Reference sites and reference condition for Biological Condition Gradient (BCG) development

Portland 1May, 2012

Collaborators

Name	Organization		
Will Bouchard	Minnesota PCA		
Kayla Bowe	Red Lake Band of Chippewa, DNR		
Joel Chirhart	Minnesota PCA		
Jeffrey Dimick	U. Wisconsin Stevens Point		
Mike Feist	Minnesota PCA		
John Genet	Minnesota PCA		
Jeroen Gerritsen	Tetra Tech, Inc.		
Kevin Goodwin	Michigan DNRE		
Ed Hammer	U.S. EPA Region 5		
Kari Hedin	Fond du Lac Band of Lk. Superior Chippewa		
Daniel Helwig	Minnesota PCA		
Benjamin Lundeen	Minnesota PCA		

Name	Organization	
Michael Miller	Wisconsin DNR	
Scott Niemela	Minnesota PCA	
Betsy	U.S. EPA Region 5	
Nightingale		
Stephanie	Little River Band of	
Ogren	Ottawa Indians	
John Sandberg	Minnesota PCA	
Kurt Schmude	U. Wisconsin Superior	
Nancy Schuldt	Fond du Lac Band of Lk.	
	Superior Chippewa	
James Snitgen	Oneida Nation	
Jen Stamp	Tetra Tech, Inc.	
Kevin Stroom	Minnesota PCA	
Lizhu Wang	Michigan DNRE	
Chris Yoder	Midwest Biodiversity Inst.	

- Conceptual model of ecological knowledge and theory to describe changes with increasing stress
- Practical application/calibration uses combination of empirical information and professional judgment and experience
- Can professional judgment help inform descriptions of minimally disturbed aquatic communities?

Increasing Level of Stressors

Increasing Level of Stressors

Increasing Level of Stressors

BCG Calibration

- Classification
- Identify stressor gradient
- Define expectations
- Identify attributes and metrics
- Develop rules for assigning sites (decision criteria)

Define Expectations: Describe undisturbed

- Best sites (reference) are not necessarily undisturbed!
- Capture critical information for decisions

Maine best: Minimally disturbed

Connecticut, New Jersey best: Least disturbed

Wisconsin/Minnesota Driftless Area best: Least disturbed

Minnesota (wetland) best: Minimally disturbed

Example: Minnesota Disturbance Index

- ▶ 8 metrics, score 0–81:
 - Agricultural land use
 - Urban land use
 - Animal units (feed lots)
 - Point sources
 - Watershed riparian disturbance
 - Site riparian disturbance
 - Watershed channelization
 - Site channelization
- Metric scores modified by proximity, slope, other considerations
- Site-specific factors not considered

Upper Midwest BCG development

- Panels of fish, invertebrate experts examined stream samples
- Panels assigned taxa to BCG attributes
- Identity of stream and disturbance score hidden from panel
- Panel assigned consensus BCG levels to each sample

Stream Classes (MN)

- Northern Forest Rivers
- Southern rivers
- Northern Forest Riffle–Run
- Northern Forest Glide-Pool
- Southern Riffle-Run
- Southern Hardwood Glide-Pool
- Prairie Glide-Pool
- Northern Coolwater
- Southern Coldwater (karst)

- Northern Forest Rivers
- Prairie Rivers
- Northern Wadeable Streams
- Northern Headwaters
- Southern Wadeable Streams
- Southern Headwaters
- Wetland Streams
- Northern Coolwater
- Southern Coldwater (karst)

Invertebrates

Fish

Identify attributes and metrics fish

Attribute 1 taxa: Rare or endemic (river spp)

greater redhorse

American eel

Identify attributes and metrics fish

Attribute 2 taxa: most sensitive; the first to disappear

slimy sculpin

Northern brook lamprey

wild brook trout

Identify attributes and metrics fish

Attribute 3 taxa: Intermediate sensitive

BCG Level 1 site

St. Croix River

- 26 species
- Dominated by sensitive spp
- Rare spp present

Species	N	Attribute
gilt darter	8	1
greater redhorse	2	1
lake sturgeon	1	1
burbot	114	3
chestnut lamprey	1	3
hornyhead chub	3	3
lamprey ammocoete	61	3
logperch	17	3
northern hogsucker	8	3 3
rock bass	23	
shorthead redhorse	72	3
slenderhead darter	39	3
smallmouth bass	12	3
blackside darter	3	4
bluegill	17	4
common shiner	11	4
johnny darter	96	4
northern pike	2	4
spotfin shiner	5	4
tadpole madtom	6	4
walleye	2	4
white sucker	19	4
yellow perch	5	4
creek chub	1	5
bluntnose minnow	2	5a
central mudminnow	5	5a

Problematic species

nonnative trout

really cool bugs

Panel BCG decisions and the Disturbance Gradient

Northern Wadeable Streams

Southern Headwater Streams

Wetland Dominated Streams

Lessons – assemblages

Fish:

- historical observations
- museum collections, archeology
- historic distributions of spp. generally known

Invertebrates:

- museum collections
- historical distributions not generally known.
- Mussels: middens, if documented

Lessons Learned - reference

- Professional experience informs expectations
- Reference sites provide ground truth
- Professional experience bolsters expectations for (nonexistent) minimally disturbed
 - Based on ecological considerations, not a particular data set
 - not dependent on statistical comparison to specific reference set
- Classification is critical!

