

Development of a Decision Support System for Estimating Salinity Intrusion Effects due to Climate Change on the South Carolina and Georgia Coast

Paul Conrads - U. S. Geological Survey, Columbia, SC

Ed Roehl, Ruby Daamen, and John Cook - Advanced Data Mining, Greer, SC

Charles Sexton - Beaufort-Jasper Water and Sewer Authority, Beaufort, SC

Daniel Tufford, Greg Carbone, Kirstin Dow - USC, Columbia, SC

Jessica Whitehead – S.C. Sea Grant, Charleston, SC

National Water Monitoring Conference May 2, 2012

Outline

- Problem
- Data
- Model & Decision Support System
- Results
- Conclusion

Threaten Intakes along SE Coast Due to Climate Change

Short Review Salinity Dynamics

Riverine Flow

Tidal Forcing water level, tidal range

"...estuaries may never really be steady-state systems; they may be trying to reach a balance they never achieve."

Keith Dyer, from Estuaries – A Physical Introduction (1997)

Flow and Salinity Data

Yadkin-Pee Dee Basin

Converging Conditions: Waccamaw River Pawleys Island Gage

Flows < ~5,000 cfs

Water levels > ~4.5 ft

Tidal range ~

Savannah River Basin

Converging Conditions: Savannah River

Models & Decision Support Systems

Water Science Center

Data Mining

- The physics is manifested in the data
 - Learn/quantify important cause-effect relations
 - Data driven models
 - are "virtual processes"
 - evaluate alternatives

Data Information Knowledge

Description of the Salinity Models

- Cascading models
 - 1st Simulates daily SC response
 - 2nd simulates hourly SC response

Model Performance Pawleys Island

PRISM-2

Savannah River ANN Models M2M-2

Daily Model

Hourly Model

Decision Support Systems

- Models embedded in an Excel application
- Integrates:
 - Historical database
 - Models and model controls
 - Streaming graphics
 - Optimization routines
 - Simulation outputs
- Excel levels the technical playing field

Graphical User Interface

M2M-2

Results

Water Science Center

Sea-level Rise Projections

Springmaid Pier, Myrtle Beach

Modified NRC-III

Modified NRC-II

Modified NRC-I

Local Trend

Analysis based on USACE methodology, 2009 National Research Council, 1987

Time series of SLR Plot

- 14 year simulation
- 1- ft SLR

Multiple Model Runs Sea-level rise and flow in combination Grand Strand – Pawleys Island Gage

- 14 year simulation
- 0.5 ft incremental SLR up to 3 ft
- 5 % reductions in streamflow

Results – SLR & Reduced flow Grand Strand – Pawleys Island Gage

3D Response Surface of Results

Savannah National Wildlife Refuge Little Back River

SLR & Flow Results at I-95

Threshold = 0.5 psu (\sim 1,000 μ S/cm)

Climate Model Derived Flows

Global & regional circulation models

Gridded rainfall input to watershed model

Salinity intrusion model

GCM Inputs to Rainfall/Runoff Model

- ECHO-G Global Circulation Model
- Statistically downscaled precipitation and temperature inputs (Hayhoe)
 - HSPF watershed model

Duration Hydrographs of Projected Flows

Projected Seasonal Change in Salinity **Intrusion**

Historical 1995-2009, Projection 2055-2069 Specific conductance threshold = 1,000 µS/cm

Winter Spring Summer Total

ECHO ECHO ECHO ECHO Historical Proj. 1 SLR 2 SLR

2ft SLR

Conclusions

- Accurate models developed directly from the data
- Models & database delivered in Excel
- DSS allows a variety of climate change scenarios
- Climate changes project <u>not</u> prescribed by the DSS

Water Science Center

