

Analyzing Soils Data for the National Wetland Condition Assessment

Lenore Matula Vasilas

Soil Scientist

USDA-NRCS-Soil Science Division

Soils Field Data Collected by Horizon

- Abrupt boundary
- Field texture
- % rock fragments
- Matrix color
- Rodoximorphic features
- % masked sand grains in sandy soils

Other field data collected

- Field Indicators of Hydric Soils in the United States met
- Water table depth

Lab analysis by horizon

- Particle size
- Calcium carbonate equivalent
- Total C, N and S
- pH
- CEC
- Amonium oxalate extraction (Al, Fe, Mn, P, Si)

- EC
- Dithionite-citrate extraction (Al, Fe, Mn)
- Trace elements
 - Ag, As, Ba, Be, Cd, Co,Cr, Cu, Hg, Mn, Mo,Ni, P, Pb, Sb, Se, Sn. SrV, W, Zn
- Bulk density

Questions????

- What is the definition of "condition"?
- How do we determine reference?
- How do we group sites so that we are making valid comparisons?
- Do we rate stressors or rate the impacts due to the stressors?
- How do we integrate other data (veg., hydrology, buffer, etc.) with results from soils analysis to come up with comprehensive results?

Examples of Ecosystem Services Directly Impacted by Soil Condition

- Water retention
- Sedimentation
- Biogeochemical cycling of Nutrients

Soil Stressors to Ecosystem Services

- Permeability
- Drainage class/hydroperiod
- Cation exchange capacity
- Organic carbon content

- Slope
- Microtopography
- Soil ecology (microbial community)

Potential soils based indicators to evaluate stressor

- Permeability
 - -Texture
 - -Structure
 - -Evidence of soil compaction

Potential soil based indicators of drainage class/hydroperiod stressor

- Field Indicator(s) of Hydric Soils
- Surface color
- Presence of organic soil material at the surface
- Subsurface color
- Redox feature characteristics

Potential Soil Based Indicators of Stressors to Soil Ecology

- Surface color
- Organic matter content
- Redox features

Soil Characteristics Used to Evaluate Water Retention

- Long term storage
 - Slope
 - Drainage class/hydroperiod
 - Permeability

- Short term
 - Slope
 - Microtopography
 - Permeability
 - Surface organic carbon content

Soil Characteristics Used to Evaluate Biogeochemical Cycling

- Cycling of Redox
 Sensitive Compounds
 - Permability
 - Drainage class/hydroperiod
 - Organic C content
 - Soil ecology (microbial community)

- Sediment retention (phosphorous/heavy metals)
 - Permeability
 - Slope
 - Microtopography
 - Cation exchange capacity

Soil Characteristics Used to Evaluate Biogeochemical Cycling

- Carbon sequestration
 - Organic carbon content
 - Drainage class/hydroperiod
 - Landscape position
 - Microtopography

Summary

- Soils play an integral part in the way wetlands function.
- The condition of hydric soils can impact the condition of the wetland.
- Direct measurements made through the NWCA sampling can be used as indicators or to calibrate indicators or models in the evaluation of wetland condition.

United States Department of Agriculture Natural Resources Conservation Service

