

Organic Contaminants and Trace Elements in Water and Sediment Sampled in Response to the Deepwater Horizon Oil Spill

Lisa Nowell, Amy Ludtke, David Mueller, and Jonathon Scott

Deepwater Horizon oil spill

April 20 – July 15, 2010

- Macondo-1 well in Gulf of Mexico
- 4.9 million barrels of Macondo-1 (M-1) well oil
 - Light, sweet Louisiana crude (<1% S)
 - Subject to weathering

U.S. Coast Guard

Today's talk

- OWQ study design
- Data issues and analysis
- Results by contaminant class / medium
 - Occurrence: pre-landfall vs. post-landfall
 - Exceedance of benchmarks: EPA, supplemental
- Comparison to Macondo-1 well oil fingerprinting (Rosenbauer et al. 2010)

Pre-landfall sampling:

Oct 4 to 14, 2010

May 7 to July 7, 2010

- Assess baseline conditions prior to oil landfall
- 70 Pre sites were sampled, incl. beaches, barrier islands, coastal wetlands
- 5 States: TX, LA, MS, AL, FL
- 1 water, 1 sediment sample

 US Coast Guard: actionable levels of oil-related chemicals

sampling:

Post-landfall

- 48 Pre sites + 1 new site (Aug 23)
 were sampled based on observation of
 oil, trajectory modeling, oceanography
- 5 States, espec LA, MS, AL
- 1 water, 1 sediment sample

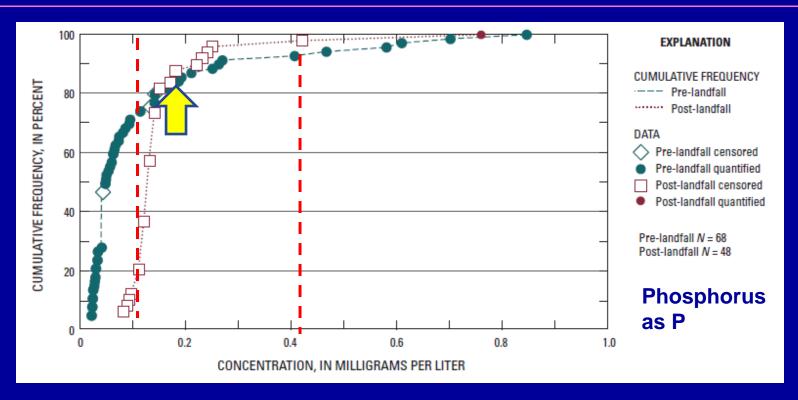
D Demcheck, USGS

Contaminant analysis

Contaminant	WATER: Pre	WATER: Post	SEDIMENT: Pre	SEDIMENT: Post
PAH/SVOC	NWQL		NWQL	
Oil & grease	TAL-FL		TAL-CO	
VOC/BTEX	NWQL		-	-
Petrol HC/GRO	TAL-FL		_	_
DRO	_		_	_
TEs	NWQL		USGS SCL	
Nutrients	NWQL		USGS SCL	
Carbon	USGS OCRL		USGS SCL	

Contaminant analysis

Contaminant	WATER: Pre	WATER: Post	SEDIMENT: Pre	SEDIMENT: Post
PAH/SVOC	NWQL	TAL-FL	NWQL, TAL-VT	TAL-VT
Oil & grease	TAL-FL	TAL-FL	TAL-CO	TAL-FL
VOC/BTEX	NWQL	TAL-FL	-	-
Petrol HC/GRO	TAL-FL	TAL-FL	_	_
DRO	_	TAL-FL	_	_
TEs	NWQL	TAL-FL	USGS SCL	USGS SCL
Nutrients	NWQL	TAL-FL	USGS SCL	USGS SCL
Carbon	USGS OCRL	USGS OCRL	USGS SCL	USGS SCL


Data issues

- Changing target analyte lists
- Multiple laboratories
- Variable reporting levels (RL)
- Lots of censored data (nondetections, <RL)

- Limit comparison to analytes in common
- Use QC data
- Censor data at common RL for some analytes
- Use methods applicable to censored data

Example: systematic differences in RL

- RL was lower for Pre (0.05 mg/L) than Post samples (0.08–0.4 mg/L)
- Pre: 60% of samples were mostly detections of 0.05 mg/L or below
- Post: 60% were nondetects in range of <0.08 to <0.12 mg/L
- Censor (less sensitive method)

Trace elements: Water

Occurrence:

- Data limitations: (i) one sampling period,
 (ii) high/variable RLs
- Above optimal censoring threshold:
 - Post > Pre: Ba, Ca, Mg, Mo, K, Na
 - Pre > Post: Ammonia, P

Benchmarks:

- Human health exceedances (V, Ni): none
- Aquatic-life exceedances : 47% of samples
 - Minimum of: 29% Pre and 93% Post
 - Cannot compare statistically because

 (i) some TEs with benchmark exceedances were analyzed during only 1 period and (ii) some censored samples had RL > benchmark.

Trace elements: Sediment

Occurrence:

- Strong acid digestion → total in sediment matrix
- Above optimal censoring threshold: whole sediment
 - Post > Pre: Ca, Carbon, Na, Sr
 - Pre > Post: Pb, Hg
- Fine sediment (<63 μm): these differences disappeared

Benchmarks:

- Look for elements at potentially toxic concentrations that are also enriched relative to baseline
- 16 of 122 samples (i) exceeded upper screening-level benchmarks AND (ii) were enriched relative to baseline concentrations in the same element:
 - Ba (14), V (5), Al (3),
 Mn (3), As (2), Cr (2), Co (1)

Organic contaminants: Water

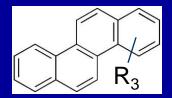
Occurrence:

- Detection frequencies were typically low and comparable for Pre vs. Post samples
- Post > Pre: Toluene

Benchmarks:

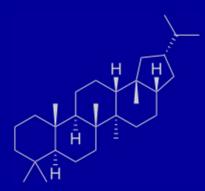
- Human health exceedances (benchmarks available for 11 compounds): None
- Aquatic-life exceedances: 1 Post sample (LA) exceeded EPA's benchmark for PAHs+BTEX

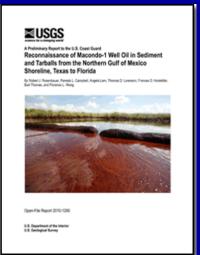
Organic contaminants: Sediment

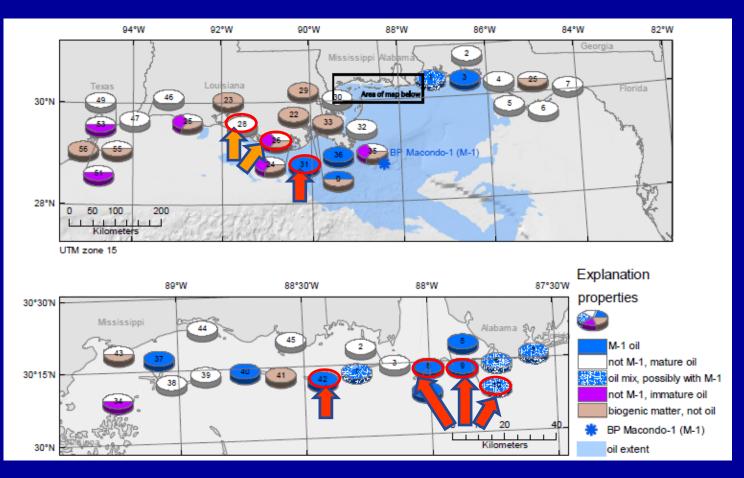

Occurrence:

- Most PAHs were detected in both sampling periods (despite low sediment-TOC)
- Post > Pre: 20 PAHs (3 parent, 17 alkyl)
- Differences still significant after OC-normalization
- Significant differences: usually due to 6–7 sites

Benchmarks


- 1 Pre sample (TX) exceeded EPA's benchmark for PAH mixtures
- Empirical sediment-quality benchmarks (conc'ns historically associated with adverse effects in field)
 - 70% no-effect range, 27% probable effect range
 - Pre and Post not significantly different





Geochemical oil fingerprinting

Highlights

- Trace elements Water
 - Aq-life benchmarks exceeded in ~50% water samples;
 minimum value (cannot evaluate relation to oil landfall)
- Organic contaminants Sediment
 - M-1 oil may contribute to high PAHs at 5 sites.
 - Post > Pre conc'ns: for 3 PAHs and 17 alkyl-PAHs
 - Of 7 sites with the highest PAH concentrations, 5 have M-1 oil fingerprint
 - These 5 sites exceed empirical sediment benchmarks (27% samples), but not EPA benchmark for PAH mixtures
 - EPA benchmark for PAH mixtures was exceeded only at 1 Pre-landfall site (TX)

For more information:

Office of Water Quality:

http://water.usgs.gov/owq/deephorizonoilspill/

 Organics/trace elements report : <u>http://pubs.usgs.gov/of/2011/1271/</u>

Oil fingerprinting reports (Rosenbauer et al.):

http://pubs.usgs.gov/of/2010/1290/ http://pubs.usgs.gov/of/2011/1014

Lisa Nowell
U.S. Geological Survey
Placer Hall, 6000 J Street
Sacramento, CA 95819
(916) 278-3096
Ihnowell@usgs.gov