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Approach:
(1) Develop a robust model using fluorescence

spectroscopy for identifying CDOM composition
with predictive capabilities for wastewater (WW)
effluent detection

(2) Demonstrate fluorescence linear responsiveness
with an end-member mixing experiment and apply
to the aquatic system.

(3) Use a multivariate linear regression approach to
quantify wastewater found in a sample.

(4) Distinguish sources and qualitative characteristics
of organic matter with principle component
analysis.

http://www.usgs.gov/


Background

• Dissolved Organic Matter (DOM)
pool is poorly characterized but
integral to ecosystem
– controls microbial food webs
– biogeochemical cycles
– highly variable in natural systems

• Optically active fraction of DOM
(CDOM) effective tracer of organic
matter

• Spectral fluorescence
measurements can distinguish
different fractions of the DOM pool

Tualatin River, 2009

Clackamas River, 2009

http://www.usgs.gov/


Organic Matter: Sources

• Natural

– Leached from soil and
terrestrial plants

– Algae and other in-
stream plants

– Microbial activity

• Anthropogenic

– Discharge of
septic/WW effluents

– Storm water runoff

http://www.usgs.gov/


Technology:
- Scanning fluorometer creates
excitation-emission matrices
(EEMs).

-Combines fluorescence
(emission) spectra measured
from a series of different
excitation wavelengths

- Letters represent
excitation/emission pairings → 
specific characteristics of
organic matter in the water

-EEMs provide information
about presence, concentration,
composition and source.

http://www.usgs.gov/


Site Description

• Tualatin River Basin
– Slow moving urban river

– Lower reach ~500,000 people

– Clean Water Services
• Wastewater and stormwater management utility

• 60 million gallons per day of wastewater

• Advanced tertiary treatment

• Highly controlled system (reservoir releases/WW
regulations)

– Low flow period ~ 40% treated WW

http://www.usgs.gov/


(Map designed by Steve Sobieszczyk)

Site Map

http://www.usgs.gov/
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Sample Collection:
- Collected every 3-4 weeks from all sites
- Full hydro-year, all seasons
- 74 samples total

-Headwater site= 12
-Downstream site= 11
-Tributary sites = 28
- WW effluent = 23

Downstream river site – Tualatin River @ Oswego Dam

http://www.usgs.gov/


Methods:
Headwater site

WWTP site

Downstream river site

Peak A

Peak C

Peak T

http://www.usgs.gov/


Fluorescence

Peak/Parameter

Excitation/Emission (nm) Description

T 270/340 Tryptophan-like, protein like

A 260/450 Humic-like

C 340/440 Humic-like

Fluorescence Index

(FI)

Ex370→Em470/Em520 Higher values indicate 

algal(microbial) vs.

terrestrially derived DOC

SUVA254 Absorbance at 254nm

normalized to DOC

Correlated to aromatic

content

Parameters of Interest for this study

http://www.usgs.gov/


DOC Annual Average Concentrations:
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WWTP and Tributary= highest DOC
Headwater = lowest DOC
Downstream= mid-range DOC

http://www.usgs.gov/


SUVA254 Annual Averages:
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FI Annual Average Values:
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End-Member Mixing Experiment

• Goal: Determine fluorescence response and
degree of linearity (headwater and WW effluents)

– Headwater sample mixed with both types of
WW effluent (2 experiments)

– 10 samples per experiment

• 10% incremental increases of WW added to each

– Mixed and shaken for 2 hours

– Fluorescence and Absorbance measurements

http://www.usgs.gov/
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End-Member Mixing Model

• Goal: Determine if a simple mass balance
equation using individual peaks can predict
WW effluent for the downstream river site

- Samples needed from all 4 sites

- Fluorescence signals for peaks A, T, and C
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- Trends in correct direction
- Overpredicts
- Too simple of an approach
- Requires 4 samples



Multivariate Linear Regression Model
• Goal: Construct a model using multiple fluorescence

peaks to quantify percent WW at downstream river site

– Model Inputs: 74 total samples (12 headwater, 28 tributary,
11 downstream, 23 WWTP)

• Headwater and tribs set at 0% WW

• WWTP set at 100% WW

• Downstream %WW calculated from Tualatin Annual Flow Report

– Model Validated: 30 total samples

• 17 headwater Clackamas samples set at 0%

• 13 from secondary WWTP samples set at 100%

– Key Model Stats

Mean Error- indicates model bias (ideal close to 0)

Mean Absolute Error- typical error with model prediction (ideal <10%)

http://www.usgs.gov/


Results:
Overall Model Statistics:
Mean Error (ME)= 0.1%
Mean Absolute Error (MAE)= 8.1%

Sites ME - MAE
Headwater - 4.7% - 7.0%
Tributary - 1.2%- 7.6%
Downstream-5.2%- 9.2%
WW - 3.2%- 8.6%

Model Results- 95% of samples
are predicted within 80%
accuracy

http://www.usgs.gov/


Results: Downstream Site Model Diverges:
1- phytoplankton bloom
2- WWTP move from
tertiary treatment to
secondary
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Principle Component Analysis

• Goal: Distinguish among sources and
characteristics of organic matter across all
samples
– Input: All 74 samples

– 3 variables: Peaks A, T, and C

– PC1 captured 83% of the variability

– PC2 captured 16% of variability

– 99% variability in fluorescence data explained with
PC1 and PC2

– Trends were explained for sample location, FI values,
SUVA254, and DOC concentrations

http://www.usgs.gov/
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Conclusions:

(1) A simple two-component mixing experiment
showed a fluorescence linear response

(2) An end-member mixing model using individual
peaks is too simplified a method and does not
accurately represent the complex downstream
mixture

(3) A multivariate regression model using all three
peaks can accurately predict %WW effluent within
80% accuracy

(4) PCA distinguished qualitative variability in sample
set including DOC, FI values, and SUVA254

http://www.usgs.gov/


Implications:

• Fluorescence models can be used as
predictive tools

• In-situ instrumentation can provide real-time
WW monitoring

• Identify point and non-point sources of
pollution

• Direct opportune times for expensive discrete
analysis (OWC, PCPs, and other emerging
contaminants)

http://www.usgs.gov/
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