

Modeling Hydrologic Alteration and Ecosystem Response to Climate Change in the Southeastern U.S.

Brian Hughes and Jacob LaFontaine, USGS, Atlanta, GA; Mary Freeman, USGS, Athens, GA; Jim Peterson, USGS Corvallis, OR

NWQMC Portland, OR May 2, 2012

Southeast Regional Assessment Project

SERAP is a pilot study for the USGS NCCWSC and CSC that integrates climate change, land-use change, and sea-level rise projections with habitat and species response models to assess future climate effects on terrestrial and aquatic species

- Regional Climate Change Projections
- Coastal Assessment
- Terrestrial Assessment
- Aquatic Assessment
- Optimal Conservation Strategies

Project Team Members

- Regionally Downscaled Probabilistic Climate Change Projections—Adam Terando, Murali Haran, Katharine Hayhoe, Klaus Keller
- Integrated Coastal Assessment—Nathaniel Plant, Glenn Gutenspergen, Van Wilson, Cindy Thatcher, Alexa McKerrow, Adam Terando, Scott Wilson, Rob Thieler, Peter Howd
- Integrated Terrestrial Assessment—Alexa McKerrow, Adam Terando, Steve Williams, Jamie Callazo, Barry Grand, Jim Nichols, Andrew Royle, John Sauer
- Integrated Aquatic Assessment—Jim Peterson, Lauren Hay, Kenneth Odom, Brian Hughes, Robb Jacobson, John Jones, Mary Freeman, Jacob LaFontaine, Carrie Elliot, Steve Markstrom, Jeff Riley
- **Optimal Conservation Strategies**—Barry Grand, Max Post van der Burg, Kevin Kliner, Allison Moody,
- **Dissemination of High-Resolution National Climate Change Dataset**—Jamie Collazo, Lauren Hay, Katharine Hayhoe, Nathaniel Booth, Adam Terando, Jason Hopkins, Roland Viger

Basic Questions Addressed by SERAP

What effects will climate changes have on terrestrial and aquatic ecosystems?

- What are the likely impacts of future sea level rise on coastal habitats?
- How will stream flow changes alter habitat conditions necessary for healthy fish and mussel populations?
- Will changes in vegetation and land use affect terrestrial habitats for bird populations?

What can we do to avoid the worst effects of climate change?

- What are the causes and degree of uncertainty in forecasts of climate change and responses?
- What are the benefits and effectiveness of adaptation strategies?

SERAP COMPONENTS DATA FLOW

SERAP COMPONENTS DATA FLOW

Climate Scenarios Simulated

Currently using only two emission scenarios representing worst case and best case scenarios.

Regional Climate Downscaling

Regional Climate Change Projections Climate Models

Projections

GCMs $(n = ^8)$

EMIC (n = ~200)

Methods

Bayesian Model Averaging

Statistical Downscaling

Output

Downscaled Probabilistic Projections

Aquatics Assessment - Stream Classification

Four-cluster multivariate channel classification of the Potato Creek stream network using LiDAR for validation

DISTANCE, IN METERS

Landscape Dynamics - Urban Growth

SLEUTH-R (Jantz et al 2009)

- Slope,
- Land Cover,
- Exclusion,
- Urbanization,
- Transportation, and
- Hillshade

Landscape Dynamics - Vegetation

conditions
Input for habitat
distribution models:
priority species

Habitat-specific succession and disturbance models

Landscape Dynamics – Disturbance

Hydrologic Modeling - PRMS

- PRMS is being used to develop coarse- and fine-scale watershed models
- Both coarse and fine scale models will incorporate probabilistic downscaled climate change projections to predict daily streamflow through 2100

Simulating Water Quality – PRMS/SNTEMP

- Stream temperature is being simulated using a coupled PRMS/SNTemp model
- SNTemp developed by USFWS and USGS to predict how changes in flow regime affect water temperature
- Uses PRMS output parameters and physical channel characteristics
- Daily minimum and maximum temperatures through 2100 will be predicted

Coupled PRMS/SNTEMP

Ecological Modeling - Fish and mussel occupancy

- Empirical multi-state, multi-season occupancy model.
- Models estimate the occupancy (presence) of fish species in a stream segment (defined as a section of stream from tributary junction to tributary junction).
- The dynamics of the populations (colonization, reproduction, extinction) are modeled as a function of geomorphic channel characteristics, stream size, seasonal discharge statistic, and stream temperature.
- Specific species characteristics (preferred habitat, locomotion mode, body size, spawning duration, etc.) are used in models.

Integrated Aquatics Assessment Modeling Fish Occupancy

Integrated Terrestrial Assessment

Habitat models for priority species

Questions?

- What kinds of water quality parameters can be predicted under future climate scenarios with any certainty?
- Which of these are the most relevant for ecosystem and human health?

SNTEMP

- Developed by USFWS and USGS to predict how changes in flow regime affect water temperatures
- Uses output parameters from PRMS and physical channel characteristics

Composite species-specific estimates

Climate Adaptation Strategies Final Products

- Spatially explicit decision support tool to allow management agencies to prioritize conservation actions based on a range of predicted future habitat conditions, including:
 - Portfolio of best conservation actions
 - Locations of sites with greatest marginal gain
 - Incorporates land-use projections, climate change projections, and vegetation succession

Integrated Coastal Assessment Coastal Assessment

Coastal processes such as sea level rise, subsidence, and erosion will be modeled to support coastal resource management

- Develop Bayesian statistical framework for predicting coastal erosion and inundation
- Assess affects of sea level rise on coastal ecosystems and wildlife
- Direct observations
- Develop visualization tools for resource managers

Integrated Coastal Assessment Bayesian Sea Level Rise Model

Integrated Coastal Assessment Modeling Habitat Loss

Developed 606 terrestrial vertebrate species models for the Southeastern U.S.

Products

Maps and summaries potential habitat loss by species under a variety of SLR projections.

Integrated Coastal Assessment Sea Level Rise Viewer

- Developing GoogleTM
 Thematic Mapper based map view that depicts inundation as sea level rises
- User friendly environment for resource managers and public to visualize impacts of sea-level rise
- Interactive map displays elevations of 1, 3, and 6 feet above Mean Higher High Water datum

Integrated Terrestrial Assessment

Linking landscape, climate, and urbanization models

A decision making process that accounts for the uncertainty associated with predicting environmental dynamics and population responses, and the uncertainty associated with conservation policies and whether they will be effective

Integrated Terrestrial Assessment Modeling North American land bird range dynamics

- <u>Basic objective</u>: Test hypotheses about avian range dynamics as function of climate change and other relevant factors.
- Probabilities of local extinction and colonization predicted as function of:
 - Climate change
 - Land-use change
 - Location within overall species range
 - Neighbor effects (occupancy of nearby locations)
- Ranges are likely to shift or contract and can be modeled by varying rates of extinction/colonization

Integrated Terrestrial Assessment

Modeling occupancy dynamics

Loggerhead Shrike (Lanius Iudovicianus)

BBS data for 1996-2006

% of occupied neighbors site

Climate Adaptation Strategies Optimal Conservation Strategies

Determine optimal conservation Strategies through:

- Implementation of Strategic Habitat Conservation using Adaptive Management
- Incorporation of potential effects of climate change on fish and wildlife population
- Development of strategy at an ecoregional scale.

Climate Adaptation Strategies Simple model example

Site	Utility Species 1	Utility Species 2	Site Utility
1	0.5	0.3	0.8
2	0.2	0.6	0.8
3	0.2	0.8	1.0
4	1.0	0.3	1.3

Compare among sites

	S			
Site	No Management	Management	Cost	Marginal Gain
1	1.1	1.8	20	0.035
2	1.4	1.6	20	0.01
3	1.8	1.9	5	0.02
4	1.6	1.8	5	0.04

Compare alternatives

	Weighted			
Site	Utility Species 1	Utility Species 2 (2x)	Site Utilit Y	
1	0.5	0.6	1.1	
2	0.2	1.2	1.4	
3	0.2	1.6	1.8	
4	1.0	0.6	1.6	

Incorporate species value

Questions?

