of the wave function. We also predict deviations from usual quantum mechanics starting with
the three-body scattering problem.

Wa axpect that pature makes use of the sltermative dynamics spplicable to LPS. This belief is based on
the various general argumenta;

1) Most dynamicai syatems in nature are indeed LPS.

2) Our methed eliminatas all Poincaré's divergences.

3) In addition, # goes further by giving a constructive method for the spectral representation of the
Liouvitle operator for situations such s interacting fickds, where 00 tonstructive method was available,

4} It taken into aceount resciances betwesn the “bras™ and “kets” of usual quantum mechanics.

5) Tt includes tims symmstry bresking snd the second law of thermodynamics, and therefors solves the
“time poradox”.

6) It ageees with previous work on statistical mechanics {stariing with the Yan Hove Pt Limit and including
the noo-Markovian master equation}.

T} It shows that LPS are “mixing”, and inclodes the approseh to squilibrium (which remaine o mystery as
long as & point is meapped to & point in classical mechanics, and a wavs function is transformed into a
wave functicn in quantum mechanics).

8) It limits the concept of wave function, and avoida therefore the well known conceptual difficulties of
guanium mechanica, namely the collapse of the wave function and the messurersent problern, {as it
provides a dynarpical definition of the measursment apparatos, which according to our approach has to
be a LFPS).

9) We have tested exiensively the predictions of our approach for classical aystems (radistion damping,
mapping preblems, etc.} as well as i aimple cases for quantum mechanical systems (Friedrichs model).
In every case, the numerical agreement has been excellent. We are preparing the publications which



will give the tesults of our pumerical validations.

Macroacopic kevel with stochastic description
The results obtained in this portion of the praject are due to ) E. Fearson M. Malek Mansour, and

F Baras. The primary result i the giecessfil simulation of eomplex mncroscopic chemicat phencmena at
the microscopic level. In partizuisr, we hove focused on self-organization processes: i.e. on transitions from
states constant in space and Hime to states paricdic in epace or time.

The simpleat example of self-organizational phenomens in chemical systems are simple periodic oscilla-
tions in the concentrations of the reacting species. Such limit-cycle caciliations typically have a macroscopic
paricd on the acale of miptites or hours, A macroscopic time scale irnplies many collisiona per macroseopic
time vnit with a correspondingly bigh computational cost. We thus have imited studies to dilute gas phase
reactions in order to avail curssives of the method pioneered by (7. A. Bind. Bird's method s up to 1000
times Tastar than traditional molecular dynamicn sinmulations and is valid for a dilote Boltzmann gas. [t is
thus teatricted to binary collisions.

It wan neceisary to construet a pew modal chemieal oacillator in order to meet the constraints imposed
by the dilute Boltzmann gas bypothesis. Existing mwadel oscillators invalved either/or trimolecular collisians,
several separated Limme scales, or complex reaction schemes containing many reacting spesies. Ye developed
the following simple thres component reaction in order to develop the simulation techniques.

Uty —-W+V
V+l—W
¥V — products :
+ Feed terpe

A deterministic analysis of this model haa been carried cut. The model contains & wariety of bifurcation
theoretic phenomena including saddle-node bifurcations, Hopl bifurcations, Takens-Bogdanov bifurcations,
limit-cycles, mushirooms, and olated hranches of soluticas. To our knowledge this is the ficst model chemical
oscifiator with neither separation of timme scales nor trimolecular collinjons.

The mictoacopic simulations of the above reaction acheme under the sssumption of perfact mixing gave
good agreement with the macrascopic rate squations. These resulte have been published (see Appendix 3
an 9). When the perfect miring assumption is dropped the resction is capable of spontaneously forming
spatial concentration patierns. We have successfully siowlated such sieady state patterna. (Laborstory
chservations of such patterns bave recently been reported by groups in Bordeaux and in Texas.) We are at
present continuing work on these simulations. Spatially-distributed aysterns generally bave several attraciors.
This is simply & consequence of spatial symmetties and of the fact that several different spatial modes lose
stability mearly simultanecosly. In MD simulstions farge fluctustions tend to Lick the syatem from one
stiractor to ancther. We are currently involved in a search of patameter space to locate regions where the
consequences of the fluctuations are minimal.

The most interesting direction to go with such simulations will be the simulation of chemically reacting
hydrodynamic flowe. Simulation techniques for such systems arc presently in their infancy, The reaction of
the fiow with the boundaries results in & moving boundary valuwe problemn. To model such a system from the
mazeoscapic point of view is beyond the capabilities of present computational techniques. On the other hand,
to model such a system from the microscopic view point, one need allow for the additional complication of
particle-boundary interactions, but mich considerabions are canceptually mmgple. One can add or take away
buundary sites as particles collide with the boundary depending on whether the local concentration is near or
far (rom the solubitity limit. With the advent of massively parallel computers, such simulations are feasible.
They are of obvious geophysical interest and would presumably be vseful in the recovery of foesii fuels.
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