

MERGANSER:

Predicting Mercury Levels in Fish and Loons in New England Lakes

U.S. EPA | SCIENCE AT THE EPA NEW ENGLAND REGIONAL OFFICE

Cooperators:

USEPA

USGS

NESCAUM

NEIWPCC

State of Vermont DEC

BioDiversity Research Institute

Ecosystems Research Group

Presenting author: Neil Kamman, VTDEC

Genesis of MERGANSER

- SPARROW "Spatially Referenced Regressions on Watershed Attributes" - provides estimates with uncertainty of nutrient loadings in rivers (USGS, Smith et al, 1993 & 1997; Moore et al, 2004)
- Used in TMDL and nutrient-criteria programs, tracking nutrient sources/delivery in Gulf of Mex., Chesapeake Bay, Long Island Sound Study, etc.

Spatially Referenced Regressions on Watershed Attributes

MERGANSER: Main Objectives

- MERcury Geo-spatial AssessmeNtS for the New England Region
- Develop tool to improve knowledge of how Hg interacts with environment and to inform management response
- Use approach that maximizes use of available data on Fish & Loon Hg, Hg wet/dry deposition & landscape features
- Identify factors linked with spatial variation in Fish & Loon Hg and
- Provide estimates of Fish and Loon Hg (with error estimates) for as many lakes as possible in New England

Project Team

- EPA: Alison Simcox (Region 1), Diane Nacci and Jane Copeland (AED), John Johnston (ORD) (Thanks also to Jeri Weiss)
- NESCAUM: John Graham, Kathleen Fahey (now Laura Shields)
- USGS: Jamie Shanley, Richard Moore, Craig Johnston, Keith Robinson, Richard Smith
- VT DEC: Neil Kamman
- Biodiversity Research Institute (BRI): David Evers, Kate Williams
- Ecosystems Research Group (ERG): Eric Miller
- NEIWPCC: Susy King

Modifying SPARROW for Mercury

- Model endpoints (dependent variables)
 - Fish Hg
 - Loon blood Hg
- Independent variables
 - Watershed characteristics
 - Water quality characteristics
 - Physical lake attributes
 - Deposition
- User-selections
 - Fish taxa and fish length
 - Hg reduction scenarios

Lakes and proxies

μeq/L < 50 50-100 100-200 200-400 >400

Watershed-level alkalinity modeled in lieu of in-Lake pH

6 HBEF r² = 0.67
Sleepers River r² = 0.79
Beaver Meadow r² = 0.86
Lake Inlet r² = 0.92

Wetland cover used as proxy for in-lake DOC

4404 lakes modeled from 765 Lakes with data

Hg Deposition model for MERGANSER

- Developed specifically for MERGANSER by Eric Miller, Ecosystems Research Group, Ltd., building from his earlier work.
- Hybrid of High-Resolution Deposition Model (HRDM) and Regulatory Modeling System for Aerosols and Deposition (REMSAD)

Modeled Hg wet and dry deposition

Core datasets

- NERC Dataset
 - Pre 2005
 - Northeastern North America
 - 16,000K records for NE States and Atlantic Provinces
 - Core dataset from which the NE Regional TMDL was calculated
 - 13 core taxa
- Additional State, and BioDiversity Research Institute data
- datasets
 - Post 2005
 - Compiled by EPA-ORD (Atlantic Ecology Division)

Data screening

- Corrected units and retained only wet-weight
- Ensured validity of length / weight units and screened outlier data
- Examined length and weight / Hg plots to identify outliers
- Ensured accuracy/consistency of taxa codes

- Highest [Hg] in walleye, pickerel, smallmouth bass
- Lowest [Hg] in bullhead, panfish
- Yellow perch intermediate in [Hg]
- Results consistent with prior studies, despite augmented data.

Cross-taxa predictions

- Explored creating regressions to convert Hg in other taxa to standard yellow perch values
- Used these to produce length-adjusted standard yellow perch Hg for each lake in dataset.
- Cool analysis, but ultimately, these were not used in Merganser as individual taxa yielded higher variance explained in the model.

Loon Hg

The "female loon unit" (FLU)

FLUs from male blood samples (n=278 for modeling)

Maine FLUs (Equation 1):

 $FLU = PHg = (0.032112 + 0.81409\sqrt{\sigma Hg})^2$

95% CIs: 0.727-0.909

r = 0.80

Other states' FLUs (Equation 2):

 $FLU = PHg = (-0.27705 + 1.025411\sqrt{OHg})^2$

95% CIs: 0.887-1.187

r = 0.81

FLUs from chick blood samples (6-8 weeks old; n=29)

 $FLU = (0.467509 + 1.791596\sqrt{JuvHg})^2$

95% CIs: 1.258-2.768

r = 0.73

The Merganser Model

Table 1. MERGANSER predictors and coefficient values, with standard error, t- and p-values, and variance inflation factors. Overall model r2 was 0.63.

Predictor	Units	Coefficient	Standard	t-value	p-value	Variance Inflation factor	Source(*f)
	Spa	tial variables		•			\$
Intercept		-11.1270	0.463	-24.03	< 0.0001	0.00	
In (total Hg deposition)	μg m ⁻² yr ⁻¹	0.2773	0.046	6.00	< 0.0001	4.06	Miller et al. (2005); this paper
In (watershed area)	km ²	0.0354	0.006	5.90	< 0.0001	2.24	NHDPlus
In (% forest canopy area)	%	0.2400	0.085	2.83	0.0047	6.49	NLCD
In (% wetland area)	%	0.0666	0.012	5.60	< 0.0001	2.01	NWI
4th root of population density, 2000 Census	km ⁻²	0.0514	0.008	6.16	< 0.0001	2.33	NHDPlus
In (slope)	unitless: y/x	-0.1400	0.032	-4.32	< 0.0001	3.15	NHDPlus
In (mean annual temperature, 1971-2000)	degrees C (°C)	-0.4446	0.057	-7.83	< 0.0001	5.51	NHDPlus
In (% agricultural land)	%	0.0198	0.007	2.86	0.0042	1.92	NLCD
weighted watershed alkalinity	unitless(*3)	-0.1207	0.009	-13.17	< 0.0001	1.68	EPA
Interaction term: % shrubland and ln (total Hg deposition)		0.0092	0.001	9.26	< 0.0001	2.05	NLCD, Miller et al. (2005)
Interaction term: % forest canopy and ln (total Hg deposition)		0.0035	0.000	7.46	< 0.0001	9.32	NLCD, Miller et al. (2005)
Interaction term: In (total Hg deposition) and watershed alkalinity (*2)		0.1928	0.027	7.06	< 0.0001	1.93	Miller et al. (2005), EPA
3 SE S = \$		input variable	s				- 2
Loon	binary: 1/0	9.4821	0.202	46,83	< 0.0001	37.36(*4)	User specified
In (length)	mm	1.5310	0.036	42.24	< 0.0001	39.95(*4)	User specified
In (length): brook trout	mm	-0.1337	0.010	-13.78	< 0.0001	1.63	User specified
In (length): brown bullhead	mm	-0.1846	0.007	-24.97	< 0.0001	1.14	User specified
In (length): eastern chain pickerel	mm	-0.0720	0.008	-8.99	< 0.0001	1.25	User specified
In (length): lake trout	mm	-0.1716	0.008	-21.14	< 0.0001	1.94	User specified
In (length): land locked salmon	mm	-0.1600	0.010	-15.76	< 0.0001	1.26	User specified
In (length): largemouth bass	mm	-0.0150	0.005	-3.15	0.0016	1.87	User specified
In (length): pumpkinseed	mm	-0.0362	0.012	-2.90	0.0037	1.10	User specified
In (length): white perch	mm	0.0457	0.006	8.07	< 0.0001	1.30	User specified
In (length): white sucker	mm	-0.2292	0.013	-17.76	< 0.0001	1.15	User specified

Smallmouth bass (32-cm) probability plot

Loon Probability Plot

Scenario Testing

EPA's Wildlife Risk Project

http://www.epa.gov/aed/html/wildlife/index.html

Future Steps and Uses

- Incorporating specific water quality variables will improve predictions, but to the detriment of expanded predictability
- •Incorporation of predictions into next targeted sampling target 'low probability of exceedance' lakes.
- •Consider application of MERGANSER to other data rich areas, but with mindfulness that watershed processes vary tremendously across the US.