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Abstract 

Empirical study of cubic and quartic vibrational force con-

stants for diatomic molecules shows them to be approximately

exponential functions of internuclear distance. A family of curves

is obtained, determined by the location of the bonded atoms in rows

of the periodic table. Displacements between successive curves

correspond closely to those in Badger's rule for quadratic force

constants (for which the parameters are redetermined to accord with

all data now available). Constants for excited electronic and ionic

states appear on practically the same curves as those for the

ground states. Predictions based on the diatomic correlations agree

with the available cubic constants for bond stretching in polyatomic

molecules, regardless of the type of bonding involved. Some impli-

cations of these regularities are discussed.
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the Alfred P. Sloan Foundation, the U.S. Atomic Energy Commission,
and the National Science Foundation is gratefully acknowledged.



Molecular vibrations must be taken into account in the inter-

pretation of many types of experiments. Often the anharmonioity of

the vibrations is an important consideration. For example, in most

molecular structure determinations the dominant vibrational correc-

tions arise from anharmonic terms in the potential function. It has

been shown1 that within a practical approximation the difference

between the average molecular configuration derived from electron

diffraction experiments 2 and the equilibrium configuration is due

solely to the cubic potential terms. The cubic terms also give the

largest of the corrections needed to derive equilibrium moments of

inertia from observed spectroscopic rotational constants. 3 In a

large class of isotope effects * especially where hydrogen is involved,

anharmonioity plays an important role. Some examples that have been

discussed theoretically are various magnetic interactions, 4 including

second moments 5 and chemical shifts 6 of nuclear magnetic resonance

lines, and optical activity7 of compounds of the type RR'CHD. Aside

from diatomics, however, very little is known about the anharmonioity

of molecular potential functions. Consequently, it has usually been

the practice either to ignore the effects of anharmonioity or to rely

on rather crude approximations.

Several types of empirical formulas have been proposed to

describe the variation of harmonic bond stretching force constants

with bond length and with chemical properties of the bonded atoms,

and these often give satisfactory results for polyatomio as well as

diatomic molecules. One of the simplest is Badger's rule, 8

F2 m 1.86 (re-did -3 	(1)
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in which re is the equilibrium bond length and the constant dij is

fixed for bonds between atoms from rows i and j of the periodic table.

We have examined the available data and find that cubic and quartic

force constants for diatomic molecules can also be represented as

functions of bond length and position in the periodic table (see

Fig. 1) and that anharmonic bond stretching constants for a number of

polyatomic molecules can be predicted within experimental error by

the same functions. This paper gives the relations obtained and a

qualitative discussion of the origin of the observed regularities.

Analysis of Diatomic Data

A table 9 of quadratic, cubic, and quartic force constants for

diatomic molecules and ions was calculated from spectroscopic data,

using the relations:

F2 = 5.889 x 10-7 pw:

F3 = ai(F2/re )

F4 = a 2 (F 2/4)

Where

- al = 1 	 (aewe/6B:)

a 2 = (5/4)4 - (2/5)(wexe/Be ) .

Here the potential function is written as

. 	 . 	 .2V(r) = F2 (r-re ) 2 F3 (r-re ) 3 F4 (r-re ) 4

The other notation and units (given under Table 1) are standard. For

hydride molecules additional terms l° were included in Eqs. (5) and



(6). Met of the spectroscopic parameters were taken from Herzberg's

tabulation, 11 but an attempt was made to include all new and revised

parameters published up to December, 1960.

The accumulation of data since 1935 has enabled Badger's corre-

lation to be extended to about twice as many families of molecules,

and the parameters for most of the others have been revised. Table

I lists the values of aij and dij which gave the best fit to straight

lines,

re = dij 	(aij -di1 )Fi1/3
	

(7)

The accuracy of the correlation is discussed in detail in reference

9 and remains about as good as that found by Badger. The parameter

aij might be regarded as a standard bond length (F 2 = 1 at re aij )

and dij as a distance of closest approach (F 2 4, 00 at re = did)'
Included for comparison in Table I are the parameters d ii derived

from the original version of Badger's rule, in which a ij dij was

assigned the constant value (1.86) 1/3 = 1.23; although this is the

commonly used form of the rule, it does not allow a satisfactory fit

to data for the heavier molecules, as Badger pointed out. 8 It was

also found that the data that have become available for a number of

Molecules containing transition metals bonded to hydrogen or first

row atoms required parameters considerably different from the usual

ones, as indicated in Table I.

As illustrated in Fig. 1, the correlations obtained for cubic

and quartic constants are about as good as those for the quadratic

constants. For some of the families of molecules, the semilogrithmic

graphs show noticeable curvature, but for convenience a simple
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exponential function,

(-1)nFn 	
10

-( r
e
- a

ii )/bij
	

( 8 )

(n 2,3,4) was fitted to all the data. Table II lists the parameters

obtained. The experimental uncertainty in many of the anharmonic

constants is several percent; data for which the uncertainty is

greater than 25% were excluded.

For quadratic constants, the overall agreement with Eq. (8) was

somewhat more satisfactory than Badger's rule except for light

molecules; in particular, L1 2 and some excited states of LIH and H 2 .

For the anharmonic constants various functions analogous to Badger's

were also tried with similar results. In Fig. 1 the (solid) lines

calculated from Eq. (8) may be compared with the (dashed) curves

obtained from the relations of Table III for the H-1 and 1-1 families

of molecules, which showed the most noticeable curvature, and for

the 2-2 family, which is practically linear.

For excited electronic states and ionic states, the anharmonic

constants as well as the quadratic constants are found to conform

fairly well to the curves established from data for the ground states,

although the scatter is considerably increased. In Fig. 1, open

circles indicate excited or ionic states; to avoid overcrowding the

figure, these constants were included for hydrides only. However,

similar agreement is found for the other families of molecules. Data

for these states were included but assigned one-fourth the weight of

ground state data in determining the parameters given in Tables I-III.

As a simple rule for order-of-magnitude calculations it may be

noted that for about two-thirds of the known molecular states the

ratios a1 and a2 of Eqs. (5) and (6) fell in the ranges 2 to 4 and
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2 to 6, respectively. These quantities were found to be less regular

functions of internuclear distance than the force constants, however.

Polyatomic Molecules

For a few polyatomio molecules vibration-rotation interaction

constants are available from which cubic bond stretching force con-

stants can be derived, and the results are given in Table IV. The

methods used are described elsewhere. 1 ' 9 A generalized valence force

field has been assumed, in which the part of the potential due to the

stretching of a particular bond has the form (n = 2,3,4)2

2V = InFn(r- e )n + interaction terms.

Except for CO2 and H20, the interaction terms had to be neglected in

deriving the force constants. In most cases the uncertainty thereby

introduced is expected to be less than that due to the experimental

error in the vibration-rotation parameters and normal coordinates

which enter into the calculations. 12 As seen in Table IV the agree-

ment between the polyatomic values and those predicted from the

diatomic curves (using the polyatomic bond lengths) is quite satis-

factory, considering the experimental errors and theoretical approx-

imations involved. It thus seems, at least for the available data,

that stretching cubic constants for polyatomic molecules can be pre-

dicted from diatomic data simply by allowing for the change in bond

length. It is hoped that more, accurate vibration-rotation parameters

will be forthcoming to provide additional tests.

Cubic constants for bond bending can also be obtained from the

appropriate vibration-rotation interaction parameters, but at present

there is almost no reliable data available to test any method for

estimating them.13
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Discussion

Some thirty empirical relations have been proposed connecting

harmonic force constants and bond length with such properties as

bond order, electronegativity, dissociation energy, ionization

potential and number of valence electrons. 14 Perhaps ten of these

are more or :less equivalent in range and accuracy to Badger's rule.

As is clear from Fig. 1, many of these relations can be expected to

apply also to the anharmonic constants. We have chosen to restrict

consideration to Eq. (e), because it can be applied so readily to

bonds in polyatomic molecules.

While Eq. (8) gives a satisfactory over-all fit to the data,

other relations are somewhat better for some groups of molecules.

For example, for several families, including the hydrides and diatomic

molecules of the alkali metals, a better correlation is obtained for

the constant F 2 by applying Badger's rule to columns rather than to

rows of the periodic table; 15-17 we have found that this also holds for

F3 and F4. Theoretical considerations
18-20 suggest the use of

columns rather than rows, but in practice this is a much less con-

venient way to organize the experimental data.

To obtain the best accuracy of prediction in any particular case,

the data employed should be restricted to a series of molecules in

which the bond character is similar, or at least suffers no abrupt

change along the series. 16 It is also desirable to compare results

obtained from several correlation schemes whenever this is feasible.

In addition to the correlations within each family of molecules,

it will be noted in Tables I-III that the parameters aij and dij
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both show fairly regular trends from one family to another, consist-

ent with Badger's observation that "the d ij 's appear to depend on the

completeness of the inner shells of the respective atoms, and not

much on the outer shells."

A general argument can be given to show that these regular-

ities reflect the extent to which the repulsive forces between the

nuclei of the bonded atoms are reduced by electronic shielding. This

has been indicated by several authors in connection with perturbation

treatments of harmonic force constants. 18-20 We shall consider

briefly some qualitative aspects and examine how the situation changes

as one goes from F2 to F3 and F4 .

Within the accuracy of the Born-Oppenheimer approximation, the

vibrational potential function may be written as

U(r) = UN (r) + UE (r) 	 (9)

where UN (r) m ZaZbe2/r is the nuclear repulsive potential and UE (r)

represents an average over the electronic kinetic and potential
energy in the field of the fixed nuclei. 21 At the equilibrium inter-

nuclear distance there are the relations

-De 	 UN + UE (1o)

0 	 -UN/r + dUE(ar (11)

F2 = 2UN/r2 + 2UE/ar2 (12)

(13)



F4 = 2UN/r4 + (1/12)6 4UE/8r4
	

(14)

where De is the dissociation energy and the derivatives are eval-

uated at r = re . The nuclear repulsion, which is outweighed by the

electronic contributions in (10), and is balanced by them in (11),

is always found to dominate in the force constants. 22

The various derivatives of UE (at r = re ) turn out to be

roughly constant for isoelectronic series of molecules with the same

Za and Zb . The derivatives vary regularly for molecules whose atoms

belong to the same column of the periodic system (rows usually give

a fairly smooth correlation also).

Although Eqs. (9-14) hold strictly only when Za and Zb refer

to "bare nuclei," it is of interest to examine also the results

obtained when the inner shell electrons are assumed to follow the

nuclei exactly during a vibration. Murrell has applied Eq. (12) to

some diatomic molecules, taking Za and Zb as the number of electrons

outside a completed shell. He noted that (6 2UE(Or2 )e shows a regular

variation in related groups (see his Figs. 2 and 3) which is qual-

itatively consistent with an expression derived from perturbation

theory. 18,19 With this choice of Za and Zb , the derivative (8 2UE/6r 2 ) e

has small positive values for the hydrides(except for LiH) and

diatomic molecules of alkali metals, while it remains large and neg-

ative for other molecules.

Similar correlations appear in an analogous treatment of the

anharmonic constants. There is a systematic trend in passing from

F2 to F3 and F4 in that the imbalance between the nuclear and electronic

contributions steadily increases. (For F 3 and F4, graphs similar to
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MUrrell's Figs-2 and 3 are rotated counterclockwise.) This is

illustrated in Table V, which lists for a few examples UP )/U (n) ,

the ratio of the electronic contributions in Eqs. (12-14) to the

total. We shall refer to the electronic contribution as shielding 

when its sign is opposite to that of the nuclear contribution, and

as antishielding when its sign is the same. Thus, negative values

of the ratios in Table V correspond to shielding contributions,

and the ratios are always 22 negative when Z
a 

and Z
b 

refer to bare

nuclei. It is seen that the shielding decreases as n is increased

for a given molecule or as re is increased in a series of molecules.

The hydrogen halides illustrate how rapid is the onset of

antishielding with decrease in the effective nuclear charges: merely

"clamping" the two is electrons onto the halogen nucleus causes

antishielding to appear in the quartic constants and even in the

cubic constant of HI.

This empirical analysis of the electronic contributions can

readily be given a qualitative theoretical basis. We shall take the

approach used by Brato'i, et al, in a united-atom treatment of harmonic

force constants for diatomic hydrides. 20 However, the conclusions

depend only upon general properties of the electronic energy function.

Since U(r) -1P0 for large values of the internuclear distance,

anuwarn _anuN/6rn 	 , 	 (15)

(n = 0,1,2,...). For r .4-0 0 it has been shown23 that U
E
(r) approaches

the united atom energy and again

aUE/6r 0 $ 	 (16)



while the higher derivatives in general approach finite values. At

intermediate values of r the first derivative must pass through at

least one maximum, since .- , UE/6r represents an attractive force

exerted on the nuclei. For this qualitative discussion, the simple

curve shown at the top of Fig. 2 is chosen and the higher derivatives

constructed graphically. 24,25 The minus and plus signs indicate the

regions corresponding to shielding and antishielding contributions,

respectively. At large enough r there is always shielding, as seen

from Eq. (15). The dashed curves in Fig. 2 indicate the negative

of the corresponding derivatives of the nuclear repulsive potential.

When UE(r) is defined by Eq. (9) with Za and Zb the full nuclear

charges, the location of the equilibrium internuclear distance is

far enough to the right in Fig. 2 (for instance, at point "B") to

yield only shielding contributions, as shown by Eqs. (10-14). However,

the successive derivatives show a steady outward progression of the

boundary between the shielding and antishielding regions. This tends

to quench the shielding contributions, and the effect is accentuated

as re increases.

The way in which antishielding enters when the effective nuclear

charges are reduced may also be understood from Fig. 2. If the

electronic density is regarded as the sum of various orbital distri-

butions, 20 these give additive contributions in Eqs. (11-14). For

each orbital the derivative curves are expected to be qualitatively

similar to Fig. 2. Since inner shell orbitals have their peak density

at small r, for them the location of r e is well to the right side of

the curves, as indicated by the point "C" in Fig. 2. For "larger"
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orbitals the position of re moves to the left; thus, re might be near

the point "A" for the valence orbitals. Consider first the quadratic

force constant. Since the curve near "C" has practically reached

the limiting form of Eq. (15), the inner shell orbitals quite effect-

tively shield an equivalent amount of nuclear charge, whereas the

curve near "A" shows that the valence orbitals may contribute relatively

little shielding. This is evidently the situation in the hydrides

and diatomic alkali metal molecules, whose harmonic force constants

are fairly well approximated by simply ignoring the valence orbitals. 20

Although point "A" will usually not lie so far to the left in other

molecules, the valence orbitals will still shield much lees than their

share of the nuclear charge. In the same way, the general shape of

the higher derivative curves near "A" is seen to account for the

tendency of the valence orbitals to become antishielding in the anhar-

monic constants.
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Table I. Parameters for Badger's Rule. a

aii dij ij

H H 1.26 0.025 0.025
H 1 1.66 0.30 0,36
H 2 1.84 0.38 0.58
H 3 1.98 0.49 0.65
H 4 2.03 0.51 0.80
H 5 2.03 0.25 0.81
1 1 1.91 0.68 0.68
1 2 2.28 0,74 0.92
1 3 2.35 0.85 1.02
1 4 2033 0.68 1.12
1 5 2.50 0.97 1.22
2 2 2.41 1.18 1.18
2 3 2.52 1.02 1.28
2 4 2.61 1.28 1.40
2 5 2.60 0.84 1.24
3 3 2,58 1.41 1.35
3 4 2.66 0,86 1.48
3 5 2.75 1,14 1.55
4 4 2.85 1.62 1.62
4 5 2.76 1,25 1.51

H 3T 1.85 0.15 0.53
H 4T 1.84 0.61 0.61
H 5T 1.78 0.97 0.62
1 3T 2.08 1.14 0.97
1 4T 2.34 1.17 1.08

aUnits employed in the tables and equations of this paper are: r e , aid , d
Angstrom units; F2, 105 dynes am 1 ; 	 g mole-1 ; cue , am-1; F3, 1013

dynes am-2  F4, 1021 dynes am-3



Table II, Parameters for exponential funotions. a

i j F2

aij
-F3 F4 F2

bij
-F

3 F4

H 1 1.54 1.58 1.57 0.64 0.48 0.43
H 2 1.80 1.85 1.77 0.69 0.59 0.47
H 3 1.98 2.01 1.81 0.95 0.74 0.80
H 4 2.08 2.07 2.04 0.96 0.74 0.66
H 5 2.06 2.12 2.04 0.78 0.90 0.69
1 1 1.73 1.78 1.61 0.47 0.39 0.36
1 2 2.02 2.10 2.06 0.53 0.48 0.41
1 3 2.15 2.26 2.08 0.60 0.55 0.34
1 4 2.36 2.41 2.18 0.76 0.57 0.32
1 5 2.47 2.48 2.54 0.87 0.68 0.68
2 2 2.40 2.48 2.35 0.70 0.61 0.46
2 3 2.54 2.57 2.53 0.94 0.72 0.70
2 4 2.63 2.70 2.64 0.96 0.73 0.51
2 5 2,71 2.81 2.60 1.09 1.09 1.30
3 3 2.70 2.77 2.66 0.75 0,89 1.06
3 4 2.66 2.76 0.98 1.19
3 5 2.73 2.83 0.88 1,05
4 4 2.85 2.95 0.94 0.70
4 5 2,84 2.93 1.09 0.78

H 3T 1.82 1.92 1.04 0.86
H 4T 1.59 0.75
H ST 1.77 0.44
1 3T 1.98 0044
1 4T 2.15 0.52

a Defined by: r
e = aij	bij log10 [(-1) nFil l for n = 2,3,4.



Table III. Parameters for inverse power funotions. 4

aij
	

dij
j 	 F2 	 -F3 	 F4
	 F2 	 -F3 	 F4

H 1 1.66 1.68 1.61 0.30 0.32 0.28

1 1 1.91 1.98 2.01 0.68 0.61 0.39

2 2 2.41 2.50 2.41 1.18 1.08 0.99

aDefined by: re = dij + (ai -dij )[(.4)nFri ) -1/(n+1 )

for n = 2,3,4.



Table IV. 	 Cubic force constants for bond

stretching in polyatomic molecules

Bond Molecule Bond
Length

-F3, Cubic Constant
Expt. 	 Predicted

CH CH4 1.09 10 10
HCN 1.06 12 12
DCN 1.06 11 12
HCCH 1.06 11 12
DCCD 1.06 11 12

CC HCCH 1.20 32 30
DCCD 1.20 33 30

CN HCN 1.16 44 39

DCN 1.16 42 39

CO 02 1.16 38.5 39
OCS 1.16 36 39

CS CS2 1.55 14 14

OCS 1.55 16 14

CSe OCSe 1.71 10 10

CBr BrCN 1.79 6.8 7.2

CI ICN 1.99 4.9 5.5

OH H20 0.96 19.8 19.5

NO 1N240 1.19 33 33

N15N140 1.19 33 33

NN 1N42 0 1.13 39 46

N15N140 1.13 44 46



Table V. 	 Variation of electronic contributions. a

Molecule re n=2 n=3 1-1=4

Za = Zb = 1

Liz 2.672 0.047 0.50 0.52
Na2 3.079 0.101 0.51 0.25
K2 3.923 0.278 0.62 0.99

L1H 1.595 -0.111 0.42 0.54
NaH 1.887 0.017 0.59 0.69
KH 2.244 0.279 0.63 0.62
RbH 2.367 0.320 0.67 0.78
CsH 2.494 0.367 0.71 0.89

Za = Zb = 5

N2 1.094 -2.83 -0.33 0.29
PN 1.491 -2.42 -0.05 0.36
P2 1.893 -2.03 0.01 0.47

Za = Zb = 6
02 1.207 -7.02 -1.64 -0.38
SO 1.493 -5.30 -0.90 -0.03
S2 1.889 -3.88 -0.54 0.24
Se2 2.157 -3.57 -0.45 0.10

Za m 1$ Zb m 7
HP 0.917 -3.10 -0.98 -0.42
HC1 1.275 -2.02 -0.28 0.18
HBr 1.414 -1.78 -0.13 0.23
HI 1.604 -1.63 0.06 0.45

aThe tabulated quantity is onuE/61,,n)e/(anw6rn)e.
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Captions for Figures

Fig. 1 	 Comparison of quadratic, cubic, and quartia force

constants as functions of bond length. The straight

line relations are obtained from Table II. For some

of the families the curves (shown dot-dashed) corre-

sponding to Table III are also plotted. Empty circles

indicate excited electronic states or ionic states;

full ones, ground states.

Fig. 2 	 Derivatives of the electronic energy as functions of

internuclear distance. The minus and plus signs

denote shielding and antishielding regions, respectively.

The ordinates of the various curves are not to the same

scale.
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Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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