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ABSTRACT 

Building energy simulations are often used for trial-and-
error evaluation of “what-if” options in building 
design—a limited search for an optimal solution, or 
“optimization.”  Computerized searching has the 
potential to automate the input and output, evaluate 
many options, and perform enough simulations to 
account for the complex interactions among 
combinations of options.  This paper describes ongoing 
efforts to develop such a tool.  The optimization tool 
employs multiple modules, including a graphical user 
interface, a database, a preprocessor, the EnergyPlus 
simulation engine, an optimization engine, and a 
simulation run manager.  Each module is described and 
the overall application architecture is summarized.   

INTRODUCTION 
Building energy simulations are often used for trial-and-
error evaluation of “what-if” options in building 
design—a limited search for an optimal solution.  With 
today’s computer power, the bottleneck is no longer 
simulation run time, but rather the human time to handle 
input and output.  Human-driven methods are 
inefficient, and require skills, experience, and time.  
Computerized optimization has the potential to 
automate the input and output, evaluate many options, 
and perform enough simulations to account for the 
complex interactions among combinations of options.  
This paper describes ongoing efforts to develop such an 
automated optimization tool.   

Building design problems are inherently multivariate 
and multicriteria.  Multivariate optimization is much 
more difficult than the simpler problem of minimizing a 
single variable.  The objective, or performance index, 

also must include energy performance and the cost 
implications of design options.  However, as pointed 
out by Papamicheal (1993), the relative importance of 
cost and performance cannot be explicitly specified 
because it represents a qualitative judgment.  The 
implication is that the optimization search is best 
formulated as a multicriteria, or multiobjective, search 
for a set, or Pareto-optimal front, of optimal solutions.  
Figure 1 uses one possible choice of metrics for cost 
and performance (solutions that are down and to the left 
are better) to diagram a Pareto front.  A designer who is 
presented with such results then has a range of possible 
solutions (which are all optimal) that can be used to 
inform decision-making.  The preferred search 
algorithms for finding the Pareto-optimal front can 
separately and simultaneously minimize both cost and 
performance.  This is opposed to the more common 
approach of attempting to aggregate and weight 
different metrics into a single performance index.   

Numerous researchers have studied the application of 
optimal searches for building design.  The GenOpt 
program implements a large number of search 
algorithms. The most prominent is called “Generalized 
Pattern Search Hooke-Jeeves” (Wetter 2004).  
Gradient-based methods are not well suited for building 
design applications.  Wetter and Wright (2003) point 
out that the approximate solutions produced by energy 
simulation can lead to discontinuous results, which 
cause problems for gradient methods.   For buildings, 
search methods need to handle discrete variables and 
should attempt to identify a broad portion of the Pareto-
optimal front.  Genetic algorithms are applicable to 
discrete variables and have been studied (in the 
buildings context) by Wright et al. (2002), Huang and 
Lam (1997), Coley and Schukat (2002), and Caldas and 
Norford (2003). Wetter and Wright (2003) proposed 
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combining single objective genetic algorithms with 
generalized pattern search algorithms.   

 
Figure 1  Pareto front of optimal solutions

 

OPTIMIZATION TOOL 
The authors developed an optimization tool as a 
research platform to answer broad, energy-related 
questions about the commercial building sector for the 
U.S. Department of Energy (DOE).  In particular, DOE 
has a goal to set the conditions for marketable zero-
energy buildings by 2025.  Whole-building energy 
modeling and optimization are considered important 
tools for achieving this goal, as they can identify 
common solutions for energy efficiency that can be 
replicated across the commercial building sector.   

This project grew out of a related study, also 
commissioned by DOE, which is referred to as the 
Assessment of Commercial Sector Opportunities (see 
Griffith and Crawley 2006 in these proceedings).  To 
perform the Assessment, we developed software tools 
for automatically creating and running many 
simulations.  The Assessment automatically generated 
thousands of EnergyPlus input files that swept a variety 
of design options over every TMY2 weather file 
location in the country.  More than 200,000 simulations 
for the Assessment were run on NREL’s computing 
resources.  Much of its application architecture was 
reused and further developed to form the underpinnings 
of the optimization tool.   

Because extensive computing resources are required for 
useful optimizations, the optimization tool has been 
mainly developed as an in-house research tool that uses 
a supercomputer.   

Overview 

The optimization tool employs multiple modules, 
including: (1) a graphical user interface (GUI) for 
selecting options and viewing results, (2) a database for 
storing component performance data and costs, (3) a 
preprocessor to convert high-level input parameters into 
a detailed building model, (4) the EnergyPlus whole-
building simulation engine to analyze the model, (5) an 
optimization engine to select design options, and (6) a 
simulation run manager to handle simulation runs on 
different computing resources.  The Assessment 
pioneered the initial efforts for developing and 
integrating the preprocessor, input database, simulation 
engine, and simulation run manager.  Each module is 
described in detail below and diagrammed in Figure 2. 

 

 
Figure 2  Block diagram of optimization tool

The program architecture is modular to allow multiple 
programmers to work at the same time.  Modules are 
programmed in Fortran95 or in object-oriented Delphi.   

Graphical User Interface 
The GUI features a building creation wizard, an options 
browser, and a results browser.  The building creation 
wizard presents a series of tabs with high-level 
parameters that define the overall type and location of 
the building.  The options browser allows the user to 
select from 40 major design options that are grouped 
into categories of program, form, fabric, and equipment 
(see Figure 3).  Program parameters include lighting 
density, plug and process load density (electrical 
equipment), people density, infiltration rate, illuminance 
setpoints for automatic dimming controls, and density 
of tubular daylighting devices (TDDs).  Form 
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parameters include aspect ratio, orientation, window 
glazing fraction, and overhang depth.  Fabric 
parameters include choice of constructions for exterior 
walls, interior walls, roofs, windows, and skylights.  
Equipment parameters include choice of HVAC system 
type and photovoltaic system efficiency.  All options are 
selected as discrete values.  Cost data are also 
associated with each option.   
The GUI provides a results browser that renders all the 
simulations on a chart of percent energy savings versus 
percent cost savings (see Figure 4).  Each point 
represents an individual annual simulation.  The user 
simply clicks on a point in the graph to view the 
individual results for that simulation.  The 3D 
wireframe view (DXF) of the building model is also 
available.   

The GUI is coded in Delphi 7 and uses model-driven 
architecture to take advantage of many vendor-provided 
software components for database interactions, GUI 
controls, DXF views, and fast array and matrix math.  

Simulation Engine 

The optimization platform uses EnergyPlus as the 
simulation engine.  EnergyPlus is a whole-building 
energy simulation program developed by DOE 
(Crawley et al. 2004) that can model the complex 
interactions that are important for optimization.  
EnergyPlus can also simulate many state-of-the-art and 
cutting-edge technologies that will be used in 
tomorrow’s zero-energy buildings.  The ability to model 
technologies such as TDDs, radiant heating, and 
underfloor air distribution, along with features for 
thermal comfort, will allow the optimization tool to 
include these options in the simulations.  (Some of these 
technologies are not yet implemented in the GUI and 
preprocessor.)   

Because the optimization process is computationally 
intensive and demands hundreds (or even thousands) of 
individual simulation runs, we have looked for ways to 
decrease the run time of EnergyPlus simulations to 
expedite the overall process.  Adjusting factors such as 
minimum system time step, minimum temperature 
convergence, and maximum number of warm-up days 
significantly decreases the run time of the program by 
up to a factor of 10 with little penalty in accuracy.  We 
also use multipliers for thermal zones to help reduce run 
times.  This greatly reduces the run times for multistory 
buildings and buildings with hundreds of TDDs.  We 
continue to explore further opportunities to decrease the 
simulation run times.   

Preprocessor 

Because simulation engines such as EnergyPlus require 
detailed input data about the building, we use a 
preprocessor to reduce the low-level input data to a set 
of high-level input parameters.  Unlike most automated, 
macro-based procedures that search and replace 
parameters one by one, the high-level parameters can 
have a one-to-many relationship.  The preprocessor 
implements a large number of deterministic assignments 
that map high-level parameters to the low-level 
simulation input.  For instance, a parameter to vary the 
number of floors can completely change the number, 
size, and location of almost every surface in the 
EnergyPlus model.  It also changes the number of 
thermal zones and configuration of the HVAC system.  
Finally, it can affect the HVAC sizing.   

High-level parameters are implemented in the 
preprocessor for every option in the GUI options 
browser.  We use an XML text file to exchange data 
between the GUI and the preprocessor based on an 
XML Schema that we developed for this purpose.   The 
preprocessor then uses the high-level parameters to 
“autobuild” the EnergyPlus input file, including all the 
envelope geometry, zoning, internal loads, schedules, 
and HVAC system.  Deterministic assignments are used 
to default simulation input details that are not explicitly 
defined by the parameters.    

Database 

The database module serves multiple purposes by 
storing design options and input parameters selected in 
the GUI, input libraries for EnergyPlus, cost data, 
simulation run queue, and simulation results.  All data 
except for the EnergyPlus input libraries (which are text 
files) are stored in a relational database management 
system.   

The EnergyPlus input libraries comprise a collection of 
macro files, or include files, that provide segments of 
EnergyPlus input for  location-dependent input objects, 
schedules, HVAC systems and component performance 
data, and report variables.  Some macro files that were 
distributed with the release version of EnergyPlus are 
also included.   

We consulted practicing architects and engineers to 
help formulate cost estimates.  We also used data from 
RSMeans (2004) with regional adjustment factors.  

The database module has an input mechanism to add or 
change data and allows for user input of cost 
information.   
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After simulations are completed, the results are also 
stored in the database so that individual simulation 
results can be browsed in the GUI.   

Optimization Engine 

The optimization engine module is the heart of the 
optimization tool.  It determines which design options 
are to be simulated and then analyzes the results in the 
context of the performance objective that is to be 
minimized.  The optimization engine then decides 
which options to keep and which to change before it 
launches a new set of simulations.    

Early pilot work for the project used GenOpt (Wetter 
2004) as the optimization engine.  GenOpt is a general-
purpose engine that enables a selection of optimization 
algorithms, including generalized pattern search, 
gradient search, particle swarm, and multidimensional 
parametric runs (enumeration) to be run.  We later 
developed our own optimization engine that supports 
multiple optimization algorithms, including full 
enumeration and sequential search.  Because the 
algorithms are programmed in a modular fashion within 
the optimization engine, more algorithms can be added 
easily.   

The full enumeration, or “brute force,” algorithm 
evaluates every possible combination of options.  It is 
guaranteed to always identify the true optimal solution, 
but it is the most time-consuming and computationally 
intensive algorithm.  Full enumeration is primarily used 
to check the results of the other algorithms.   

The sequential search algorithm is the same 
optimization method used in BEOpt (Christensen et al. 
2006).  The method was probably first described by 
Meier (1982) and used in a different, whole-sector 
context.  It is similar to one used by Davis Energy 
Group in a Pacific Gas and Electric ACT2 project 
(DEG 1993) and to the “energy code multiplier 
method” available in EnergyGauge-Pro (FSEC 2001).  
Christensen developed this method specifically to 
search for a “path” to zero-energy homes.  The Pareto-
optimal front is defined by connecting the points for 
building designs that achieve various levels of energy 
savings at minimal cost (establishing the lower bound of 
results from all possible building designs).  The search 
technique moves along the path in steps.  At each step 
along the path, individual simulations are performed to 
evaluate all options across a range of categories (wall 
type, ceiling type, window glass type, HVAC type, etc.) 
and searches for the most cost-effective option.  Based 
on the results from the previous step, the most cost-
effective option is selected as an optimal point on the 
path and put into a new building description.  The 
process is then repeated.   

The search technique handles special cases that are 
caused by interactions between options (beyond just the 
diminishing returns accounted for in the basic 
sequential search technique).  Special cases with 
negative interactions are handled by looking back along 
the path and continually re-evaluating previously 
rejected options to properly identify the potential of 
large-savings options and options that involve trade-offs 
between categories.  The search technique does not 
assume that once an option is selected that it stays 
selected.  The technique also tracks points from 
previous steps and checks to see whether they may be 
better results than the current step.  Positive interactions 
are accommodated by allowing the user to define 
combined options (which are linked to ensure that such 
potentially synergistic combinations are evaluated 
during optimization).  The method has been validated 
by comparison to full enumeration.   

The sequential search technique has several advantages.  
It searches for points near the Pareto-optimal front in a 
single optimization analysis, i.e., minimum-cost 
building designs at different energy savings levels, not 
just a global optimum.  It also stores multiple near-
optimal designs that are identified at each particular 
energy savings level.  This may provide interesting 
design alternatives.  The method is amenable to using 
distributed computing because for each step, an entire 
set of simulations can be run at the same time.   

Disadvantages of the technique have not been explicitly 
identified.  Areas to investigate may include coarse and 
fixed resolution for continuous parameters, scalability 
problems for very large numbers of design options, and 
its inability to ensure that synergistic but separate 
options are selected.  These are all critical issues for 
shifting from residential to commercial analysis.  The 
advantage of the technique is that relatively few 
iterations are required to arrive at the solution. 

The resulting tool has the advantages of providing near-
optimal solutions.   

The sequential search allows for multi-objective and 
multicriteria optimizations.  The principle behind the 
algorithms is to find the steepest slope from the 
previous point.  Currently the slope is the change in cost 
versus the change in energy.  However, if needed, more 
objectives can be added and tensors could be used to 
calculate the slopes.   

Simulation Run Manager 

Depending on the number of options that are selected in 
the GUI, the processor time needed for the optimization 
engine to resolve an answer can be very long.  
However, because each step in the optimization process 
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uses multiple independent simulations, it favors a 
distributed computing approach.   

NREL has two computing resources for distributed 
computing.  The Computational Sciences Center 
maintains a Linux cluster, dubbed Lester, of 126 dual-
processor nodes that run the 64-bit Linux operating 
system.  We can use a custom 64-bit build of 
EnergyPlus for Linux to run up to 252 simultaneous 
simulations on the cluster.  In reality, the cluster is 
shared with other users at NREL, so actual availability 
is less.   

NREL also maintains a distributed computing network 
that uses the Condor workload management system 
(Thain et al. 2005).  The Condor system identifies idle 
computers on the laboratory’s local area network and 
takes advantage of the unused processing power to run 
jobs in the background.  We currently have about 40 
Windows machines enrolled in the Condor network, but 
we plan to increase this number in the future.   

A simulation run manager handles the distribution of 
jobs launched by the framework and farms them out for 
processing on the computing resources, including 
Lester, Condor, and the user’s local machine.  The 
simulation run manager also monitors the status of 
running jobs and retrieves the simulation results when 
the job is done.   

Lester and Condor are valuable computing resources 
that have allowed us to develop and test the 
optimization engine with a reasonable turnaround time 
for results.  For example, an optimization that requires 
18 iterations for 545 simulations (each simulation can 
take up to 2 minutes) can be completed in 2.5 hours, 
which averages to approximately 16.5 seconds per 
simulation.   

Although distributed computing certainly expedites the 
optimization process, it is not required to run the tool.  
The optimization will just take longer to run the 
simulations individually.   

VALIDATION 
The main validation task is to verify that the input data 
are accurate and that the optimization tool reliably 
identifies the true optimum combination of parameters 
and design options.  We have used the full enumeration 
algorithm, which will always find the true optimum 
(among the selected options), to check the results of the 
other optimization algorithms.  The outcome of this 
showed that the sequential search reasonably 
approximates the Pareto-optimal front; enumeration did 
not yield any surprises.  However, there are practical 
limitations to using full enumeration because the 

number of cases to evaluate becomes far too large for 
most real-world problems.   

Thus far our testing has identified some deficiencies in 
the sequential search algorithm under certain scenarios.  
Competing design options can sometimes result in the 
true optimum solution not being correctly identified.  
One technology may not be useful unless it is combined 
with two or more other technologies.  For example, 
TDDs by themselves may not be more efficient unless 
they are combined with daylighting controls.  
Fortunately, in this particular case, the sequential search 
algorithm will find this combination because daylighting 
is always an advantage.  However, other combinations 
may not be found.  The issue is in the number of 
degrees of freedom, which is currently limited to one.   

The optimization tool is also being tested in a real-
world application under another NREL project by using 
the tool in the design phases of a small retail building.  
Cost data are still problematic, especially for HVAC 
systems and equipment.  Costs are also volatile.  As 
mentioned earlier, cost is key to the entire optimization 
procedure.  Working on real-world projects is an 
important approach for collecting cost data.   

CONCLUSION 
An optimization tool has been implemented to evaluate 
the cost and performance trade-offs to support decision-
making on commercial building design projects.  The 
tool currently requires considerable computing 
resources and is intended for in-house research to assist 
in DOE-funded research in support of the goal of zero-
energy buildings.  As computing power increases, 
developing a non-research version of the framework for 
practitioners in the private sector will become more 
feasible.  Collecting and verifying cost and performance 
input data remain important challenges.  The sequential 
substitution search algorithm is effective; however, 
improved search algorithms and more efficient methods 
of validating them are needed.   
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Figure 3 Screen shot of the options browser 
 

 
 

Figure 4 Screen shot of the results browser

7



F1147-E(12/2004) 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents 
should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a 
currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 
1. REPORT DATE (DD-MM-YYYY) 

July 2006 
2. REPORT TYPE 

Conference Paper 
3. DATES COVERED (From - To) 

August 2−4, 2006 
5a. CONTRACT NUMBER 

DE-AC36-99-GO10337 

5b. GRANT NUMBER 
 

4. TITLE AND SUBTITLE 
Automated Multivariate Optimization Tool for Energy Analysis: 
Preprint 

5c. PROGRAM ELEMENT NUMBER 
 

5d. PROJECT NUMBER 
NREL/CP-550-40353 

5e. TASK NUMBER 
BEC61006 

6. AUTHOR(S) 
P.G. Ellis, B. Griffith, N. Long, P. Torcellini, and D. Crawley 

5f. WORK UNIT NUMBER 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
National Renewable Energy Laboratory 
1617 Cole Blvd. 
Golden, CO 80401-3393 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 
NREL/CP-550-40353 

10. SPONSOR/MONITOR'S ACRONYM(S) 
NREL 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 

11. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 
 

12. DISTRIBUTION AVAILABILITY STATEMENT 
National Technical Information Service 
U.S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT (Maximum 200 Words) 
Building energy simulations are often used for trial-and-error evaluation of “what-if” options in building design—a 
limited search for an optimal solution, or “optimization.”  Computerized searching has the potential to automate the 
input and output, evaluate many options, and perform enough simulations to account for the complex interactions 
among combinations of options.  This paper describes ongoing efforts to develop such a tool.  The optimization tool 
employs multiple modules, including a graphical user interface, a database, a preprocessor, the EnergyPlus 
simulation engine, an optimization engine, and a simulation run manager.  Each module is described and the overall 
application architecture is summarized.   

15. SUBJECT TERMS 
optimization; building energy simulation; energyplus 

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON 
 a. REPORT 

Unclassified 
b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

17. LIMITATION 
OF ABSTRACT

UL 

18. NUMBER 
OF PAGES 

 19b. TELEPHONE NUMBER (Include area code) 

 
Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 




