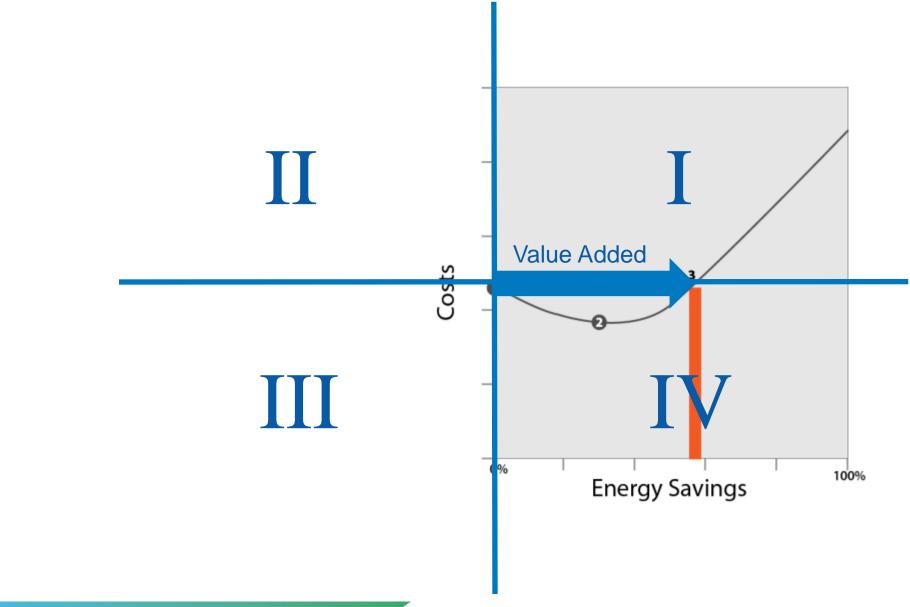


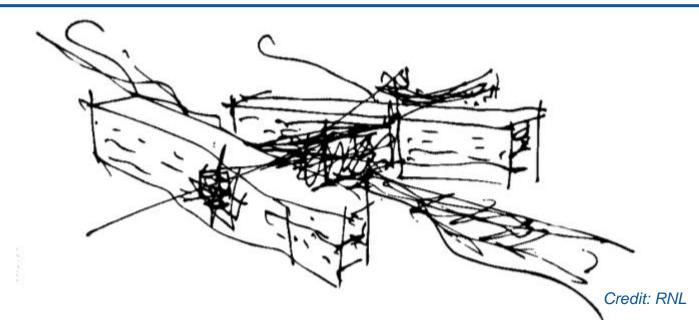
# Controlling Capital Costs in High-Performance Office Buildings



Shanti Pless, LEED AP Senior Research Engineer NREL Advanced Commercial Buildings Research Group


Paul Torcellini, PhD, PE DOE Commercial Buildings Team

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.


# Maximum Efficiency with Deep Integration

- Cost and energy efficiency concepts
- Introduction to a high-performance office building
- Best practices for controlling capital costs
  - Acquisition and project delivery
  - o Design
  - Construction
- Questions

## **Cost vs. Efficiency?**



## **Research Support Facility Vision**



- A showcase for sustainable, high-performance design
  - Incorporates the best in energy efficiency, environmental performance, and advanced controls using a "whole-building" integrated design process
- Serves as a model for cost-competitive, high-performance commercial buildings for the nation's design construction, operation, and financing communities

# **Research Support Facility**

- 824 people
- 220,000 ft<sup>2</sup>
- 25 kBtu/ft<sup>2</sup>
- 50% energy savings
- \$259/ft<sup>2</sup>
- LEED<sup>®</sup> Platinum
- Replicable
  - Process
  - Technologies
  - Cost

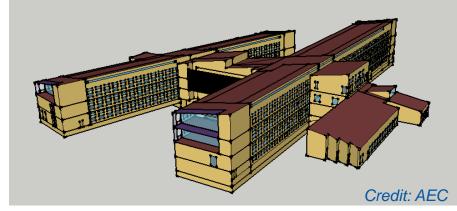


- Site, source, carbon, cost net zero energy building

   Includes plugs loads and data center
- Design/build process with required energy goals

   \$64 million firm fixed price

Credit: RNL


- First, focus on **energy efficiency** features.
- Then, focus on adding **renewable energy** into the equation.
- Unlike traditional design where architecture defines the form and impacts the function of a building, energy performance requirements drove the design of the RSF.
- Extensive energy modeling established the basic building architecture and structure.

# **Key Design Strategies**

- Optimal orientation and office space layout
- Fully daylit office wings with highperformance electrical lighting
- Continuous insulation and precast wall panels with thermal mass
- Operable windows for natural ventilation
- Radiant heating and cooling
- Outdoor air preheating
  - Transpired solar collector
  - Data center waste heat
  - Exhaust air heat recovery
  - Crawl space thermal storage
- Aggressive plug load control strategies
- Data center outdoor air economizer with hot aisle containment
- Roof top- and parking lot-based PV

## **Owner Best Practices**

- #1. Select a project delivery method that balances performance, best value, and cost savings.
  - Encourages innovation
  - Reduces owner's risk
  - Faster construction and delivery
  - Better cost control
  - Makes optimal use of team members' expertise
  - Establishes measurable success criteria



## **Owner Best Practices**

- #2. Incorporate measureable energy use performance requirements into a performance-based design-build procurement process.
  - Measurable goals are better
  - From bad to good...
    - o I want a green building
    - Design a LEED <rating> building
    - Design a building to use 30% less energy than ASHRAE 90.1-2004
    - Design a building to use less than 25,000 Btu/ft<sup>2</sup>
    - Design a [NET] ZERO ENERGY BUILDING
  - Influencing purchasing decision—the owner

#### **Energy Performance Based Design-Build Process**

- Performance based design-build with absolute energy use requirements
  - These are NOT bridging documents.
    - Owner has significant input into the preliminary design
    - Some overlap of A/E costs
  - These ARE performance specifications.
    - What something must do, not what it must be
    - Subcontractor must substantiate that the design meets requirements
    - Owner must not give the subcontractor technical direction

#### No drawings/plans in RFP!

Don't change your mind

## **Owner Best Practices**

- #3. Clearly prioritize project objectives at the beginning of the design process.
- Use of a project objectives checklist to prioritize project goals in the RFP
  - Mission critical
  - Highly desirable
  - If possible
- "Crystal clear" about what the owner wants at the beginning of design
  - Saves time trying to "understand" owner wants

#### **Developing a Performance Based Request for Proposals**

- Up-front planning drives
   success
  - Design charrettes
  - Based on industry best practices
  - Owner's representatives
- Design challenge
  - Suite of performance goals to challenge team
  - o Substantiation criteria

#### **Tier 1: Mission Critical Goals**

- Attain safe work/design
- LEED Platinum
- ENERGY STAR<sup>®</sup> "Plus"

#### **Tier 2: Highly Desirable Goals**

- 800 staff capacity
- 25 kBtu/ft<sup>2</sup>·yr
- Architectural integrity
- Honor future staff needs
- Measurable ASHRAE 90.1
- Support culture and amenities
- Expandable building
- Ergonomics
- Flexible workspace
- Support future technologies
- Documentation to produce "how to" manual
- Allow secure collaboration with visitors
- Completion by 2010

#### Tier 3: If Possible Goals

- Net-zero energy
- Most energy-efficient building in the world
- LEED Platinum Plus
- 50% better than ASHRAE 90.1
- Visual displays of current energy efficiency
- Support public tours
- Achieve national and global recognition and awards

## **Owner Best Practices**

#4. Competitively procure an experienced design-build team using a best value, firm fixed price process.

- \$64M project cost limit
- Every project always has more scope than funding
- Design-build team selection based on competitions focused on amount of scope that can be provided for the money available
- Results in industry design, integration, and teaming innovation

## **Owner Best Practices**

#5. Include best in class energy efficiency requirements in equipment procurement specifications.

- Laptops and monitors
- Multifunction devices
- Data center servers
- 6-Watt LED task lights
- Break room refrigerators
- 55" LED LCD flat screen
- ENERGY STAR<sup>®</sup> product database and "Best in Class" program

#### **Energy-Efficient Workspace**

Workstation load: 55 Watts 0.4 W/ft<sup>2</sup> whole-building plug load intensity

#### Power strip on the desktop

Easy to access power button

#### VOIP phones: 2 Watts

Removing personal space heater saves 1500 Watts

#### LED task lights 6 Watts

Fluorescent task lights 35 Watts

#### Multi-function devices 100 Watts (continuous)



Removing desktop printers saves ~460 Watts/printer

#### 24" LCD energy-efficient monitors 18 Watts

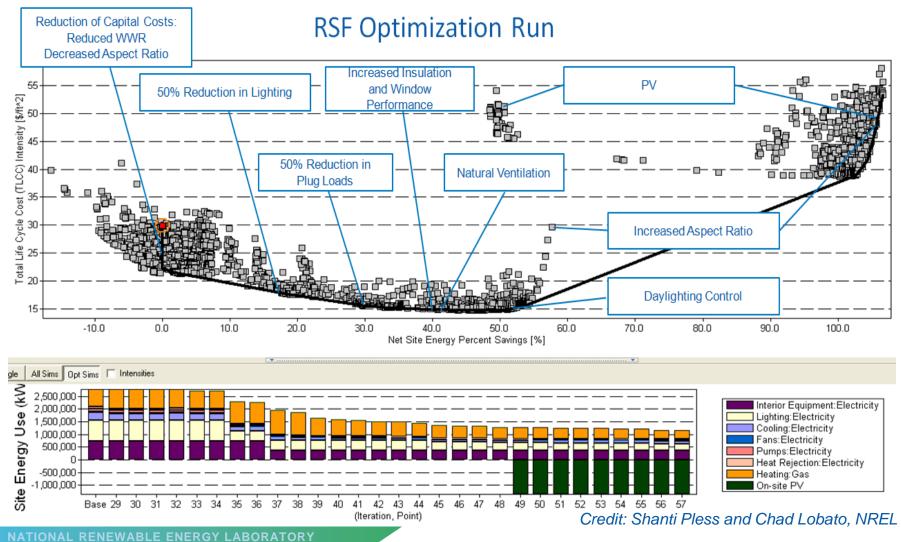
Typical 19"-24" monitors 30-50 Watts

Laptop 30 Watts

Desktop computer (ENERGY STAR<sup>®</sup>) 300 Watts

## **Design Best Practices**

#### **#6.** Leverage value added benefits to efficiency strategies.


- Machine-room-less traction elevators
  - Requires less building footprint support structure than hydraulics
- Laptops for all staff
  - Increases mobility and workspace flexibility
- Centralized copy/print functions with multifunction device
  - Exhaust volatile organic compounds (VOCs) from toners
  - Minimize unique toner replacement stock
- Views and daylighting for all with demountable open office plan
  - Increase space reconfiguration flexibility
  - Give all staff views

#### Daylighting

 Light enters through the upper glass and highly reflective louvers direct it toward the ceiling and deeper into the space.

 Light-colored, reflective surfaces and low cubicle heights permit the penetration deep into workspaces.

#### **#7. Consider life cycle costs benefits of efficiency investments.**



## **Design Best Practices**

**#8. Integrate simple and passive efficiency strategies with the architecture and envelope.** 

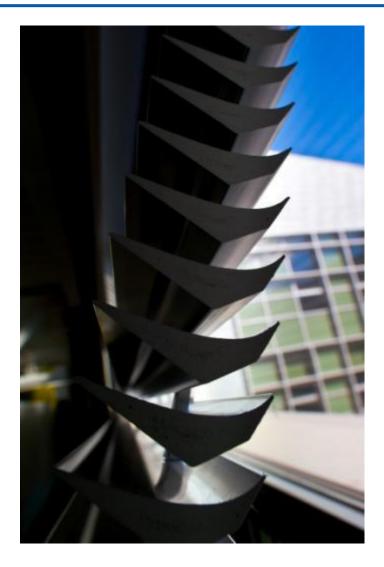
- Reduce loads first
  - Insulation and thermal bridging mitigation
  - Effective shading
  - Orientation and window placement
- Then focus on passive systems
  - Simpler and more robust envelope solutions
  - Minimize moving parts



# Efficiency Integrated into Architecture

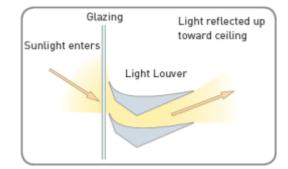
- Daylighting
- Thermal mass
- Natural ventilation
- Shading
- Orientation
- Massing and form
- Thermally activated building structure
- Transpired solar collector

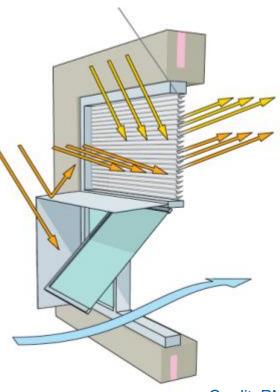
#### Daylighting


VITILIA.

 Two long 60-foot wide wings with east-west orientation

21

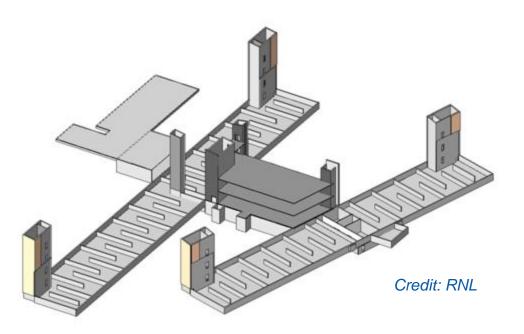

Design reduces electrical lighting

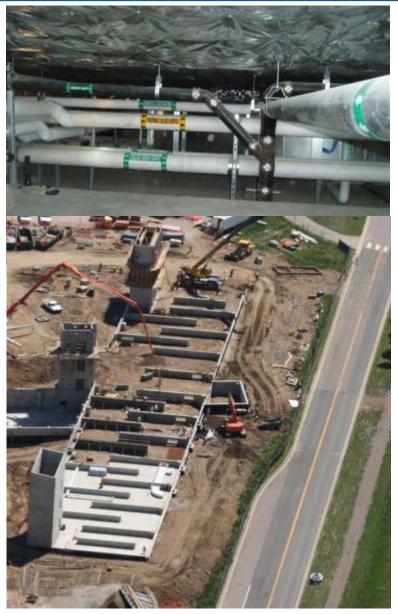

## **Daylighting: Glare Control**



A light-redirecting device reflects sunlight to the ceiling, creating an indirect lighting effect.

Fixed sunshades limit excess light and glare.



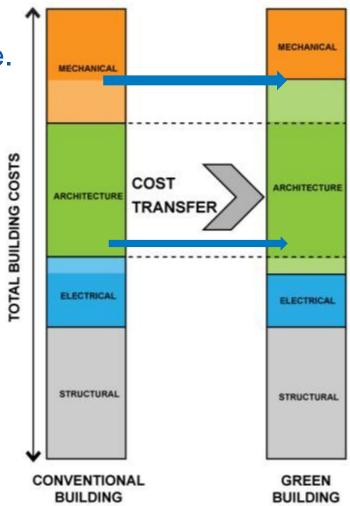




## **Building Structural Elements and Efficiency**

#### Labyrinth Thermal Storage

 Massive, staggered concrete structures in the basement crawl space stores thermal energy to provide passive heating and cooling of the building.






#### **#9.** Allow for cost tradeoffs across disciplines.

Credit: RNL

Transfer costs from mechanical and electrical systems to building architecture.

- Total cost same
- Mechanical/electrical costs less
- Invest in architecture, design, and modeling
- Active to passive
- Fragile to robust
- Longer life
- Less cost over life
- Simpler



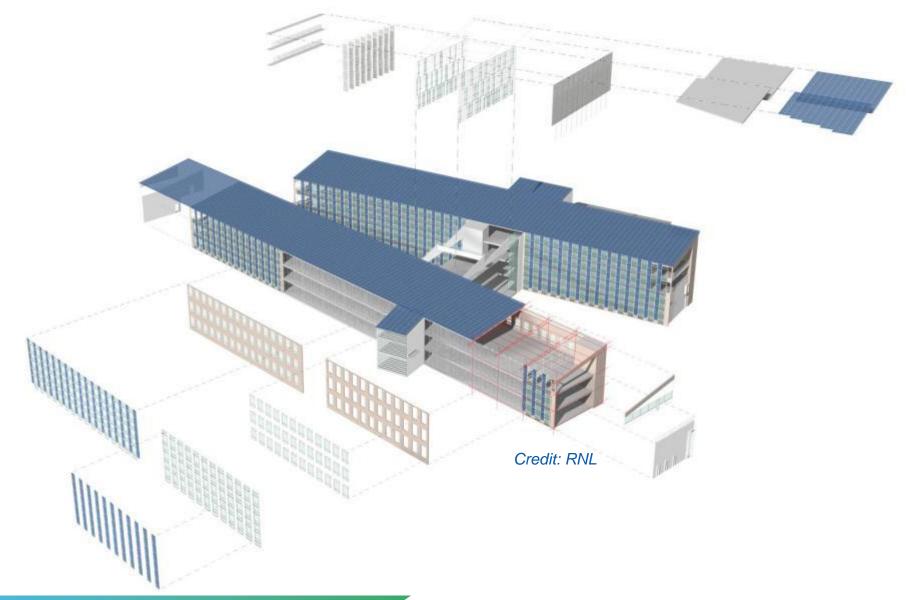
#### **#10.** Optimize window area for daylighting and views.

Optimal window area strategy that balances cost, thermal performance, daylighting, and views.

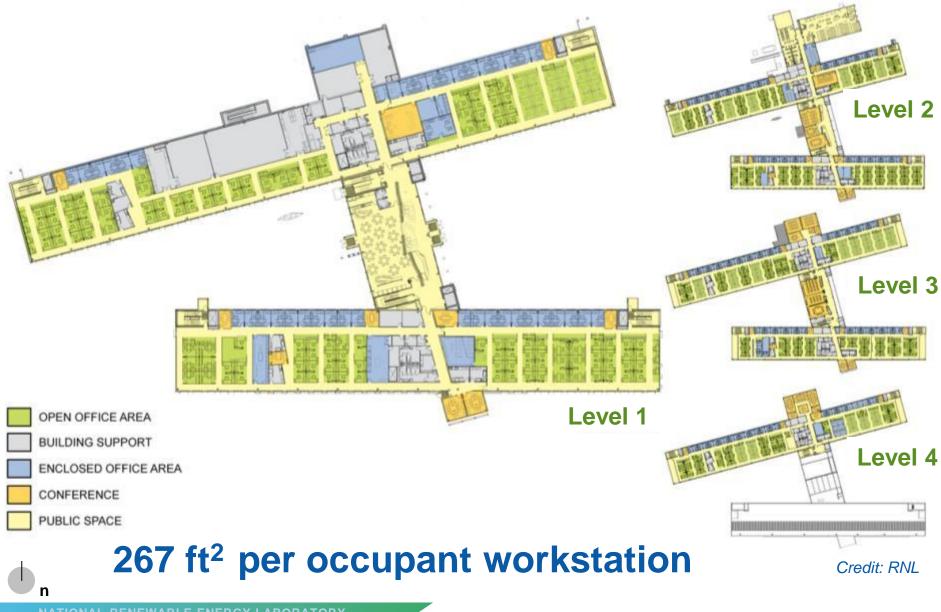
- 24%-26% window-to-wall ratio
- 11% window-to-wall ratio for daylighting windows



## **Design Best Practices**


#11. Maximize use of modular and repeatable high-efficiency design strategies.

Focus on repeatable design elements.


- Minimize unique and expensive building elements
- No curved walls
- Punched windows
- Increase space efficiency



## **Modular Design: Kit of Parts**



## **Modular Floor Plans**



NATIONAL RENEWABLE ENERGY LABORATORY

## **Modular Office Space**

- Maximizes space efficiency
  - Allows for 72 ft<sup>2</sup> and 120 ft<sup>2</sup> office cubicles
- Reduces drywall costs
- Building designed around 30 ft x 60 ft office space modules



## **Design Best Practices**

- #12. Leverage alternative financing to incorporate strategies that don't fit your business model.
  - Power purchase agreements
  - Energy services contracts
  - Utility rebate programs

#### **Photovoltaic System**

# 1,156 KW

- Power Purchase Agreement (PPA) provides full rooftop array on RSF 1
- Net-zero energy: building, parking lot and future parking garage arrays

# 449 KW

# 408 KW

## 524 KW

## **Construction Best Practices**

- #13. Maximize use of off-site modular construction and building component assembly.
  - Off-site assembly reduces on-site construction time
    - Faster site assembly
  - Increases quality and reduces costs
  - Minimizes site coordination details and safety concerns

#### **Precast Wall System**

- Incorporates many passive heating and cooling techniques.
- Six inches of concrete on the interior provides thermal mass that helps moderate internal temperatures year-round.
- Nighttime purges in summer months trap cool air inside, keeping temperatures comfortable for the warm summer days.

#### **Off-Site Glazed Wall Panels**



• **42 miles** of radiant heating tubes run through the ceilings throughout the building.

THERMAL SLAB SUPPLY

THERMAL SLAB RETURN -

#### **Radiant Heating/Cooling**

JLG LIF

- Office wings are hydronically heated and cooled using radiant ceiling slabs.
- Five zones in each wing of the building are controlled by the radiant zone control valves.

# **Construction Best Practices**

- #14. Include a continuous value engineering process as part of the integrated design effort.
  - A well-integrated design-build team can identify value additions during the design process.
    - Balance cost models with energy models in early design.

#### **A Value Addition Process**



# **Constructing Zero Energy**



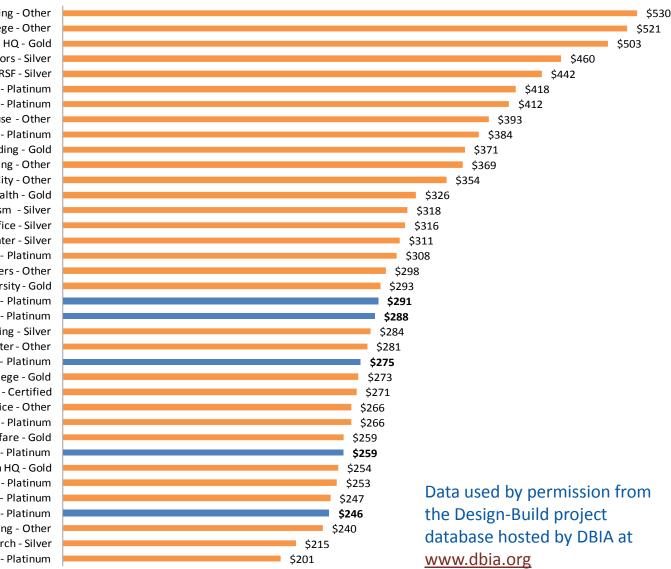
## **Construction Best Practices**

- #15. Integrate experienced key subcontractors early in the design process.
- The big 5 subcontractors select early for cost control and constructability verification
  - Structural steel
  - Mechanical/plumbing AHU's, hydronic, pumps
  - Electrical lighting, cabling, electrical distribution
  - Envelope the single most costly per SF and the most impactful to energy
    - Glass and glazing
    - Precast concrete wall system

### **Metrics of Success...**

- Received elements/value that were not in the RFP (or did not help the energy efficiency)
  - Fancy woodwork detail
  - Extra glazing
- Comparison with other costs

Reclaimed **natural gas piping** serves as support for the building.


The lobby and other common areas feature **beetle-kill pine** from Western forests.

#### LEED Platinum rating, version 2.2 – 59 points.

# **How Much Did It Cost?**

- \$259/ft<sup>2</sup> construction costs for site work, infrastructure, and building
  - Includes interiors, furniture, and cabling
  - Does not include PV, land, or design costs
- Third-party-owned power purchase agreement for PV
  - \$29/ft<sup>2</sup> or 11% additional cost if NREL had purchased all PV without tax breaks or subsidies (at \$5/Watt)

# Compare



DC Federal Building - Other San Joaquin Comm. College - Other Fort Bragg Forces Command HQ - Gold National Association of Realtors - Silver Aircraft RSF - Silver Applied Research & Development - Platinum NASA Sustainability Base - Platinum Las Cruces Courthouse - Other 1800 Larimer - Platinum San Joaquin Admin Building - Gold Leprino Building - Other Federal Reserve Bank of Kansas City - Other Arizona State University College of Nursing & Health - Gold Arizona State University School of Journalism - Silver Leo Trombatore Office - Silver **Commerce City Civic Center - Silver** Fernald Visitors Center - Platinum EPA Region 8 Headquarters - Other **Dillard University - Gold** RSF - Total Project Cost without PV - Platinum RSF - Total Construction Cost with PV - Platinum Ft. Lewis Barracks and Dinning - Silver Naval Facilities Southeast Engineering Operations Center - Other RSF Expansion - Total Construction Cost with PV - Platinum University of Denver Sturm College - Gold **Bremerton BEQ - Certified** Chevron Office - Other **Omega Center - Platinum** International Fund for Animal Welfare - Gold RSF - Total Construction Cost without PV - Platinum Ft. Carson Brigade/Battalion HQ - Gold Great River Energy Headquarters - Platinum The Signature Centre - Platinum RSF Expansion - Total Construction Cost without PV - Platinum Kitsap County Admin Building - Other NVCI Cancer Research - Silver

Heifer International Center - Platinum

The RSF will meet or exceed all the project objectives at our budget at a firm fixed price.

• So what is the payback?

The RSF construction costs are similar to other institutional office buildings.

# **Replicable – Cost Control Review**

- Firm fixed price with required energy goals in designbuild contract
- Integrated architecture and envelope as efficiency measures
- Simple and commercially viable
- No unique technologies required
- Modular precast wall panels with minimal finishes
- Optimized glazing area
- Repeatable office floorplate
- Takes a coordinated effort with the owner (and all user groups), architect, builder, and engineers

# **Replicable – Owner Review**

- Owner made tough decisions up front
  - o Set budget
  - Sought maximum value for that budget
  - Prioritized goals
- Design-build procurement process
  - Managed the team to the RFP and its substantiation criteria
  - Rewards
- Allowed design-build team to use creativity to maximize value (innovation)
- Owner did not solve the problem (but knew the solution existed)

#### Questions

Thanks for your time and attention

Shanti Pless shanti.pless@nrel.gov

Paul Torcellini paul.torcellini@nrel.gov