

Prior to 2011

- Two extractions:
- Liq-liq and SPE
- Requires 1 L sample, organic solvents
- Three analytical methods:
- GC/ECD, GC/NPD, GC/MS
- No PPCPs on lists

New Method in 2011

- Stir Bar Sorptive Extraction
- Less than 20 mL solvent (methanol) used
- 5 mL or 100 mL sample
- Non-labor intensive
- GC/MS

Analysis of Water for Organics

Gerstel Twister© SBSE

- •1.5 cm magnetic stir bar coated with 0.5 mm polydimethylsiloxane (PDMS)
- •Dropped in water sample and sample is stirred on stir plate for 1.5 to 21 hours, depending on sample volume
- •Extraction efficiency depends on compound's affinity for water vs. PDMS

- Smaller sample size requirements
- No toxic organic solvents
- Easy, unattended extraction
- No time consuming concentration steps
- Entire extract is consumed (no disposal issue)
- Lower reporting limits on many compounds
- New PPCP compounds

Advantages

Results

2011 Urban Stream Sampling

PPCP - new in 2011	2011 RL (μg/L)	2011 detections
Bisphenol A	0.2	9 (5)
Coprostanol	0.2	2 (2)
17B-Estradiol	0.1	0 (1)
Estrone	0.1	1 (1)
17A-Ethynyl Estradiol	0.1	0 (1)
4-n-Nonylphenol	0.02	0 (2)
4-n-Nonylphenol Diethoxylate	0.05	0 (1)
4-tert-Octylphenol Diethoxylate	0.02	2
4-tert-Octylphenol Monoethoxylate	0.02	3 (20)
Triclosan	0.02	5 (1)
Tris(2-chloroethyl) phosphate (TCEP)	0.04	11 (10)

$$HO \longrightarrow CH_3 \longrightarrow OH$$

Bisphenol A

- $\cdot RL = 0.2 \mu g/L$
- •Range 0.20 to 1.7µg/L
- •9 detections above RL, 5 more between MDL and RL
- 6 of 14
 associated with
 WWTP discharge:
 201, 401, 405,
 505, 509, 1201
- •300's from urbanized area, possible CSOs
- •700's, 800's rural

Coprostanol

- •Formed by the degradation of cholesterol in higher animals and birds (carnivores)
- Used as a biomarker for human feces
- $\cdot RL = 0.2 \mu g/L$
- •Range 0.03 to 0.84
- •Found at 2 sites above the RL, the two most influenced by WWTP discharge
- Also found at two highly urbanized sites between RL and MDL

Estrogens

- Three estrogen compounds evaluated
- •Only Estrone was detected above RL = 0.1 µg/L
- Site heavily influenced by WWTP
- •Two compounds found between MDL and RL at highly urbanized site
- •Currently evaluating ELISA to measure to 0.05 µg/L
- Developing LCMS method

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3

Nonyl phenol and derivatives

- 4 compounds analyzed
- •RL = $0.02 0.05 \mu g/L$
- •4-tert-Octylphenol Diethoxylate and 4tert-Octylphenol Monoethoxylate detected
- All detections at WWTP influenced sites
- •0.02 to 0.33 range
- •OPEO1 found at 20 additional sites between MDL and RL

Triclosan

- -RL = 0.02
- •Range 0.02 0.36
- •Detected 5 times, all WWTP influenced sites

Tris(2-chloroethyl) phosphate (TCEP)

- $\cdot RL = 0.04$
- Detected 17 times
- •Range = 0.04 0.31
- •Higher levels associated with WWTP, but lower levels (101, 105, 205, 209, 301, 305, 309, 605, 609, 1005, 1201) are not •Tentatively identified
- several other flame retardants in samples not associated with WWTP

PAH		2010 RL (µg/L)		2010 detections
Acenaphthene	(µg/L) 0.02	(μ g/ L)	2	0
Acenaphthylene	0.02	2	0	0
Anthracene	0.02	2	1	0
Benzo(a)anthracene	0.02	2	1	Ō
Benzo(a)pyrene	0.02	2	1	O
Benzo(b)fluoranthene	0.02	2	3	O
Benzo(g,h,i)perylene	0.04	2	0	O
Benzo(k)fluoranthene	0.02	2	2	O
Chrysene	0.02	2	7	O
Dibenz(a,h)anthracene	0.04	2	0	O
Fluoranthene	0.02	2	13	O
Fluorene	0.02	2	2	O
Indeno(1,2,3-cd)pyrene	0.04	2	O	O
2-Methylnaphthalene	0.02	2	0	O
Naphthalene	0.02	2	1	O
Phenanthrene	0.02	2	4	O
Pyrene	0.02	2	12	O 16

PAHs

 Little to no correlation between sediment PAH detections and water PAH detections

2011 Water and Sediment PAHs

2011 Brush Creek PAHs

	2011 DI	2010 RL	2011	2010
Pesticides	(µg/L)	(µg/L)		detections
Alachlor	0.04	0.1	0	0
Atrazine	0.1	1	13	1
Bifenthrin	0.04	0.099	0	0
Bromacil	0.2	4	2	0
Chlordane, technical	0.2	0.19	0	0
Chlorothalonil	1	0.049	O	0
Chlorpyrifos	0.02	0.025	0	0
Diazinon	0.02	0.2	0	0
Dieldrin	0.02	0.02	1	5
Diethyltoluamide				
(DEET)	0.1	1.5	17	3
Malathion	0.05	0.02	0	0
Metolachlor	0.04	0.5	13	0
Permethrin	0.4	0.5	0	0
Pyrethrins Pyrethrins	0.2	1.5	0	0
Simazine	0.04	1	0	5
Tebuthiuron	0.5	2	O	0
Trifluralin	0.02	0.015	0	1 20

Atrazine & Metolachlor

Both herbicides used for broadleaf and grass control in crops.
Strong positive correlation between the two herbicides.

2011 Urban Streams

N,N-Diethyl-*meta*-toluamide (DEET)

Not correlated with Atrazine and Metolachlor
More of a personal care product, used in topical pesticide repellant
Found an additional 10 times between the MDL and RL

- New method in 2011 made sampling easier (less containers, less water volume collected)
- Easier analysis
- Greener analysis
- Lower detection limits on most organic compounds, resulting in more detections
- Expanded list of compounds, including emerging contaminants

Conclusions