Modeling the Health of Wadeable Streams in Connecticut Using Biomonitoring Information and Watershed Characteristics

Christopher Bellucci, Mary Becker, Mike Beauchene, and Lee Dunbar 2012 National Monitoring Conference, Portland, OR

Current Tools to Support Water Quality Management

Targeted Monitoring

- Assess WQS Attainment
- Measure localized trends
- Stressor ID
- Support development of local management measures (TMDLs, NPDES permits, NPS BMPs)

Limitations

- Costly to conduct
- Not enough man-power or money to implement everywhere
- Can't make general statements about stream quality in Connecticut

Current Tools to Support Water Quality Management

Statistical Monitoring

- Estimate proportion of waters supporting water quality goals in CT
- Measure overall state-wide water quality trends
- Support development of new water quality standards

Limitations

Only provides a 'number' for reporting, does not provide sitespecific estimates of water quality state-wide

76 % Healthy, 24% Impaired

New Tool to Support Water Quality Management

New Tool to Support Water Quality Management

New Tool to Support Water Quality Management

Best Model had IC, Wetlands, Slope

Implementation – Some Potential Uses

State-wide Assessments Lead to Better Management

GRTS Design

MMI Model

<u> </u>	74°0'W	73°30'W	73°0'W	72°30'W	72°0'W	71°30'W
42°30'N-						
42°0'N-					Massachusetts	Rhode Island
41°30'N-		New York				Island
41°0'N-		A September 1	Long Is	land Sound	Healthy 12.5 25	

Statistical	Healthy	Impaired	Standard	
Design	Streams (%)	Streams (%)	Error	
GRTS Design	76 (71 – 81)	24 (19 – 29)	2.61	

Statistical	Healthy	Impaired	Standard	
Design	Streams (%)	Streams (%)	Error	
Model	76 (53 – 99)	24 (0.5 – 47)	11.73	

Using the Model to Support Aquatic Life Assessments

Stream Name	Station ID	BCG Level	Measured MMI	Model MMI	Fish	RBV	Chem	ALUS Assessment
Pendleton Hill Brook	1748	2	77.04	77.11	Pass	X	No exceeds	FS
Bone Mill Brook	1456	X	X	94.30	Pass	X	No exceeds	FS
Cranberry Meadow Brook	5153	X	X	65.47	Pass	Pass	No exceeds	FS
Hunts Brook	1194	5	41.06	59.98	Fail	X	No exceeds	NS

X – No dataFS – Fully supportingNS – Not supporting

Using the Model to Support Anti-degradation Policy

Identify High Quality Waters

Build Out Analysis – Current Condition

Build Out Analysis – +2% IC

Build Out Analysis – +4% IC

Build Out Analysis – +6% IC

Build Out Analysis – +8% IC

Build Out Analysis – +10% IC

