Applications of Fluorescence Spectroscopy for Monitoring Water Quality in an Urban Watershed

Jami Goldman, Stewart Rounds, Joseph Needoba May 2nd, 2012

Approach:

- (1) Develop a robust model using fluorescence spectroscopy for identifying CDOM composition with predictive capabilities for wastewater (WW) effluent detection
- (2) Demonstrate fluorescence linear responsiveness with an end-member mixing experiment and apply to the aquatic system.
- (3) Use a multivariate linear regression approach to quantify wastewater found in a sample.
- (4) Distinguish sources and qualitative characteristics of organic matter with principle component analysis.

Background

- <u>Dissolved Organic Matter</u> (DOM) pool is poorly characterized but integral to ecosystem
 - controls microbial food webs
 - biogeochemical cycles
 - highly variable in natural systems
- Optically active fraction of DOM (CDOM) effective tracer of organic matter
- Spectral fluorescence measurements can distinguish different fractions of the DOM pool

Tualatin River, 2009

Clackamas River, 2009

Organic Matter: Sources

- Natural
 - Leached from soil and terrestrial plants
 - Algae and other instream plants
 - Microbial activity
- Anthropogenic
 - Discharge of septic/WW effluents

Technology:

- Scanning fluorometer creates excitation-emission matrices (EEMs).
- -Combines fluorescence (emission) spectra measured from a series of different excitation wavelengths
- Letters represent
 excitation/emission pairings →
 specific characteristics of
 organic matter in the water
- -EEMs provide information about presence, concentration, composition and source.

Site Description

- Tualatin River Basin
 - Slow moving urban river
 - Lower reach ~500,000 people
 - Clean Water Services
 - Wastewater and stormwater management utility
 - 60 million gallons per day of wastewater
 - Advanced tertiary treatment
 - Highly controlled system (reservoir releases/WW regulations)
 - Low flow period ~ 40% treated WW

Site Map

Methods:

Parameters of Interest for this study

Fluorescence Peak/Parameter	Excitation/Emission (nm)	Description
Т	270/340	Tryptophan-like, protein like
A	260/450	Humic-like
С	340/440	Humic-like
Fluorescence Index (FI)	Ex370→Em470/Em520	Higher values indicate algal(microbial) vs. terrestrially derived DOC
SUVA ₂₅₄	Absorbance at 254nm normalized to DOC	Correlated to aromatic content

DOC Annual Average Concentrations:

SUVA₂₅₄ Annual Averages:

FI Annual Average Values:

End-Member Mixing Experiment

- Goal: Determine fluorescence response and degree of linearity (headwater and WW effluents)
 - Headwater sample mixed with both types of WW effluent (2 experiments)
 - 10 samples per experiment
 - 10% incremental increases of WW added to each
 - Mixed and shaken for 2 hours
 - Fluorescence and Absorbance measurements

End-Member Mixing Model

 Goal: Determine if a simple mass balance equation using individual peaks can predict WW effluent for the downstream river site

$$PercentWastewater = \frac{Headwater - Downstream}{(Headwater - (\frac{WW_1 + WW_2}{2}))} *100$$

- Samples needed from all 4 sites
- Fluorescence signals for peaks A, T, and C

Multivariate Linear Regression Model

- Goal: Construct a model using multiple fluorescence peaks to quantify percent WW at downstream river site
 - Model Inputs: 74 total samples (12 headwater, 28 tributary, 11 downstream, 23 WWTP)
 - Headwater and tribs set at 0% WW
 - WWTP set at 100% WW
 - Downstream %WW calculated from Tualatin Annual Flow Report
 - Model Validated: 30 total samples
 - 17 headwater Clackamas samples set at 0%
 - 13 from secondary WWTP samples set at 100%
 - Key Model Stats

Mean Error- indicates model bias (ideal close to 0)

Mean Absolute Error- typical error with model prediction (ideal <10%)

Results:

Overall Model Statistics:

Mean Error (ME)= 0.1% Mean Absolute Error (MAE)= 8.1%

Principle Component Analysis

- Goal: Distinguish among sources and characteristics of organic matter across all samples
 - Input: All 74 samples
 - 3 variables: Peaks A, T, and C
 - PC1 captured 83% of the variability
 - PC2 captured 16% of variability
 - 99% variability in fluorescence data explained with PC1 and PC2
 - Trends were explained for sample location, FI values,
 SUVA₂₅₄, and DOC concentrations

Conclusions:

(1) A simple two-component mixing experiment showed a fluorescence linear response

(2) An end-member mixing model using individual peaks is too simplified a method and does not accurately represent the complex downstream mixture

(3) A multivariate regression model using all three peaks can accurately predict %WW effluent within 80% accuracy

(4) PCA distinguished qualitative variability in sample set including DOC, FI values, and SUVA₂₅₄

Implications:

- Fluorescence models can be used as predictive tools
- In-situ instrumentation can provide real-time WW monitoring
- Identify point and non-point sources of pollution
- Direct opportune times for expensive discrete analysis (OWC, PCPs, and other emerging contaminants)

http://dx.doi.org/10.1 021/es2041114

Contact Info:

Jami Goldman

jgoldman@usgs.gov

503-251-3205

