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I. ALGEBRA OF CURRENTS -~ EACKGROUND

In the first part of these lectures we will be concerned with a
review of the main ideas of the algebra of currents. Probably most of
you are already familiar with them, as I understand that the subJect has
been treated in previous lectures, but perhaps that is not too bad. The
subject of current algebras was ignored for'many years, and lately it is
receiving probably too much attention. It has to be emphasized that many
of the underlying ideas are highly tentative, and could well be wrong;
we will arrange them in a hierarchy such that the first are very simple
and almost certainly true, and then afterwards one can accept each
assumption without accepting the successive ones.

We start with the isotopic spin operators. As far as the strong

interactions are concerned, we can think of them as constants of motionm,

obeying the following commutation rules:

However, we can also describe (or define) the isotopic spin in
another way because of the principle of the conserved vector current
(cve). )

Let's consider the hadronic weak current, which is coupled to the

lepton pairs, We may write it as

+ .0 (2)

Jhadronic HAaT=1, A¥=0) J(AI=1/2, OY/0 = +1)
x (0 + (07

where the dots refer to other terms which may be present, but which in
many cases we can show to be much smaller than the first two, if they

are present at all,
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We can further split each term in a vector and axial vector part,

i.e,,

adroni
'ﬁ; onic e e e (3)

AY=0) + A(AY:O) +
0

= v((z AY=1) + AéAY:l)

(
Va
Now the idea of CVC is that the first term is equal to the isotopic spin
raising current, and we can then define Il'+ 11, = f ngX=O) . I
the same manner we have for the electromagnetic current JZ? = JSa + isoscalar,

and we can define 13 t0 be the integral over space of the isovector time

em
component of Ja :

3
I, = [J5,a% . (&)

We see then that we can define the isospin operators in terms of quantities
which, at least in the lowest order of electricity and weak Interactioms,
are measurable, as an alternative to defining them as a set of good quantum
numbers of strong interactions, obeying the commutation rules (1),

This suggests that perhaps also ﬁhe other portions of the wvector
weak current (and even axial current) have charge operators, l.e., space
integrals of their time components, obeying some simple set of commutation
rules, However, as we know very well, these charges are not conserved, so
that they are not independent of time; we can talk only about equal time
commtation relations, Only these can be simple, as we don't know how to
handle different time commutation rules without some knowledge of dynanics,

The simplest possibility, as suggested five years ago,e) was that
this algebra should close, after adding to the 1sospin generators the
AL = 1/2 strangeness~-changing vector charges, with the inclusion of the

smallest possible number of additional operators. In this way one is led
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to the algebra of SU(3), which consists of eight charges F; (1 = 1,....8)

obeying the equal time commutation rules

[Fi, FJ] = i fijk F, . (5)

Fl, F2, F, are identified with the isospin genérators, F_ with J5/2 Y

3 8
(Y is the hypercharge) and the others are operatdrs with AT = 1/2 and
&Y = i;.‘ It may well be that these assumptions have to be still modified,
in order to include in a larger algebra some possible new terms, which
might be present in the vector currents; dbut, since at present there is
no particular evidence for them, let us stick to SU(3) and go on to
| camplete the algebraic structure of the theory by incorporating also the
axial currents. |

Thus wé putAin also charges for the axial vector currents and
require them to obey the commutation rules of a simple, relatively small
algebra., The simplest possibilitya’s) is to add eight axial charges

Fis, with the following commutation relations:

5 5
7y, Fool = 1855 Fy R

F.

5 5
[Fi’Fjjz k ’

i fijk
such that the operators 1/2(Fi t.FiS) generate two commuting SU(3)
algebras, the so-called chiral SU(3) ® SU(3).

At this point we can try the notion of combining the stréngeness
preserving and changing charge operators, to make something which has
the same form and strength as the weak vector and axial charges for
leptons, so as to give meaning to the concept of universality of weak

interactions between leptons and hadrons.u’s)




To this aim, we Observe that the charge operators
(Fl + 1 F2) cos & + (Fh +1 FS) sin @ + (Fl5 + 1 F25) cos ©
+(R°+1F°) stne (7)

together with a third operator, obey the commutation rule of an angular

momentum, exactly in the same way as does the lepton operator:

D' o= S’ 3lv (L) e w v () ] (e)
together with L~ = (L)' and a third one.

By assuming the form (7) for hadron currents, Cabibbos) was able
to explain consistently the relative rates of the hyperon and meson
leptonic decays with an angle 6 < 150.

However, a comparison with more accurate data will provide in the
future not onl& a check of the unlversality principle, but also of the
idea that equal time commutators of the charges correspond to the
algebra of SU(3), and of the assumption that the eight baryon ground
states approximately form an eight-dimensional irreducible representation
of the same algebra.. We see that we are in fact testing simultaneously
many independent assumptions, but it is comfortable that so far things
seem to work quite well.

So much for the commutation ruies of the charges. ILet us go on
and make further assumptions on the equal time commutation rules of
densities,

let's use .?ia(x,t) (=1, .. .4 1=1,...8) for the

vector currents, and 3&o§(5’t) for the corresponding axial currents.
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If we consider the equal time commutator, say, of two vector time compo-
nents, microcausality and the requirement of getting Eq. (5) after inte-

gration over all the space variables enable us to write

£‘¥io(3£’t)’ 330(35',13)] = 1 fijk }'ko(gg,t) B(x - x') + . .. (9)

Here the dots stand for termsvccntaining higher derivatives of 6-functions,6)
about which we do not know anything but that only a finite number of them
is allowed in order to have a local operator.

By including also the axial densltles we have further

[70(x1), o @8] = 18, £ @) 8x-x) ... , (20
[Jios(f,t), 3305(3;',t)] = 1f o) 8x-x")+. .., (1)

which correspond to SU(3) @ SU(3) for the charges. If we ignore the
dots, we have an algebra of SU(3) @ SU(3) at every point of space at
the same tiﬁe; that is, every granule of space carries its own

SU(3) ® su(3).

Now let us make the drastic assumption that there is nothing in
the place of the dots of the previous equations., This 1s in fact a much
stronger assumption, which gives the possibility of making predictions
about the matrix elements of currents at any momentum transfer, instead
of confining them only to the zero spatial momentum transfer situation,
as is the case for charges.

We may argue that this assumption is not in contradiction at
least with the basic principles of field theory, relativity, and

causality, by explicitly constructing a non-trivial relativistically




covariant field theoretical model, i.e., the "lagrangian quark model",
in which it holds,

We introduce a triplet of spin 1/2 quarks, corresponding to the
basic three-dimensional SU(3) representation, together with the corres-

ponding triplet of antiquarks, We can write down a Iagrangian of the form
£ = g (7 + mo) q + interaction

from which we can deduce the currents

Fiog = 12 T 7y
’ A
5 - i
and CFg =l T Y759 .

By using the canonical anti-commutation rules for q fields, we can
compute, at least formally, the commutation relations of these currents,
which turn out to be free from gradient terms,

It is important to stress that these commutation relations hold
true, no matter how badly broken the symmetry is (fo:é instance, by mass
terms): SU(3) symmetry and the validity of equal time commutation rela-
tions are two quite independent things.

Anyway, as we said, the non-appearance of gradient terms in the
theory may be only formally true, in the sense that we obtain this result
if we do not care about the strongly singular nature of the commutators
involved, Reéently , Johnson and Low at MIT7) have been looking at this
problem, They take a simple theory of quarks interacting with & scalar

neutral boson, and compute in power series the commutators of currents




to see whether the results they get are the same as those which can be
formally derived in the quark model. Whereas in general they find funny
extra terms, for the time components of the vector and axial vector
~currents they show a consistency with our assumption. Things are much
more complicated with vector meson interaction and they are not sure at

present whether the last conclusions are to be modified.

II. THE FRAME P = o

We will see that these commitation relations are best used by
sandwiching them between states of infinite momentum along, say, the
z-divection,’9)

This looks like a non-covariant procedure, but in fact we intro-
duced from the beginning a non-covariant element in the theory, by con-
sidering the simplest kind of commutators of two space-~like separated
local operators, i;e,, equal time commutators. This choice selects a

particular Lorentz frame in which it is a physically sensible question

to ask what is the momentum of the states between which the commutators
are to be sandwiched, and we may expect that the results are quite

different when the momenta are near zero or near infinity. In fact,

there are a number of unpleasant features connected with the use of
states with finite momentum. For the sake of simplicity, let us consider
only commutators of charges, sandwiched between states of total space

momentum zero and masses M and M':

(B = oM |[] #, a%x, [ &, ax]| ' = 0) :




We can insert a complete set of intermediate states having total space
momentum equal to zero and masses M"; the four momentum transfers to the
intermediate states are k'S = = (M' - M")% and k° = - (M" - ¥)°,
Now the equal time commtator can be considered as the energy inte-~
gral of the imaginary part of a suitable scattering amplitude as shown in

the following diagram:

Kt 'y
§ =3
+ crossed diagram
Ml
T M
t

and in the case of P = O one very annoying thing is that the four
momentun transfer to each intermediate state depends on its mass. This
amounts in dispersion language to doing a dispersion integral not in the
relativistic variable s with fixed external masses, but in the energy
variable with the space momentum fixed and variable masses, which is
well known to be a disgusting way to do dispersion theo;'y.

Moreover, if the four-momentum transfer depends on the mass
differences then we can get, for certain values of masses of Inter-
mediate states, resonances in the channel of the currents. For instance,

in the case of vector currents, we could get k2

or k'° equal to the
square of the p mass, and this could terribly enhance the continuum
contribution in that region, seriously interfering with the program of
approximating the sum over intermediate states with few resonant states,

a thing we will often like to do for practical purposes of calculation,
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On the contrary, when we sandwich the commutators between states of
infinite momentum, the situation changes entirely.

First of all, by going to P, = @, we can make the four-momentum
transfers k° and k'° vanish without regard to the masses of the inter-
mediate states (in the case of the commutators of particular Fourier
components of the currents, they go to fixed limits), and this corresponds
in the dispefsion language to having a dispersion integral in the s
varisble with fixed extermal massés, which is a much more sensible way of
doing things.

Also from the point of view of comparison with the experiments, it
is much easier to measure things with fixed K2 and k'e, and this is
another advantage, though rather minor, of taking PZ = w, Far more
important is the problem of convergence of the sum rules Obtained from the

commutators., At PZ = 00 we get sum rules of the typical forms’g)

[ ds Im A(s, t; k2, k') = £(t) ,

and from Reggeism in the crossed channel we know the asymptotic behavior
of Tm A in the varlable s, thus having an idea of the convergence of
the sum rule. On the other hand, if k° and k'S are not fixed, we have
no idea whatsoever what the convergence is,

Another very crucial point is that, at finite momentum, an impor-

tant contribution to the sum over intermediate states 1s given by

diagrams of the following type:

A

Dz
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These z-diagrams correspond to complicated three-particle 1ntermediate
states, where the initial current creates a pair and one member of the
pair ammihilates with the initial particle to give the final current.

On the contrary, at infinite momentum we get rid of all these diagrams

as well as all disconnected pair diagrams, like

»»»«-<:::>a-~—-

S —— AT

and the reason is that they all correspond to intermediate states of
infinite mass. In fact, in the z-diagrams the pair has to have zero or
finite total space momentum since it is created by the current from the
vacuum, but each mémber of the pair has infinite momentum, thus resulting
in a state of infinite mass; in the completely disconnected diagrams, the
relative momentum betwéen the initial particle and the pair is infinite
and we end up again with an intermediate state of infinite mass,

Now, whether these infinite mass states contribute or not to the
relations we get is a question of whether the dispersion relations have
any subtractions.

We assume explicitly that there are no subtractions and in this
way we get rid of all these complicated intermediate states, and we are
left only with genuine intermediate states in the s-channel,

Finally we mention another very important feature of the Pz = 0
frame; that is, the possibility of using for the axial vector current
the PCAC hypothesis to approximate the integral of the fourth component

of the axial current with a one pion state. This has meaning only when




we are dealing with small and fixed k> and k'2, so that they are
reasonably close to the pion pole, On the other hand, at .g = O there
is no justification of such an approximation since k2 and k'2 get
bigger and bigger with the mass of the intermediate states., Iet's
sumarize finally the advantages of the P = co frame:

i) Only things which are easily measurable appear;

ii) We have relations whose convergence can be estimated by Reggeism;
iii) No variations of ¥° and k'° resulting in non-appearance of
unwanted resonances in the current channel;

iv) No contribution from discomnected or semi-disconnected graphs
(z-diagrams);

v) It is possible to use PCAC for axial vector current.

III. EXPERDMENTAL TESTS
We want to discuss now what are the experimental tests of all the
previous assumptions., To begin with, we consider the commutation rela-
tions of the axiasl charges with themselves, Eq. (6), sandwiched between
nucleon states taken at PZ - 0, Since we are dealing with space inte-

2 2

grals, we have in this special case = k'™ = 0, Inserting a complete

set of intermediate states in the commutator, and extracting the nucleon

pole, we end up with the Adler-Weisberger relation:lo)

1 = 62+ [ as £(s) [ST(G) - ci_orwj:ﬁ(s)] o, (13)

where G, is the axial neutron B-decay coupling comstant, £(s) is a

known kinematical factor, and dforward( ) (¢ orward(s)) is the forward
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differential cross section for the scattering vV + D e + B

(V+p et +8'), PBandp' being any possible hadron final state.
Equation (13) is a prefectly rigorous consequence of the considered com-
mutation relations,

In this form, the Adler-Weisberger relation is not very useful,
because of the rather poor experimentsl information on neutrino cross
sections. On the other hand, it is possible to put it in a more directly
useful form by using the PCAC hypothesis, in which the neutrino (anti-
bneutrino) forward cross section is replaced by a n'p (x p) total cross

section., This corresponds to the approximate identity

NS

r wac
N v

We get then:

1 = GA2 + [ ds g(s) [ctztal(s) - Gt?tal(S)J

TP TP

’ (1)

where again g(s) is a known kinematic factor, including the propor-
tionality constant which appears in the Goldberger-Treiman relation.

This formula has been successfully compared with data and it seems
to work very well, We want however to emphasize that again, as in the
case of hyperon leptonic decays, actually we are checking more than ome
assumption, so that the agreement might be not too significant. However,
let us assume the optimistic point of view that Eq. (14) is indeed a proof

of the validity both of the algebra of charges and of the PCAC.
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Iet us go on now to the algebra of the densities. As a generali-
zation of the previous procedure, we sandwich the commutators of the

Fourier transforms of densities

ik - x

Fs) = fax e #(2,0)

taken at a fixed momentum k , perpendicular to the z-direction, between
states of finite Px and Py and infinite PZ; i.e,, we consider the matrix

elements

(B, =, B, P |[Fy(k)), Py(k))]| P, = o, B, P)

where

v _ . .
EorE R R '

In dispersion language, this gives rise to a relation of the typical

form Eq. (12), where k° = kl?’

by analyticity we can extend the values of the three independent

k% = k%, end t=-(k, + k)%, and
variables to any value. Needless to say, the set of relations that can
be derivéd in this way 1s far richer than what can be obtained by the
commutation relations of charges. The only question is whether these
relations can be actually compared with the presently existing experi-
mental information,

For instance, consider the commutator of two vector currents
sandwiched between nucleon states. What we get is an equality between
an integral over energy of a bilinear form in photoproduction amplitudes
(or, alternatively, an integral of the imaginary part of a Compton scat-

tering amplitude) and & nucleon vector current form factor, If we fix
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kK =k'® =0 and t £ 0, what is involved are the physical photoproduc-

tion amplitudes and we could obtain a whole set of relations for each t,
but nobody knows at present how to exploit them, because photoproduction
is a very complicated process as soon as one goes beyond the single pion
production. The simplest relation to be extracted from this set is the

one which was first given by Bjorkenl) and by Cabibbo and Redicati,2)

who consider the first moments of the isovector, vector currents.

This relation looks as follows:

v 2 ® (20, - o)
PPy s G + e L e )
T a MN 8 MN

2); is the mean square radius of the isovector Dirac form

vhere (r
1

factor, (pv

anom) is the isovector part of the anomalous nucleon

magnetic moment , 0"{/2’3/2 are the total photo-
production isovector cross sections in the I = 1/2, 3/2 channels, and
Mﬁ is the mass of the nucleon,

What can we say about this formula? We know the photoproduction
cross section fairly well up to S = 1500 MeV, which is not too far
above single pion production, and the conclusions depend very pmuch on
whether you are optimistic or pessimistic., Bjorken's conclusion was

the following: he writes Eq. (15) in the form

2 \' @
v 1 2 1 ds \')
() = 5 (g = -5 ]

2n” « Mﬁe s-MN

— (2 %/ og/e) . (15')
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The left-hand side is a very tiny number, but it has a definitely
known sign and the contribution from the lowest energy part of the photo-
production cross section turns out to be of the wrong sign; so he con-
cluded that this formula is not very good.

Cabibbo and Radicati came to the opposite conclusion by saying
that (uAV)2 and %—(re); are roughly equal and the contribution of
the integral is small. Anyiay, in order to make more conclusive state-
ments, we need more precise high energy data, and what is encouraging is
that in this region the most importemt contributions come from I = 1/2
resonances which might reverse the sign of the integral as it is given

by the low=-energy portion dominated by the N;S.

IV. GOING BEYOND SU(3) ® sU(3)
One can try to extend the chiral SU(3) @ SU(3) algebra by including
the space integrals of all the vector and axial vector components, and if

one evaluates the commutators following the formal quark model we intro-
duced before, one gets the c.hiral U(6) @ U(6) algebra. One may go even
further by introducing edditional currents, like scalar, pseudoscalar, and
tensor currents, which have never been seen but which might be there, and
one gets the compact U(12) algebra; i.e., the algebra of all the sixteen
Dirac matrices and the nine A-matrices,

However, if we follow the previous philosophy of taking matrix
elements at PZ = @, many of these operators have venishing matrix
elements between single particle states, and many others become equal.g’ls)

Iet us look at this point in more detail,
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We 1list the currents in the quark model and the behavior of their
matrix elements between single particle states at P = . (As Fubini
and I did, we call "good" the operators whose matrix elements do not

vanish, and "bad" the others.)

R 1 n "
S 1 qg BA, q & = bad
i PZ
P q-l' B 75 7\1 q = f).}— "pad"
) Z
. + | 1" 1t
V ¢ g 7\i qg = 1 good
identical
e o Na =1 "good"
+ 1 . "
q ax,y ?\i q = PZ bad
A : - q+ 7s ?\i q = 1 "good"
identical
g.+ GZ ?\i q ~ 1 "gOOd"
+ 1 0 "
q Gx,y 7\1 S bad

A
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T iq+ﬁax7\iq ~ 1 "go0d"
: identical
q‘l' 8 o_y 7\i qg ~ 1 "gOOd"
+ 0 "
-iqg B o& Ki q ~ 1 good
identical
q'l' B o_x 7\1 q ~ 1 “gOOd"
q+ B8 az 7\1 q -~ 1_31_:_ "had"
Z
q-l- B O_Z -}\i q ~ 'ﬁl—-' "had"
Z

From the preceding list, we see that by restricting ourselves to
V.and A currents, i.e., to the U(6) @ U(6) chiral algebra, we get at
P = tvo identical U(3)® U(3) containing two more operators with
respect to SU(3) ® SU(S),.the time component of the baryon current and
the axial vector analogue of it. On the other hand, the algebra of U(12)
reduces to the [U(6) ], algebra which is obtained from U(3) @ U(3) by
adjoining the "good" tensor current components.

Out of the whole set of commutation relations of the compact U(12),
we can pick commutators of three different types:
1) good-good commutators, They involve two good operators to give
another good one. We get from them sensible sum rules (in the way we
explained before), apart from the physical interpretation of tensor
currents which is still dubious,
2) pgood-bad commutators. The right-hand side is again a bad operator,
and since both members go to zero like l/Pz’ we can expect to extract

meaningful information from these rules when they converge.

s
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3) bad-bad commutators. These are quite awful things. Since the left-
hend side would go like 1/P° and the right-hand side is of the order of 1,
being the matrix element of a good operator, there must appear terribly
divergent integrals so that the rules we get look like /00 = 1, Nobody
has yet succeeded in giving any meaning to then,

As for the physical significance of the U(12) algebra, only the V
and A currents have been ciearly identified with measurable quantities in
weak and electromagnetic processes, For the S, P, and T currents, the
interpretation is at present highly tentative, For example, it could well
be that the S density appears as a part of the energy density, for instance
in the mass difference term. Another possibility is that they appear in
new interactions if they exist at all,

However, we can define these currents in still another waylu)
which perhaps is thé only wvay to relate them with physical observable
quantities. It could in fact be that they are local operators with a
very simple analytical structure, i.e., with as few singularities as
vossible and, if this is the case, their matrix elements are indirectly
connected with S-matrix elements in the sense that fhey are the least
singular solutions of linear homogeneous integral equations having as
coefficients the relevant on-shell S-matrix elements.

These matrix elements could even admit singlé pole approximations.
(for instance, we can have a partial conservation of the tensor curreﬁt)
50 that they would be related to scattering processes involving the

appropriate mesons,
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V. TRYING TO REPRESENT THE LOCAL U(3) @ U(3) ALGERRA

The advantages of considering the local chiral algebra commutation
rules, Egs. (9), (10), (11), sandwiched between states with P, =
have already been emphasized in the preceding sections.

I want to present now same further investigations which Dashen and
I have made at Caltechls) on the possibility of finding an infinite
dimensional :Eepresentation of the complete set of local commutators.

The motivations which mey give physical significance'to the problem
are the following. We started considering the U(3) & U(3) algebra of
vector and axial vector charges, and one may ask whether it is possible
to use it as an approximate symmetry for hadrons, i,e., whether hadrons
cé.n be described approximately with irreducible or small reducible
representations of U(3) @ U(3) in the same way as we know it is true
for U(3).

The answer we get from experiment is that U(3) & U(3) cannot be
a symmetry in any accurate sense. In fact, we know from the Adler-
| Weisberger relation that the baryon octet and decimet do not form a
single irreducible U(3) X U(3) representation, because they are quite
strongly comnected through the axial charges to other states, mainly
resonances,

Meny peoplelé) however have looked at the question of what happens
if we consider them as a part of a reducible representation, that is if
we assume baryons to be a mixture of a small number of irreducible
U(3) x U(3) multiplets incorporating besides the N and N some other
higher resonances which are known to contribute to the Adler-Weisberger

sum rule,




R

This seems to work quite well, with the baryon ground states mixing
predominantly with a few excited states, those excited states presumably
mixing predominantly with the ground state and with some still higher
excited states, and so forth. The known electromagnetic and weak matrix
elements between the lowest baryon states can be fitted with an admixture
of U(3) X U(3) representations corresponding mathematically to three=-
qu#rk configurations.

We should like to describe in a unified way this presumably
infinite chain of representation mixings. This is why, instead of
. representing first the algebra of charges and then trying to extend it
to higher moments of the currents, we tried to represent at once the
whole local chiral algebra in an infinite dimensional space. The hope
is to find in this way an approximate model for hadrons depending on a
possibly small number of comtinuous parameters and giving a rough
description of the hadron spectrum and of its physical properties (form
factors, coupling constants, etc.).

Of course it is possible that this program cannot be accomplished
unless one builds up a complete relativistic theory of all the world,
but we feel it nevertheless interesting to investigate it and see if
this is the case,

In order to make the problem more precise, we have to consider
further the general angular momentum properties of the matrix elements
of the currents taken at Pz = 0,

Since we will deal with matrix elements between eigenstates of
total momentum, it is natural to consider in the place of Egs. (9), (10),
(11), their Fourier transforms taken, as we did before, at a space momen-

tum perpendicular to the z-direction; i.e.,




Py ), Fy(6D] = L2, Bl KD (26)
[Fi( )) F (k_l_)] = 1f i3k k. (k + B‘L) ) (17)
[F;LSQ?L)’ F (k.L)] = 1 fijk Fk(}gl + k) . (18)

These operators wlll be sandwiched between states of the following
type:

IN, B, P =00, P Py)

where h is the helicity (the z-component of total angular momentum) and
N describes all the possible additional quantum numbers we need to
characterize the state.

A very important feature of the resulting matrix elements

(', n', B} IFi(k)l N, h, P

.L) (with k

=17 .L MJ.)

is that they do not depend on the average momentum —%‘- (B Lt v‘J.::l) perpen-
dicular to the z-direction. We will not demonstrate it in general but

we will check it later In a particular example, This is quite interesting
because it means that at infinite momentum we don't need momentum indices
to label the states, the difference of momenta k, being already in the
argument of the operators.

This is very analogous to the situation one runs into in the very
primitive commitation relations in non-relativistic quantum meéha.nics,
vhen doing the atomic sum rules, In fact, in this case one does not have
to deal with the gross state of the motion of the atom, which is held
fixed,but only with relative momenta., What is not similar to non-

relativistic atomic physics 1is that here we have to match up the




commtation relations with relativistic angular momentum properties,

which guarantee that we are dealing with particles of definite spin.

This is very difficult, and ha.‘s prevented us up to now from finding a

complete solution of the problém. We have, however, some preliminary

results which hold in general and whose content we are going to discuss.
The first thing»to do is to define 9, the spin operator at

Pz = 0, and this will be done in the following way: we define

4, = J, = b (the helicity operator) s

while gx and gy have non-vanishing matrix elements only between
states with N = N' and equal to the usual angular momentum matrix
elements appropriste to the spin of the state N,

To deduce the angular momentum properties of F i(;g .L) , it is most

useful to express the matrix elements
1 1
(N n' [F (k)] ¥n)
in terms of matrix elements of currents in the Breit frame. We start

from

(vu' |F (k)| m)

rPop=

k
= (N'n', P! = s P! =0, Pz.—.co ]%O(O)I Yh, P = 5 P =0, Pz..oo)

(19)

where we have taken k, in the x-direction, and P = - P = =~ g— .

To go to the Breit frame, we apply the relevent pure Lorentz trans-

formation G, ending up with




Dl -

(N'n' lc™? ¢ #,,(0) ¢t gl Th) .

Now we have to express the states G |[N'h') and G |Fh) in terms of
helicity states in the Breit frame, It is easily shownl7) that G lNh)

can be obtained by applying a suitable spin rotation, depending on the

masses of the states and the modulus of kl’ to
z R aaad
Sk 4
IN, n, Px =-3 PZ ===, Py = 0) where 32/2 is the transformed

z-momentum and the same applies to G |N'h'), in general with a different
£
rotation, and with P =+ -F .
Apart from a factor which includes the normalization of the states

and the relevant lorentz contraction factor y, we may write
cg,(0) 6t « % (0) + (0)
io io iz °

At this point we have the matrix elements of a cambination of the
current components between helicity eigenstates in the Breit frame with
momente, along a certain direction different from the z-direction, which,
in the case of equal masses, is the x~direction. We then insert in the
matrix element a further rotation around the y-axis to align the momenta
along the x-axis.

The result of all these operations is the following:

(N'n' IFi('&.L)! N} = n(N', n', P’;=2)P§=O:

-1 ! i
P;:Ole 9Y¢ Yi(O) eyyﬁlN,h,Px=--g-,P =0, P = 0)

(20)




where 1 1s the overall factor mentioned before and is given by

cec'

=2 ey ’

¢ and €' being the energies in the Breit frame; g/2 is the space momen=-
tum of each state in the same frame; ¢ and @' are the total angles of

the rotations performed,

M - M k
¢ = arc tan i + arc tan T R
M' - k
' -— -
g' = arc tan = arc tan 4 ’

and finally

Yi(‘O)' = 310(0) + cos © 3iz(o) - sin 6 3ix(o)

where @ is the angle between the original Breit frame momentum of N' and
the x-direction, such that cos 6 = k/q.

In the Breit frame the properties of the matrix elements of Zi(O)
are well-known and expressible in terms of the'analogues of the famous
Sachs form factors G, and G,.. Moreover, by inverting Eq. (20), they are

E M
equal to the matrix elements

+i ! -i
(N'n' e 4 Fi(k) e 93’¢l Nh)

and these are thus objects with known angular momentum behavior; most

important, we have for these matrix elements the property

. 93’¢[ Nh) . (21)

i 1
A, =0, +1 for (N'n' le 9Y¢ Fi(k) e

We can also find, for fixed N' and N, the following properties of

(N'n' [Fy(k )| mm):
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i) The part odd in }v{-L has AQZ odd, while the even part has AQZ

even,

-i 9yﬂ -i 9y“

ii) It is inveriant under £ o and T e where & and
T are the parity and time-reversal operators respectively.

iii) For N = N', so that the Breit frame momentum g is equal to k,

a multipole expansion shows that the coefficlent of k'j contains only
IAQI =0,2,...J3 forjeven, and IAql =1,2, ... 3%k for

j odd (only odd ]/_\ql for odd j when the current is conserved).

In the case of F, (k ), the only difference is that it is odd
under # e-19J , and the coefficient of k‘j contains only
[AQ}I =1,2,3, ... 3+ for j even and IA?I =1,3, «..J

N VA
for j odd.

An interesting thing to note is that for degenerate states N = N'
we can make simple statements about [A 2[ propertles and not only sbout Ag.,
as in the general case; and the reason is that in this case we have only
"allowed transitions" with the lAgl properties mentioned, while in the
general case, as we put in higher e;d higher powers of (M - M'), we get
higher and highe_r "forbidden" transitions in addition to the allowed ones.

We want to give now two illustrations which will clarify how all
such things work, Let us first consider the very simple example of the
matrix element of Fi(a15 .L) taken between two states with equal masses and
spin and parity l/ é+ at Pz = ®®, Then we have in terms of Dirac-Paulil

form factors:

(1+a) F, (l+a
< lT— LFl(k)""éﬁ(k)BakJ —_ﬁ——l >
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where |U) and |U') are Dirac spinors. Since |U) 1s such that

(1 + BZ)/2 Uy = |U), we may write this matrix element in the form
, 2y _ k 2
(U P (&7) - 10,z Pk Il O) .

Now if we want to evaluate the matrix element (21) appropriate to
+1i
the Breit frame, we have to insert the matrices e y , thus obtaining

N(k) <' U> s

where N(k) is the normalization factor pertaining to the Breit frame,

M k
[Fl -1 o, F

-ioc arctan X
€ oM Fol

i,e.,
Nk) = 1 > .
k
1+ Zag
By noting that
-ig_ arctan X
e Y M -——£——E (L -1 % %] s
k
P

we immediately get

Z;i‘é <U' l{[Fl i :32 Fol-io, 2 [+ FQJ}’ U>
4

which is the well-known Sachs form of the current, provided we identify

in the usual manner
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2 k2 2 -1
GE(k ) = (Fl - ;—M-é- F2> (1 +k /1+Mz) ,
-1
G(E°) = (F, + F,) (1 + K°/mf) i

So we see that by considering the matrix elements (21), in this simple
case we found the form of the current which is appropriate to the Breit
system and which has well-defined angular momentum properties, Moreover,
 this example clearly shows that the matrix elements of the currents at
PZ = 00 do not depend on the average transverse momentum,

let us look at another illustration of the general angular momen=-
tum properties of the current matrix elements that we listed before.

Now we will choose the case of a system which is intrinsically nom=-
relativistic, in the sense that the interesting part of the spectrum,
which saturates the commutation rules of our algebra, has a level spacing
which is small compared with the mass of the system. This is true for
atoms, for nuclei, and it is also very roughly true for baryoms, but it
is not so for mesons.

In this case (M' - M) << (M' + M); a situation in which one,
for instance, ignores the Dirac magnetic moment as compared with the
anomalous one, and also the very complicated "Dirac" effects in the
matrix elements, which we would have for general spins.

In this approximation, let us consider instead of equal time
commutators taken at PZ = 00, commutators at a lightlike interval
between states approximately at rest, This is obtained simply by a pure
Lorentz transformation from PZ = 00 10 rest, provided the mass

differences are negligible,
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What we pick up is the following:

+iw1?:l‘ X 3
Fi(k) = [ [&(xyz,2) + &, (xyz,2)] e a7x (22)
and this 1s the same as
+ik - x
J e iz [ o(xv2,0) + & (xyz,0)] ez o L a>x ,

vhere H is the energy operator. Noting that for our essentially non-
relativistic system the energy is approximately equal to the mass, what
we finally get by sandwiching these operators between two states with

masses M and M' is
et [F, () my = fe7AE o
(M {19, (2,0) + &,(x,001] m) &x . (29)

This clearly shows why we have such complicated angular momentum
properties for these matrix elements; the reason being that in addition
to charge and current densities and the eigl‘ & factor, we haveban
extra retardation factor e-iAMz which introduces an amount of
z-dependence that depends on the mass differences,

To evaluate the matrix‘element (21) in this case, we have to per-
form a rotation of an angle @' =@ = arcten AM/k around the y-axis (the rest of
each rotation vanishing, since k/(MiM') = 0), and we end up with an

overall exponential factor e-ix '§ +k ; l.e., we get
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+i (}y¢ -i 9y¢

(n'M' e Fi('&_L) e | ™ = fdgx e

ix\/AN?+k2

(WM |[F (x,0) + cos § 7,(x,0) + sing F (x,00]] @) . (24)

From this it is clear that the A 9}: “selection rule comes now
entirely from the current indices, so that we have 4§ =0, #1;
the exponential factor has A9x = 0, The multipole expansion proper-
ties and parity and time-reversal properties of the matrix element are
all easily read off from thls expression,

The sum rules that can be obtained in this way differ from the
usual sum rules used in atomic and nuclear physics in tﬁat , first of
all these are supposed to be exact in the strong interaction, and
secondly, because of the presence of the retardation factor these rules
are evaluated at fixed four-momentum transfer = +k2 , while in
ordinary theoretical atomic physics one deals with momentum transfers
depending on the masses. And the price for that is that the angular
properties are now somewhat more complicated.

Since the Hamiltonian is just the time translation operator, we

can expand Eq, (23) in the following way:
-1t & n ikx
' )l my -z - L g e
n ° ,

(W'h 12,,(x,0) + ,(x,0)| ) & : (25)
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To have a concrete example, let us specialize this formula to the case
of a single non-relativistic quark in a potential whose energy is given
by

2
= B_
M const, + = + V(x) .

Now it is very easy to write down the currents for this object in

such a way that they almost satisfy the relativistic commutation rules;

i.e.,
A n n n ik, 6 . x .
i =1 a Z wl
Fik) = = z L__}_n‘ o (3 e 1+H1 (26)

where z and X are now the Heisenberg operators for the location of the
particle, %i are the usual SU(3) matrices and inside the parentheses
there is the sum of the charge and of the current density.

The reason why this is only approximately a representation of the
local algebra is that, apart from corrections from coordinate-velocity
commutators, the left-hand side of Eq. (26) is just the operator

ei}ﬁ_{_' »}ﬁ(to)

A,

=

2
(where t, is defined to be such that z(to) = -to), by which the algebra
is trivially obeyed. Quantum mechanically, the difficulty is that one
has to neglect the order inbwhich z and z appear. However, this intro-
duces only corrections of fairly high order in (v/c) in the commtation
rules.

As a final remark, we note that for the axial vector charges, in

this approximation we have
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(vnt [r50) my = fadx By |z 5(x,0) + #_°(x,0)] m)
i io iz

and this has the features we have learned from the application of the
Adler-Weisberger relation. Indeed, the retardation factor "1z
allows the axial charges to couple the nucleon to states with higher
spins, because every power of AM introduces one more power of z which
brings one more unit of Ag into the transition. In terms of pion
coupling, this is equivalent to saying that the pion couples the nucleon

to higher spin resonances through its orbital angular momentum,




1.

10.

11,
12,
13,
1k,
15,
16,

17.

3%

REFERENCES

S. Gershtein and Ya. B. Zeldovich, JETP 2, 576 (1956); R. P, Feynman
and M. Gell-Mann, Phys. Rev, 109, 129 (1958).

Gell-Mann, Phys. Rev. 125, 1067 (1962).

Gell-Mann, Physics 1, 63 (1964).

Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).

Cabibbo, Phys. Rev. Letters 10, 531 (1963).

Schwinger, Phys. Rev. Letters 3, 296 (1959).

Johnson and F, Low, (to be published).

Fubini and G. Furlan, Physics 4, 229 (1965).

Dashen and M. Gell-Mann, reported at the Coral Gables Conference
(1966), CALT-68-65,

L. Adler, Phys. Rev, Letters 14, 1051 (1965); W. I. Welsberger,
Phys. Rev. letters 14, 1047 (1965).

D. Bjorken, (to be published).

Cabibbo and L. A, Radicati , Physics letters 19, 697 (1966).
Fubini, G. Segré, and J. Walecka, (to be published).

Dashen and S, Fréutschi, (to be published).

Dashen and M, Gell-Mann, Phys. Rev. letters (to pe published).
Gatto, L. Maiani, and G. Preparata, Phys. Rev. Letters 10, 377
(1966); H. Harari, Phys. Rev. Letters 16, 964 (1966); I. S. Gerstein
and B, W, Lee, (to be published).

Durand, P. DeCelles, and R, Marr, Phys. Rev. 126, 1882 (1962).




-

LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
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Commission, or employee of such contractor prepares, disseminates, or

provides access to, any information pursuant to his employment or

contract with the Commission, or his employment with such contractor.




