

Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications

Presented by: Dave Lucero, Director Alternative Energy Storage

September 22, 2010

- Background
- Industry initiatives
- Technology
- Energy Storage Market
- EaglePicher initiatives
- Summary

EaglePicher (EPT) Business Units

EaglePicher Technologies, LLC

Randy Moore, President


Aerospace Systems

Satellites Aircraft Commercial Alternative Energy

Defense Systems

Missiles Infantry Support

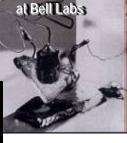
Medical Power Implantable Devices

EPT Profile

Leader in Batteries, Battery Chargers & Energetic Devices for Defense, Space, Commercial, and Medical Applications

- HQ in Joplin, Missouri
- 11 Plants
 - Joplin, Missouri
 - Seneca, Missouri
 - ➢ Pittsburg, Kansas
 - Plano, Texas
 - ➤ Vancouver, B.C.
 - Rothenbach, Germany (JV)
- Expertise in >25 Chemistries

Headquarters - Joplin, Missouri


Trusted Power + Reliable Power + Innovative Power

EPT Heritage

- 1843 The Eagle-White Lead Company Formed in Cincinnati, OH
- 1874 The Picher Lead Co. Began Mining in Joplin, MO
- 1922 EaglePicher Initiates Research into Storage Battery Technology
- 1944 First Special Purpose Battery Contract Awarded to EaglePicher
- 1947 Bell Labs Used EaglePicher Germanium for 1st Transistor
- 1970 Apollo 13 Safely Returned to Earth on EaglePicher Batteries
- Patriot Anti-Missile System and Tomahawk Cruise Missiles Powered by EaglePicher 1990 **Batteries**
- 1997 Columbia Shuttle Battery Experiment with EPT Sodium/Sulfur
- 2007 New State-of-the-Art Battery Facilities in Pittsburg, KS and Joplin, MO
- 2009 New State-of-the-Art Battery Facility in Plano, TX
- 2010 EaglePicher Achieves 1.4 billion cell hours in Space
- 2010 OM Group, Inc. purchases EaglePicher Technologies, LLC
- 2010 EaglePicher awarded ARPA-E Sodium beta battery technology development program

Hubble Telescope 19th Birthday Original EP Batteries

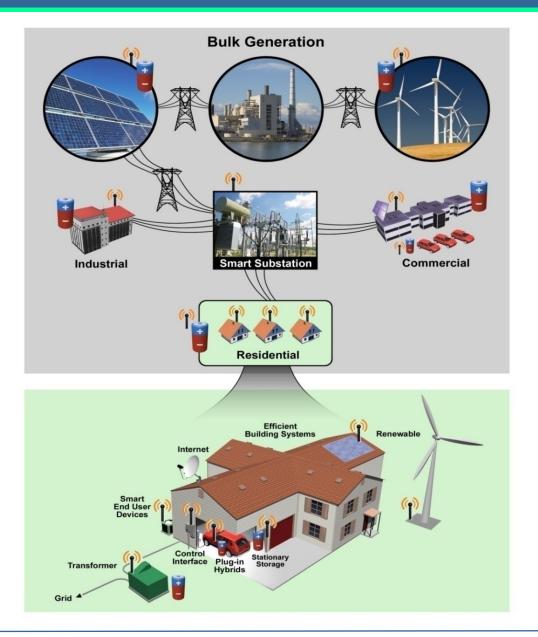
Rich Past **Bright Future**

EPT Product / Market Overview

Eagle Picher^{**} <u>Tečhnologies, LLC</u> An CMG Company

<Courtesy of NASA>

<Courtesy of NASA>

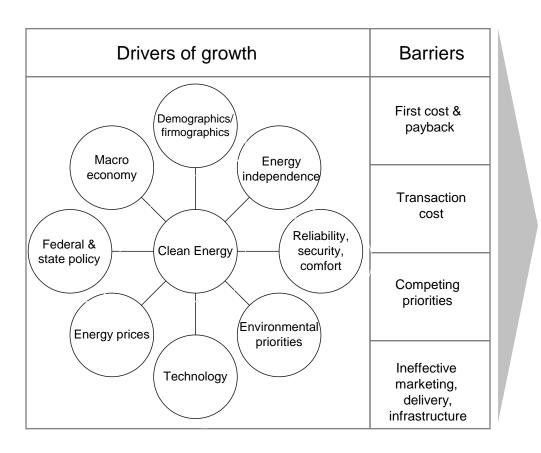

Copyright© 2010 EaglePicher Technologies, LLC

Energetic Devices

- Increased global energy demand
- Enable renewable energy sources such as wind and solar
 - Reduce consumption of fossil fuel & GHG
 - Reduce dependency on foreign supply
- Introduction of smart grid concept
- Provide assistance to PHEV/EV integration

Utility Grid

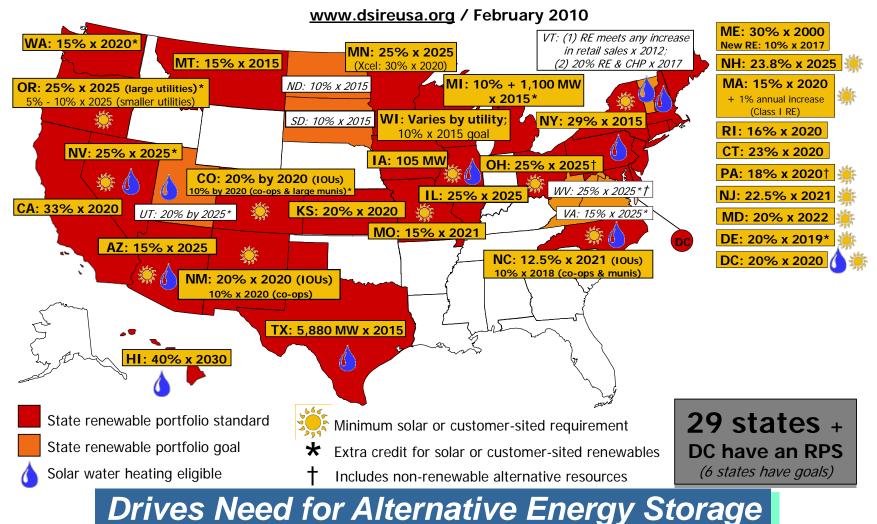
- ARRA ("Stimulus") Projects Department of Energy
- Federal Carbon Tax
- Smart Grid Standards Development for Storage – NIST
- Individual ISO Market Tariffs & Experiments
- State Incentives
 - Renewable Portfolio Standards
 - California legislation (AB 2514) mandating energy storage equal to 5% of demand by 2014


- Utilities can address deficiencies in electricity grid
- Utilities can deploy energy storage resources as needed in generation, transmission or distribution
- Energy storage can delay or avoid capital investment in systems upgrade
- Provides the ability to integrate renewable energy sources

- Community Scale (Community Energy Storage)
 - Typically 25-100 kW devices
 - Diurnal storage, Peak-load shaving, Backup supply, Power quality
- Utility Scale
 - Typically 250 kW-10 MW devices
 - Ancillary Services and Renewables
- Bulk Storage
 - Typically 100 MW and larger
 - Compressed Air and Pumped Hydro are only alternatives at this scale

Energy Storage Benefits

- Renewables Integration
- Peak Load Growth
- System Constraints
- GHG emission reduction
- Smart Grid

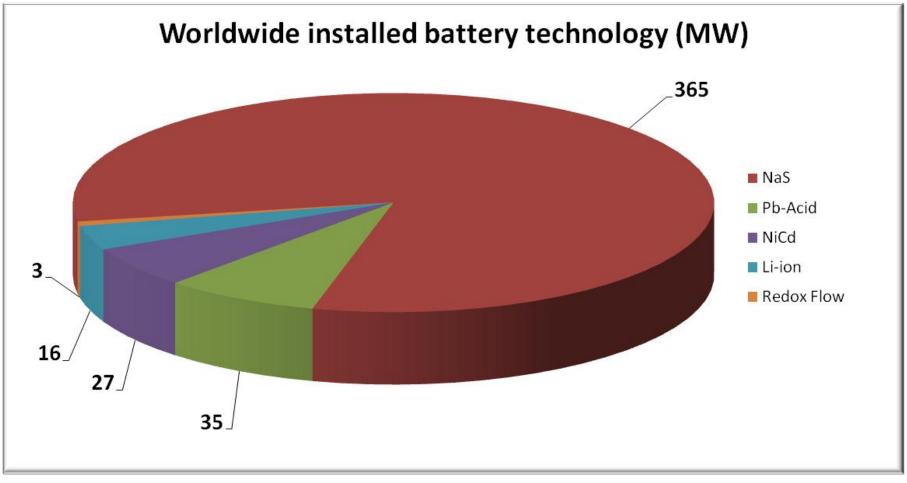


- Rapid evolution of technology, rising investment & declining costs
- Growing subsidies & mandates for energy efficiency and renewables
- Carbon constraints inevitable

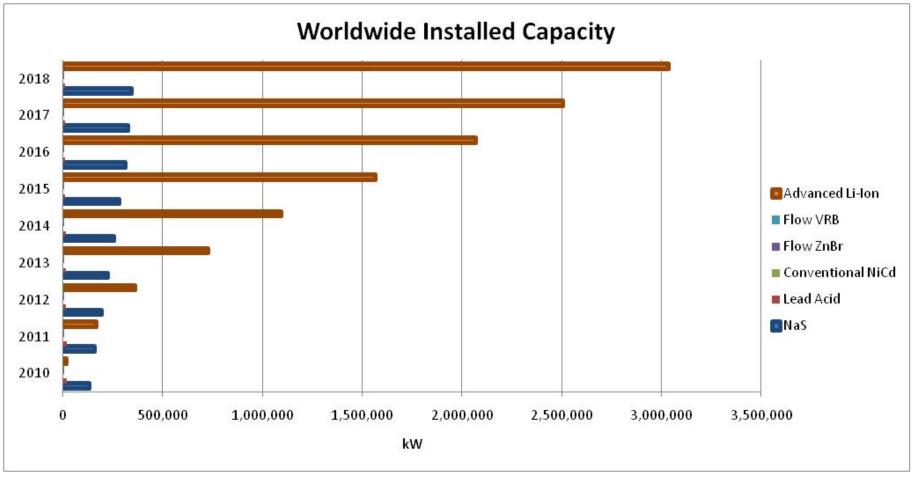
Source: KEMA

Alternative Energy Market

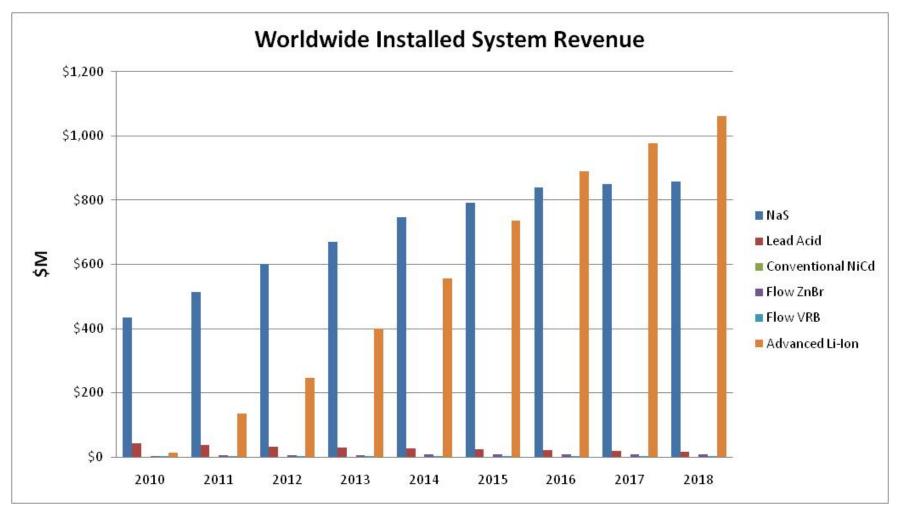
Renewable Portfolio Standards


Technology Overview

- Pb-Acid Batteries
 - Flooded & VRLA
 - Limited Cycle life make insufficient for utility application
- Nickel Batteries
 - Vented & Sealed
 - Good high rate capability
 - Good energy density
 - Cost profile not the best fit
- Sodium Sulfur Batteries
 - High energy density, high efficiency and long cycle life
 - Most promising technology for utility-grid application
- Advanced Li-ion Batteries
- Flow Batteries (Vanadium & Zinc Bromide)

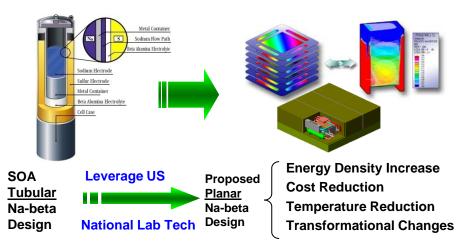

- Pumped Hydro (hydroelectric storage)
- CAES Compressed Air Energy Storage
- Flywheels
- Superconducting Magnetic Storage
- Super-capacitors/Ultra-capacitors

	Lead-Acid	Sodium Sulfur	Lithium-Ion	Zinc Bromine	Vanadium Redox
System Costs (\$/kWhr)	\$170	\$2,000	\$1,500	\$400	\$780
Cycle life (cycles)	> 500	2,500	> 1,000	> 2000	12,000
Efficiency (%)	~ 80	> 85	~ 95	>75	> 65
Specific energy (Wh/L)	> 35	~ 370	> 300	60	33
Self discharge (per month)	< 5%	< 1%	~ 1%	< 1%	< 3% per day

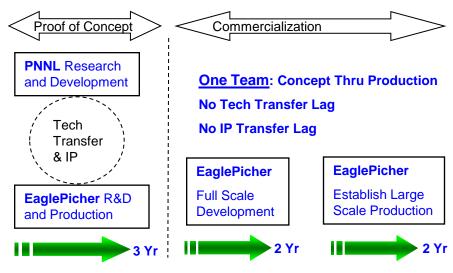

Each battery storage technology has its own unique benefits, but each system has drawbacks that limit its widespread adoption.

Source: Pike Research

Source: Pike Research


Source: Pike Research

- No policy governs the use of storage technology
- FERC
- Incentive structure for utilities is nonexistent
- Generation, Transmission, Distribution
- Policy will play strong role in market growth


"New Generation Na-Beta Batteries for Renewable Integration & Grid Applications"

Eagle Picher[™] Technologies, LLC An CMG company

Transition Strategy

ARPA-E Mission Area Impact

- Renewable Energy Storage With Improved Na-beta battery reduces CO₂ emissions by 150 Million Tons/Year
- > Improves/maintains US energy storage leadership

Program Summary

Period of performance: **36 months**

ARPA-E funds:	\$7.2M
Cost-share:	\$1.8M
Total budget:	\$9.0M

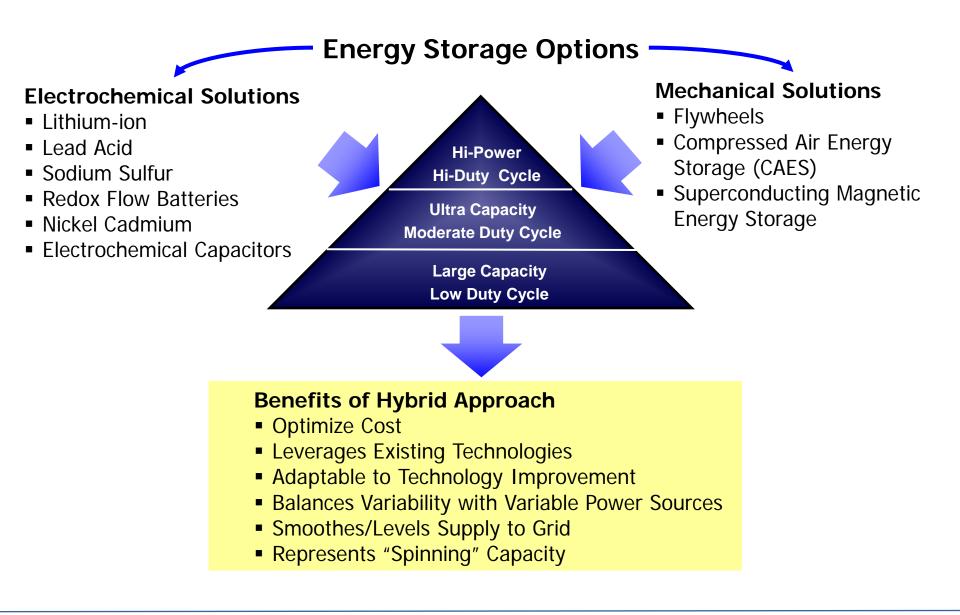
Annual Schedule Milestones

- Improved Na-beta cell demonstration & initial system model complete
- PNNL electrolyte & seal technology transfer complete & demonstration of multi-cell battery
- 5kW-20kWh battery model demonstration & system model complete

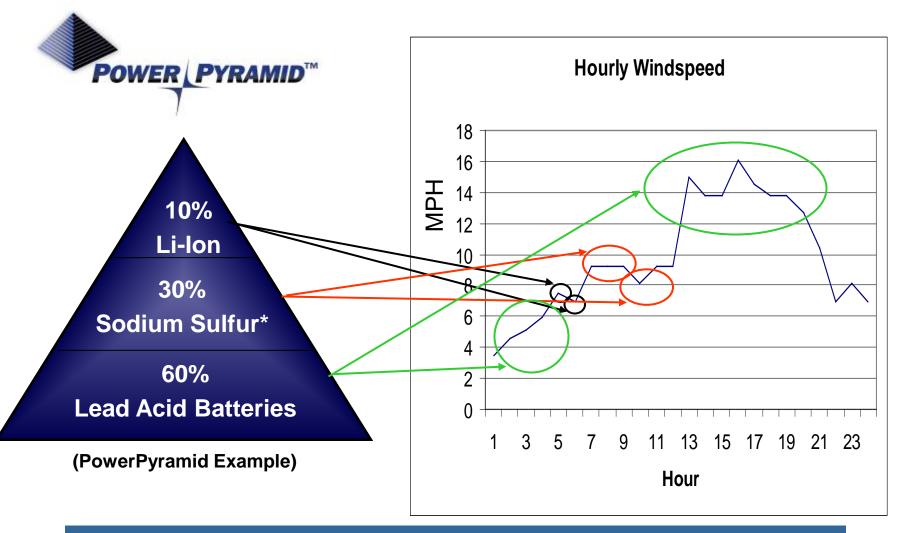
- Sodium Sulfur Batteries first developed by Ford Motor Co. in 1960's
- Sodium Metal Halide Batteries first developed by Zeolite Battery Research Africa project (ZEBRA) in 1980's
- Present Day Players in Sodium Beta are:
 - CoorsTek
 - General Electric
 - NGK Insulator, Itd

EPT's Sodium-Beta Experience

EaglePicher[™] Technologies, LLC An CHAG Company

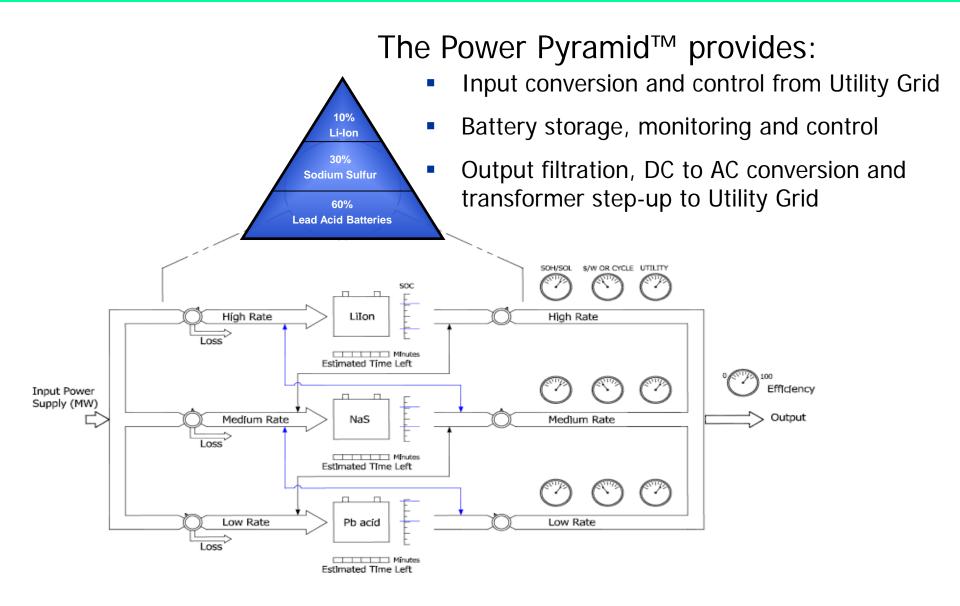

- 1952: Molten Salt Battery Development
- 1973: Argonne National Laboratory Contract on Rechargeable Batteries for Electric Vehicles
- 1986: Air Force Contract to Develop Tubular Na/S for Satellites
- 1988: Beta" Electrolyte Development
- 1990: Planar Sodium/Sulfur*
- 1992: Sodium/Nickel Chloride
- 1997: Space Shuttle Flight Experiment
- 2010: Planar Sodium/Metal Chloride

* EPT Patent # US4894299A Cell Having Dome-Shaped Solid Ceramic Electrolyte


EPT/PNNL Na-Beta Project

- Domestic Supply
- Energy Dense Storage
- Improved Power/Energy Ratio over Tubular
- Moderate Initial Cost
- Long Installed Life (low life cycle cost)
- Site Independent Use
- Near Term Availability

EPT's Power PyramidTM = Energy Storage Eagle PicherTH Technologies, LLC



Why the Power Pyramid[™] Works?

Managing Variability with Variability

Total Energy Storage Solution

EaglePicher Battery Management

Battery Management System (BMS)

- EaglePicher's BMS technology has been successfully demonstrated through multiple space, defense and aerospace applications - 1.4 billion cell hours in space without mission failure gives testimonial to the integrity of these robust systems.
- Power Pyramid[™] BMS features include:
 - Over and under voltage sensing
 - High and low temperature sensing
 - Over current and short circuit protection
 - Equalization time limit
 - State-of-Charge, State-of-Health
- In addition, the Power Pyramid[™] BMS control algorithms will monitor and provide:
 - Battery cycle cost and estimated life
 - Overall Storage System power costs and efficiencies
 - Utility definable metrics to help optimize Battery Storage System reliability

Power Pyramid[™] Storage Example

Lithium Ion Technology

- Very high energy to weight ratios
- EP can choose cathode and electrolyte materials to influence energy capacity, cycle life and safety.
- EP has battery management experience to maximize the performance of Lithium Ion batteries while ensuring their safety under all conditions.
- EP's knowledge of specialized charging techniques may improve depth of discharge and cycle life of Lithium Ion batteries.

Sodium Sulfur Technology

- EP is uniquely qualified to handle temperature management to maintain at elevated temperatures.
- Molten salt batteries operate at ~350°C.
- No self-discharge
- Efficiency > 85%, including heat losses
- Lower weight and smaller size than lead acid batteries
- Lead Acid Technology
 - Low cost, high reliability
 - > EP experience in thermal management needed

Alternative Energy Storage - Summary

- World has changed- technology advancements, geopolitical agenda and U.S. driven stimulus funding have combined in a "perfect storm" for energy storage
- Renewable sources (wind/solar) will be an important component of our grid, but they are unreliable
- State mandates for increasing the Renewable Portfolio Standard (RPS) will provide a large market for AES
- California is leading with legislation (AB 2514) mandating energy storage equal to 5% of demand by 2014
- Batteries provide reliability to Renewable sources at a fraction of the cost of new capacity
- EPT has the capability to engineer and build battery storage capacity for renewable energy storage