

Objectives & Outline

- Tributary monitoring objectives & design
- Connecting tributaries to the lakes
- Pathogens in Great Lakes tributaries
- Optical properties of water
- Web-based mapping and data compilation

Tributary Monitoring - Objectives

- Begin to implement the National Monitoring Network (NMN) design for the Great Lakes
- Contaminant loads (baseline)
- Provide quantifiable measures of restoration progress on major Great Lakes tributaries
- Model potential load changes throughout the Great

National Monitoring Network

Site selection is based on the National Monitoring Network design

Great Lakes are based on HUC8 basins

(Coastal basins are HUC6)

Determine Baseline of Toxic Contaminants

- At all 59 NMN sites:
- POCIS (Polar Organic Chemical Integrative Sampler): potentially endocrine disrupting or acutely toxic hydrophilic contaminants
- SPMD (Semi-permeable membrane devices): designed to mimic biological membranes, such as the gills of fish.
- Water Samples for mercury and CEC organic contaminants collected twice

Tributary Monitoring

30 sites:

- Automated monthly samples plus events
- Nutrients, CEC, bacteria
- temperature, D.O., pH, specific conductance, and turbidity to forecast/nowcast sediment and nutrient loads

Tributary Monitoring

Specific conductance (sensor measured) vs. Chloride (lab measured)

Sensor data will be used to develop regression models to predict other water-quality analytes. Modeled analytes may include:

- Suspended sediment
- Phosphorus
- Nitrogen
- Emerging contaminants
- Mercury

http://nrtwq.usgs.gov/wi/

- Tributary monitoring objectives & design
- Connecting tributaries to the lakes
- Pathogens in Great Lakes tributaries
- Optical properties of water
- Web-based mapping and data compilation

Synoptic mapping of the nearshore mixing zone gives insight into mixing processes, circulation, and contaminant transport.

In this river, significant mixing occurs in the lower 2 miles, yet river water is only 40% diluted upon reaching the harbor.

Example results:

Observed circulation patterns suggest that river water, and the contaminants therein, may be mixed along the shorelines both north and south of the mouth by interaction of near-shore currents with local bathymetry.

In addition, AUV data indicates a large anomaly in water quality south of the harbor along the lake shore in the vicinity of a sewer outfall and another anomaly north of the mouth at the seawall separating the spoil disposal area from the lake.

- Tributary monitoring objectives & design
- Connecting tributaries to the lakes
- Pathogens in Great Lakes tributaries
- Optical properties of water
- Web-based mapping and data compilation

Pathogens in Great Lakes Tributaries

- Tributary monitoring objectives & design
- Connecting tributaries to the lakes
- Pathogens in Great Lakes tributaries
- Optical properties of water
- Web-based mapping and data compilation

Optical Properties of Water

- Fluorescence/absorbance and chromophoric dissolved organic matter (CDOM)
- Continuous measurement of CDOM in rivers as an indication of organic matter and the relation with contaminants
 - Relate specific optical signals to treated and untreated wastewater contamination
 - Pathogens and fecal indicator bacteria
 - Wastewater chemicals
- Optical measurements in the Great Lakes to study transport from tributaries
 - Transport of contaminants in the near shore environment

- Tributary monitoring objectives & design
- Connecting tributaries to the lakes
- Pathogens in Great Lakes tributaries
- Optical properties of water
- Web-based mapping and data compilation

Web mapping application

Web compilation of data

- Environmental Data Discovery and Transformation (EnDDaT)
 - Web tool to combine data from multiple sources
 - Originally developed for beach projects; especially useful for watershed/stream studies
 - Data compilation and aggregation
 - Model implementation

Questions?

- GLRI Tributary Monitoring
 - Dan Sullivan¹
- Pathogens
 - Steve Corsi¹
- cDOM testing
 - Paul Reneau¹ & CA WSC

- AUV
 - Ryan Jackson²
- LaMP Mapper
 - Gary Latzke¹
- EnDDaT
 - Dave Sibley³