

Burning Our Rivers: The Water Footprint of Electricity

Travis Leipzig
River Network

<u>Tleipzig@rivernetwork.org</u>
(503) 542-8396

And

Wendy Wilson
River Network

Wwilson@rivernetwork.org
(208) 345-3689

Outline

- 1. River Network's role and Burning Rivers report background
- 2. Report key findings
- 3. Recommendations and opportunities

River Network's Role

Through our Rivers, Energy & Climate Program we are helping local organizers address impacts of climate change and the water energy nexus...

- Developing tools and resources to use on the ground
- Helping connect local leaders; sharing success stories
 - Building capacity for nation-wide grassroots action

Communicating The Water-Energy Nexus

Energy for water

- U.S. annual total = 521 million megawatt hours per year
- 13% of total U.S. consumption of electricity
- More than entire energyintensive pulp/paper and petroleum sectors combined
- Comparable to the combined electricity consumption of all the microwaves, color TV's, and computers found in our homes

Communicating The Water-Energy Nexus

Water for energy

Burning Our Rivers:

The water footprint of electricity

Draft

Written by Wendy Wilson, Travis Leipzig and Bevan Griffith-Sattenspiel

Energy-related Water Stress

Frashwater Use by U.S. Priver Plants: Electricity's Thirst for a Precious Resource

Source: Union of Concerned Scientists: 2011

Which source of U.S. electricity uses the most water for every WWh of electricity produced?

Water Use for Typical Cooling Systems

Table 1 – Average Cooling System Water Use and Consumption

Type of Cooling Water System	Average gal/kWh	
	Water Use	Water
		Consumption
Once-through	37.7	0.1
Recirculating wet	1.2	1.1

<u>Water consumption</u>: Water is withdrawn from a source but not directly returned to the source because it is evaporated, transpired, incorporated into products and crops, or consumed by people or livestock.

Water use/withdrawal: Water is removed from the ground or diverted from a surface source for use. This water is typically returned to the environment.

U.S. Sources of Electricity

Thermoelectric power accounts for 90% of all

U.S. electricity

- Coal (49%)
- Natural Gas (20%)
- Nuclear (19%)
- Petroleum (2%)
- Hydro (6%)
- Renewables (3%)

Thermoelectric Power: Electrical power generated from a heat source, such as burning coal or nuclear fission, indirectly through devices like steam turbines.

Energy produced vs. water used

Thermoelectric Power uses...

 As much as all agricultural water

• 53% of all fresh surface water withdrawals (USGS, 2010)

Water used for electricity

Five times as much as direct water use

Recommendations and opportunities...

1. Changing WHAT we burn and HOW we burn it.

- Decommissioning or retrofitting old once through thermoelectric plants
- Wider deployment of water-efficient renewable energy technologies
 - Carefully assess carbon capture and sequestration technologies that depend on increased water use

Renewables save water

Source: U.S. Department of Energy, 20% Wind Energy by 2030 http://www.20percentwind.org/20p.aspx?page=Report

2. Better measurement of energy-related water use and stronger regulation of water impacts in the electric industry.

- Strengthening water impact analysis and agency coordination during siting and permitting of new facilities
- Improve data collection and monitoring on water use and pollution at existing facilities
- Develop and adopt standardized "Energy-Return-on-Water-Invested" (EROWI) decision making tools for energy companies and public utility commissions.

3. Strengthen watershed level and community-based programs to reduce water and electricity use

- Promote efficiency
- collaborate for success
- Encourage wider adoption of Integrated Resource Recovery
- Assure stronger public involvement in water conservation planning
- Promote green infrastructure, watershed restoration and community-based sustainability programs

