


2

R&D 100 Entry
Submitting Organization
Sandia National Laboratories

PO Box 5800, MS 0185

Albuquerque, NM  87185-0185
Sean A. McKenna, PhD 

Distinguished Member of the Technical Staff

P.O. Box 5800

MS 0751

Albuquerque, NM 87185-0185

Phone (505) 844-2450

Fax (505) 844-7354

samcken@sandia.gov

Contact Person
Glenn D. Kubiak 

Director, Biological and Materials Sciences Center

Sandia National Laboratories

PO Box 969 

MS 9405

Livermore, CA 94551-0969

USA

Phone (925) 294-3375 

Fax (925) 294-3403 
kubiak@sandia.gov

Joint Entry with
U. S. Environmental Protection Agency

26 W Martin Luther King Dr. (NG 16)

Cincinnati, Ohio 45268

USA

Dr. Regan Murray

Phone (513) 569-7031

Fax (513) 487-2559

Murray.Regan@epa.gov

Product Name 
CANARY: Event Detection Software

mailto:samcken%40sandia.gov?subject=R%26D%20100%20Submission%202010%3A%20CANARY
mailto:kubiak%40sandia.gov?subject=R%26D%20100%20Award%20Nomination%3A%20Acoustic%20Wave%20Biosensors


3

Brief Description 
CANARY provides continuous monitoring of water quality from 

networked sensors for automated event detection, which enables 

improved security and operations within water distribution 

systems worldwide.

Product First Marketed or Available for Order
CANARY was first made publicly available in May of 2009.

Inventors or Principal Developers
Sean A. McKenna, PhD 

Distinguished Member of the Technical Staff

Sandia National Laboratories, National Security Applications

PO Box 5800, MS 0751

Albuquerque, NM 87185-0751

USA

Phone (505) 844-2450

Fax (505) 844-0735

samcken@sandia.gov

David Hart

Member of the Technical Staff 

Sandia National Laboratories, National Security Applications 

PO Box 5800, MS 0751

Albuquerque, NM 87185-0751

USA

Phone (505) 844-4674

Fax (505) 844-7354

dbhart@sandia.gov

Katherine Klise

Senior Member of the Technical Staff 

Sandia National Laboratories, National Security Applications 

PO Box 5800, MS 0751

Albuquerque, NM 87185-0751

USA

Phone (505) 284-4456

Fax (505) 844-7354

kaklise@sandia.gov



4

Eric Vugrin, PhD	

Principal Member of the Technical Staff	

Sandia National Laboratories, Infrastructure and Economic 

Systems 

PO Box 5800, MS 1138

Albuquerque, NM 87185-1138

USA

Phone (505) 284-8494

Fax (505) 284-3850

edvugri@sandia.gov

Mark W. Koch, PhD

Principal Member of the Technical Staff

Sandia National Laboratories, Sensor Exploitation Applications 

Dept. 

PO Box 5800, MS 1163

Albuquerque, NM 87185-1163

USA

Phone (505) 844-4731

Fax (505) 844-4157

mwkoch@sandia.gov

Shawn Martin, PhD

Senior Member Technical Staff

Sandia National Laboratories, Computer Science and Informatics

PO Box 5800, MS 1316

Albuquerque, NM 87185-1316

USA

Phone (505) 284-3601

Fax (505) 845-7442

smartin@sandia.gov



5

William E. Hart, PhD

Distinguished Member of the Technical Staff

Sandia National Laboratories, Computer Software Rsrch/Dvlpmnt

PO Box 5800, MS 1318

Albuquerque, NM 87185-1318

USA

Phone (505) 844-2217

Fax (505) 845-7442

wehart@sandia.gov     

Regan Murray, PhD

Water Infrastructure Protection, Mathematical Statistician

U.S. Environmental Protection Agency

26 W. Martin Luther King Dr. (NG 16)

Cincinnati, OH 45268

USA

Phone (513) 569-7031

Fax (513) 487-2559

Murray.Regan@epa.gov

Terranna Haxton, PhD

Water Infrastructure Protection, Environmental Engineer

U.S. Environmental Protection Agency

26 W. Martin Luther King Dr. (NG 16)

Cincinnati, OH 45268

USA

Phone (513) 569-7810

Fax (513) 487-2559

Haxton.Terra@epa.gov

John Hall

Water Infrastructure Protection, Physical Scientist

U.S. Environmental Protection Agency

26 W. Martin Luther King Dr. (NG 16)

Cincinnati, OH 45268

USA

Phone (513) 487-2814

Fax (513) 487-2559

Hall.John@epa.gov



6

Katie Umberg

Water Infrastructure, Physical Scientist

U.S. Environmental Protection Agency

26 W. Martin Luther King Dr. (MS 140)

Cincinnati, OH 45268

USA

Phone (513) 569-7925

Fax (513) 569-7191

Umberg.Katie@epa.gov

Product Price
CANARY is distributed as open-source software (https://software.
sandia.gov/trac/canary).  The public domain licensing allows 

for third-party development of proprietary commercial software 

systems that incorporate CANARY.  Executable versions of 

CANARY can be obtained from the US EPA (see: http://www.epa.
gov/nhsrc/water/teva.html)

Patents or Patents Pending
No.

https://software.sandia.gov/trac/canary
https://software.sandia.gov/trac/canary


7

“ Through testing 
on data from partner 
water utilities…
CANARY has been 
shown to be effective 
and its performance 
documented. ”

Product’s Primary Function
Rapid and accurate detection of contamination incidents in 

drinking water is critical for notifying consumers of threats and 

risks to public health and for making remediation and recovery 

decisions.  Sandia National Laboratories (SNL) and the United 

States Environmental Protection Agency (EPA) developed 

the CANARY event detection software to enable online 

contaminant event detection for time-critical decision making 

in both routine and emergency water quality assessments.  As 

a free software tool, CANARY is available to drinking water 

utilities of all sizes worldwide striving to provide the best 

quality water to their customers.

CANARY is a software package that performs on-line, 

multivariate, event detection from networked sensor data.  

Employing statistical forecasting and classification algorithms, 

CANARY continuously analyzes time series signals for 

anomalous conditions.  By combining standard statistical 

methods in an innovative framework, noisy data is filtered to 

accurately identify anomalous events while minimizing false 

positive detections.  Through testing on data from partner 

water utilities and a two-year pilot study, CANARY has been 

shown to be effective and its performance documented.  

The software is compatible with any sensor technology or 

information technology platform, and can be easily modified 

for specific applications.  In contrast to proprietary systems, 

CANARY provides the end-user with transparency in the 

algorithms and their parameterization, which is important 

for utility-specific customization.  In addition to achieving 

homeland security goals, CANARY can be used to enhance 

day-to-day water quality management.  Development of 

CANARY has focused on providing enhanced monitoring 

of water quality within distribution networks; however, its 

capabilities are general and applications of CANARY to 

other online event detection applications are being pursued.  
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“ Continuous, 
reliable delivery of 
safe drinking water to 
customers is essential 
to the viability of large 
metropolitan areas, 
and the distribution 
networks used to 
deliver water are a 
critical component 
of municipal 
infrastructure 
systems.”

Through an open-source licensing approach, CANARY 

allows all utilities access to state-of-the-art event detection 

capabilities that can leverage their existing investments in 

water quality sensors.  

The Need for Water Security
Continuous, reliable delivery of safe drinking water to 

customers is essential to the viability of large metropolitan 

areas, and the distribution networks used to deliver water 

are a critical component of municipal infrastructure systems. 

The scale, diversity, and complexity of these networks render 

them susceptible to accidental and intentional contamination 

events.  The potentially high public health and economic 

consequences of such events have focused recent research on 

strategies to make both the physical and cyber components of 

water distribution systems robust against contamination.  The 

concept of a contamination warning system (CWS) has been 

proposed as an integrated tool that employs in situ sensors, 

supervisory control and data acquisition (SCADA) systems, and 

water quality event detection systems (EDS) to continuously 

monitor network conditions and warn operations personnel of 

potential contamination events.

Issued in December, 2003, and January, 2004, Homeland 

Security Presidential Directives 7 and 9 (HSPD-7, HSPD-

9) establish a national policy for Federal departments and 

agencies to identify and prioritize critical infrastructure for 

protection against terrorist attacks, including a mandate to 

“…develop robust, comprehensive, and fully coordinated 

surveillance and monitoring systems for…water quality that 

provides early detection and awareness of disease, pest, or 

poisonous agents.”1

  1President George W. Bush, 
HSPD-9, January, 30th, 2004
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 CANARY directly 
addresses this national 
mandate by providing 
advanced techniques 
for the continuous 
monitoring of water 
quality within 
municipal distribution 
networks and real-time 
notification of adverse 
changes in water 
quality. 

A major challenge for water security is the ability to rapidly 

and reliably detect the presence of contaminants in drinking 

water distribution systems.  To date, large investments in 

contaminant-specific sensors utilizing micro and nano 

technologies have not yet demonstrated the engineering 

reliability necessary for continuous 24/7 monitoring of water 

in the ambient conditions of municipal distribution systems.  

In contrast, the installation of commercial, off-the-shelf 

water quality sensors (e.g., pH, residual chlorine, specific 

conductivity) within distribution networks has expanded.  

Controlled testing of chemical and biological contaminants 

injected into pipe loops at EPA’s Test and Evaluation Facility 

demonstrated that for all contaminants tested, at least one 

water quality sensor responded to the introduction of the 

contaminant.  These results demonstrated that a suite of 

commercially available off-the-shelf water quality sensors 

could provide broad-based indication of contamination events 

in a water distribution system.  Event detection in real-world 

situations presents challenges including reliable recognition 

of signals above noisy backgrounds, effective integration of 

changes in the hydraulic operations that impact water quality, 

and flexibility in connecting to existing SCADA systems with 

a wide variety of sensor hardware and database software.  

CANARY has been developed to meet these challenges.

Event Detection
The incoming signals analyzed by CANARY are noisy 

measurements of changing environmental conditions.  

CANARY uses adaptive filtering to process these noisy signals 

and detect significant changes within them.  These changes are 

indicative of water quality degradation within the distribution 

network due to intentional or accidental contamination 

events.  CANARY employs several novel algorithms to 

incorporate information on operational changes within the 

utility into the event detection process and to recognize 
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The fundamental issue 
here is to reliably 
detect rare events in a 
noisy environment. 

recurring signal patterns indicative of changes in background 

conditions.  A series of embedded graphical editors facilitate 

user-based selection and parameterization of the algorithms, 

as well as the creation and editing of pattern libraries and 

the generation of graphics illustrating event detection results.  

CANARY leverages existing investments by connecting to 

a utility’s SCADA database either directly or through third-

party software, providing alerts to the system operator when 

significant water quality changes are detected. 

In the basic mode of operation, CANARY uses a four-step 

process to examine recent water quality data and identify 

significant deviations from those data:

	 1)	� Estimation: For each time series of data from a 

single sensor, CANARY adaptively predicts the 

expected water quality value for the next time 

step.  CANARY looks backwards within a user-

defined moving-window of previous time steps 

and uses the data in this window to estimate the 

value of the next time step.  The data are first 

normalized to remove the units of measurement 

so that different signals with different units of 

measurement can be easily combined.   

Two estimation approaches are available within 

CANARY: linear filtering and multivariate nearest 

neighbor. 

		  A) �Linear Filtering: At each time step, an optimal 

set of weights is determined to apply to each 

of the previously measured standardized 

observations for each water quality signal.  

The weights are calculated using an auto-

covariance function computed independently 

for each signal.  This calculation allows the 

assigned weights to reflect the importance 
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of previous values in the prediction of the 

next value no matter how far in the past 

that value has occurred. These weights are 

calculated automatically within CANARY and 

are updated at each time step to dynamically 

adapt the prediction to recent changes in the 

water quality data.  The weighted average 

of the set of previous values serves as the 

prediction of the water quality value at the 

next time step.  

		  B) �Multivariate Nearest Neighbor:  This 

estimation approach also uses the normalized 

water quality values within the predefined 

set of previous time steps.  The set of values 

at each time step across n different water 

quality sensors can be considered as a point in 

n-dimensional space. At each new time step, a 

new point in n-dimensional space is created, 

and its “nearest neighbor,” or the closest point 

in the set of previous values, serves as the 

predicted value for this time step.

	 2)	� Residual Calculation and Fusion: As the 

observation at the current time step becomes 

available through the SCADA system, it is 

normalized for comparison to the predicted value 

and a residual (predicted - measured) value is 

calculated.  This process is repeated for each 

water quality signal at the monitoring station.   

In the linear filtering approach, the residual 

values are in common units of standard 

deviations away from each respective estimated 

water quality signal value.  In the multivariate 

nearest-neighbor approach, there is only one 
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residual distance no matter how many different 

sensors are used because the residual is 

measured as a single distance within the multi-

dimensional space.

	 3)	� Residual Classification: The maximum residual 

value across all of the different water quality 

sensors for the current time step is compared 

to a user-defined threshold value, also defined 

in units of standard deviations.  Residual 

values exceeding the threshold are classified 

as “outliers” and are excluded from the history 

window used to predict future water quality 

values.  Other approaches to fusing residuals 

have been examined, including summing 

and averaging residuals, but results show that 

retaining the maximum residual for each time 

step provides the best overall results.

	 4)	� Probability Calculation: A Binomial Event 

Discriminator (BED) was developed for CANARY 

to create a time-integrated probability of an event 

[P(event)].  The BED models the occurrence 

of outliers as a binomial process and defines 

P(event) as a function of three user-defined 

parameters: 1) the number of outliers within the 

BED integration window; 2) the length of the 

BED integration window; and 3) the probability 

of an outlier occurring at any given time step 

under an assumption of background water 

quality conditions.  User specification of these 

parameters allows for maximum flexibility in 

the definition of an event and sensitivity of the 

event detection process.  Integrating results over 

multiple time steps creates a lag time between 

the true onset of the event and the time at which 
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CANARY detects an event.  However, testing 

at partnering water utilities has shown that the 

disadvantage of increased time to detection is 

significantly outweighed by the advantage of 

decreased false alarms that result from using BED 

to integrate evidence for an event over multiple 

time steps.  

The figure at the top right shows the inputs to CANARY and 

compares CANARY output over the course of a water quality 

contamination event.  Note the effectiveness of the BED 

algorithm in keeping the probability of an event equal to zero 

prior to the actual event despite the noise in the input signals.  

This ability to keep P(event) near zero is a key element of 

the false positive reduction within CANARY.  The response of 

CANARY to the event is delayed by the parameters of the BED 

that integrate responses for several time steps before increasing 

the probability of an event above zero.  This lag is specified by 

the user and provides a tradeoff between false positive alarms 

and time-to-event detection.  

CANARY improves on current industry-wide standard 

approaches to event detection that employ “set points” – fixed 

threshold values outside of which water quality is deemed 

anomalous and an alarm is sounded.  Set points cannot 

provide the detection sensitivity of the CANARY algorithms, 

which focus on identifying relative changes that do not exceed 

the set point values.  However, set points do provide value in 

alerting the system operator to persistent and gradual changes 

in water quality.  Therefore, CANARY incorporates user-

specified set points into event detection by increasing P(event) 

as the observed water quality moves towards a set point value.  

Results from the set point algorithm can be combined with 

other algorithms through a consensus approach to provide 

event detection for either absolute or relative changes in water 

quality.

Water quality signal points (a) and CANARY 
response with BED activated (blue 
square in b) compared to the normalized 
concentration of the contaminant (magenta 
line in b). Note that CANARY maintains zero 
probability of an event outside of the actual 
event duration despite the noisy signals. See 
text for additional details.
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The algorithms within CANARY are designed and implemented 

to allow for fast data input and output as well as rapid 

analysis.  This design approach makes CANARY both efficient 

and essentially unlimited in terms of both the number of 

monitoring locations analyzed simultaneously and the number 

of water quality and hydraulics signals available at every 

monitoring station. Using a single processor desktop computer, 

a current application of CANARY at one of the largest utilities 

in the world easily and simultaneously analyzes data from 70 

monitoring stations with four to six signals reporting on a five-

minute sampling interval.

CANARY detects anomalous events using the four-step 

approach described above, and this approach has proven to 

be robust in deployments at several operating utilities in the 

past nine months.  However, other applications may exist 

where additional algorithms are required or new algorithms 

need to be tested.  CANARY is designed to be extensible such 

that additional algorithms written in Java can be incorporated 

directly into the event detection process.  CANARY provides 

an application programming interface (API) to connect 

additional algorithms.

Parameters are entered into CANARY through a configuration 

file.  The configuration file is written in extensible markup 

language (XML) and can be edited using any text editor.  To 

improve user-friendliness, CANARY has a graphically driven 

configuration file editor.  This editor uses a series of dialog 

windows to lead the user through the logical sequence of 

steps for connecting CANARY to the data source, defining the 

water quality signals to be used in event detection, choosing 

algorithms, and selecting algorithm parameters.  The figures 

below show some examples of the screens used in the 

configuration file editor.
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Examples of the CANARY graphical user interface showing the 
ability to define data sources (below), create a pattern library 
from historical water quality data (top right), and then visualize 
and edit the pattern library (bottom right).

Key Innovations: Limiting False Alarms 
and Distributed Detection
Event detection from water quality data, as 

well as in other security-focused monitoring 

applications, is a prototypical case of searching 

for high-consequence events that have a low 

probability of occurrence.  A perfect EDS would 

have the sensitivity to detect all events (no false 

negatives) as well as the specificity to alarm only on water 

quality changes that are due to true events (no false positives).  

A challenge to achieving this goal of a perfect EDS in water 

distribution systems are the significant water quality changes 

caused by hydraulic operations of the network (e.g., valves 

opening and closing, pumps starting and stopping, changes 

in flows).  In addition to the BED described previously, two 

innovative approaches to reducing false positives associated 

with hydraulic operational changes are available within 

CANARY.  These approaches – composite signals and 

trajectory clustering - can integrate operational data directly 

into the water quality event detection process.  
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Composite Signals

Water quality changes can be a direct and immediate result of 

nearby changes in network operations.  In these situations, the 

relationship between the operational change and the water 

quality change is known or can be deduced by the utility 

operators.  Often, multiple operational signals (e.g., at least 

one of three pumps changing status) need to be combined 

and reduced into a concise measure that informs CANARY 

of an operational change that impacts water quality at that 

location.

CANARY provides a simple scripting language that enables 

utility personnel to utilize their knowledge of the system 

operations to easily customize the event detection algorithms 

to recognize specific operational changes.  This scripting 

language operates using reverse Polish notation similar to 

that found in programmable calculators, allowing the user 

to perform algebraic operations on any scalar data values.  

Through this capability, CANARY provides the user a range 

of options to define composite signals that are algebraic 

combinations of existing signals.  These combinations can 

include differences, ratios, sums, or log transforms, etc., 

of one or more existing signals at the current or previous 

time steps.  In addition, new signals can be created from 

differences between values obtained at different time steps 

from the same signal. The flexibility of the scripting language 

within CANARY makes it feasible to use an essentially infinite 

number of combinations of operational and water quality data 

to customize event detection at each water quality monitoring 

location within a utility.  The approach is general and provides 

any utility the capability to integrate specific operational 

knowledge into event detection through custom-built scripts.  

“ This degree 
of site-specific 
customization 
available through 
composite signals 
allows CANARY 
to meet a national 
security need 
without pushing a 
“one-size-fits-all” 
solution onto water 
utilities.”
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This degree of site-specific customization available through 

composite signals allows CANARY to meet a national security 

need without pushing a “one-size-fits-all” solution onto water 

utilities. 

The figure on page 18 shows event detection results with 

and without using composite signals for a set of water quality 

data that are influenced by nearby hydraulic operations.  In 

the lower image set, scripting was used to create a composite 

signal that identified when a flow value recorded in at least 

one of three nearby pipes had exceeded a threshold level of 

five gallons per minute within the previous ten minutes.  This 

new composite signal was used to cue the event detection 

algorithms of times of water quality change (green signals in 

lower image set) and temporarily decrease the event detection 

sensitivity during those periods.
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Six water quality signals (black lines) and the probability of an event (blue dots and lines) are calculated by 
CANARY.  Detected water quality events are show as blue dots within the plot of the signal that caused the event.  
One week of data and results are shown.  In the top image set, no accounting for operational information is made 
and there are six distinct periods of events.  In the lower image set, operational data are incorporated as discussed 
in the text and time periods identified as being influenced by changes in nearby flow rates are colored green.  The 
event detection sensitivity within CANARY is reduced during these periods of operational influence resulting in a 
single event identification (lower image set).  
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Trajectory Clustering

Integration of operational data into water quality event 

detection is more complicated for water quality monitoring 

stations far from the source of an operational change.  The 

lag time between operational and water quality changes, 

as well as the character of the water quality change, are 

often variable due to changing flows within the distribution 

network.  CANARY implements a recent development in 

data mining research, trajectory clustering, along with fuzzy 

clustering algorithms to create an efficient mechanism for 

classifying recurring multivariate water quality changes 

within a pattern library.  Additionally, CANARY accesses 

this pattern library in real time to evaluate any potential 

water quality event against previously seen changes, thereby 

integrating pattern matching into robust event detection. 

Typical clustering approaches treat the multivariate 

measurement vector at each time step as an independent 

feature, resulting in loss of information on the sequential 

nature of the water quality signal values across time.  

However, time series event detection depends on 

understanding the relationship of any measurement with 

those directly preceding it.  Therefore, CANARY does not 

cluster the actual data, but a representation of the pattern 

created by sequential data prior to and including the event.  

CANARY implements low-order polynomial regression 

models to define each potential event as a relatively smooth 

trajectory through multi-dimensional water quality space as 

a function of time.  Multivariate clustering is then employed 

on the coefficients of the regression functions, not on the 

actual data, to classify the trajectories into distinct clusters.  
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This trajectory clustering pattern matching approach is implemented in a two-step 

process within CANARY.  First, historical data from a monitoring station are used in an 

offline analysis to develop a multivariate pattern library.  The clustering of the regression 

coefficients is conducted using a fuzzy C-means clustering algorithm to define a degree of 

membership for each water quality event within each cluster.  In the second step, online 

analysis compares any potential water quality event to the existing pattern library.  If the 

current water quality pattern matches an existing pattern within a user-specified tolerance, 

the current water quality pattern is accepted as background water quality and the event 

is added to the appropriate existing pattern.  Otherwise, the current pattern is considered 

unknown and an event is signaled.  A novel aspect of this approach is that operational 

signals (e.g., flow rate, temperature) can be directly included in the multivariate pattern 

definitions.  The following sequence of three figures demonstrates the concepts of 

trajectory clustering and results of an application of pattern matching in CANARY.

 

A change in water quality is detected by CANARY (left images).  This change is defined by increases in all three water 
quality signals, and could be a contamination event or a variation caused by changes in the operational state of the 
distribution network.  Examination of historical data shows that this is a recurring pattern, most likely due to changes 
in network operations, and the similar patterns in the historical data can be approximated by a third order polynomial 
(right images, blue lines).
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(a) 							       (b) 

(c) 							       (d)   

The historical data defining a pattern as shown in previous figure are combined with data taken from two other recurring 
patterns and plotted in multidimensional space (a).  Traditional approaches to multivariate clustering do not utilize 
information on the sequential nature of the data and define five separate groupings for these data (b).  Trajectory clustering 
retains the sequential nature of the data throughout the change in water quality by applying multivariate clustering to the 
regression coefficients, not to the data.  The three groups of change patterns identified by trajectory clustering are seen 
clearly in (c).  The correct classification of the raw data is readily apparent from the trajectory clustering (d).
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R&D 100 Entry

“ ...the pattern matching capability reduced the 
number of false alarms by 79 percent.”

Recurring daily changes in water quality: decreases in chlorine (Cl) coupled with increases in pH and 
conductivity (CDTY) are identified as events (red dots) in the upper figure.  Creation of a pattern library from 
historical water quality data captures these daily changes and allows for real-time pattern matching eliminating 
the false alarms as shown in the bottom figure.  Ten days of data are shown.  Over the entire 72-day data set, 
the pattern matching capability reduced the number of false alarms by 79 percent.
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“ Improved event 
detection architecture 
could possibly reduce 
the number of false 
positives. In this 
approach, a water 
system would install 
an array of sensors 
linked in a way that 
only triggers an alarm 
when a statistically 
significant number 
of sensors detect 
abnormal levels. 
This should reduce 
or eliminate the false 
positives caused by 
independent sensor 
malfunctions... ”

Distributed Event Detection

CANARY has been developed to operate independently 

and simultaneously on data from  multiple locations within 

a distribution network and this aspect of CANARY is similar 

to other existing EDS tools.  An obvious outstanding need 

is to be able to connect event detection results at multiple 

locations within a network into an integrated “network-

wide” event detection.  

Recasting this National Academy of Sciences research 

priority to utilize an array of event detection results, 

rather than using the sensors directly, Sandia researchers 

developed and demonstrated an efficient approach 

to integrating event detection results from multiple 

independent instances of CANARY running within a 

utility.  This approach treats events detected by CANARY 

as a spatial-temporal point process and uses scan tests 

to identify significant clusters of events, i.e., zones in 

space and time with event detections that are significantly 

above that expected from a background false alarm rate.  

The figure on page 24 shows a space-time “cube” with 

observations of alarm locations in space and time over a 

24-hour period for an example network. The centralized 

processing on a single computer used by CANARY enables 

rapid integration of event detection results from across  

the network.  
NAS (National Academy of 
Sciences), 2007, Improving 
the Nation’s Water Security: 
Opportunities for Research, 
Water Science and Technology 
Board (WSTB), National 
Academies Press, 170 pp. 
(available at http://www.nap.
edu/catalog/11872.html)

http://www.nap.edu/catalog/11872.html)
http://www.nap.edu/catalog/11872.html)
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The distributed detection approach considers the topology 

of the distribution network directly in defining the degree 

of connection between all water quality monitoring stations 

and in determining the likelihood that two or more CANARY 

alarms could be caused by the same contamination event.  In 

an example calculation with an individual false alarm rate of 

one-per-day for each monitoring station, the spatial-temporal 

fusion approach was able to reduce the number of network-

wide false alarms per month by three orders of magnitude or 

more depending on the size of the contaminant plume and the 

number of monitoring stations.  

The layout of the Metropolis distribution network in geographical space (X and 
Y axes) with time (24 hours) shown on the vertical axis and locations of event 
detections (stars) in space and time.  The Metropolis network contains 3323 pipe 
junctions and, for this example, monitoring stations have been randomly placed at 
25 junctions.
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CANARY Application, Impact, and Dual-Use Benefits
Since being released in May 2009, CANARY has been installed 

at several water utilities across the US and is running on the 

national distribution system in Singapore. Several of the largest 

water utilities in the US are installing CANARY as part of EPA’s 

Water Security Initiative.  Additionally, multiple software 

vendors, both US and foreign, are interested in extending their 

existing products to integrate CANARY capability.

The public health and economic impacts of a water 

contamination event are significant and real.  

As an example, the 1993 Cryptosporidium incident in 

Milwaukee, Wisconsin was the largest known outbreak of 

waterborne disease in US history.2  More than 400,000 people 

were infected, which resulted in over 4,400 hospitalizations 

and at least 69 deaths. The total cost of this outbreak-

associated illness was $96.2 million.  With CANARY in place, 

such an event would be detected earlier, resulting in fewer 

illnesses and deaths.  Murray, et al. (2009) estimate that CWS’s 

developed for water utilities participating in the EPA’s Threat 

Ensemble Vulnerability Assessment (TEVA) Research Program 

could reduce expected fatalities by 48% and associated 

economic consequences by over $19 billion. This analysis 

assumes that water quality sensor data can be analyzed with 

CANARY to reliably detect contaminants.

In addition to water security concerns, water utilities are 

interested in the dual-use benefits of online event detection 

to improve management of their distribution networks.  The 

growing number of installed online water quality sensors and 

their connection to SCADA systems has significantly expanded 

the amount of water quality data to the point where system 

operators and network analysts are “drowning in data.”  

“ Since being released 
in May 2009, CANARY 
has been installed at 
several water utilities 
across the U.S. and is 
running on the national 
distribution system in 
Singapore. ”

2MacKenzie et al., 1994. A massive 
outbreak in Milwaukee of cryptospo-
ridium infection transmitted through 
the public water supply. New England 
J. Medicine 331 161–167.
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“ Today, the event detection software 
CANARY is running online in PUB’s water 
supply control centre.  This represents a 
quantum leap in PUB’s business practices... 

PUB is planning to place CANARY in water 
treatment plants for improving process 
control, a move which is radically different 
from CANARY’s traditional function as a 
water security tool. ”

Mr. Harry Seah, 
Director Technology and Water Quality Office, 

PUB, (see letter in Appendices)

Online tools, such as CANARY, that can be customized to the 

specific water quality and operational data characteristics at 

a utility are needed to aid the operators in better managing 

their systems.  Experience shows that as the online analysis 

capabilities of CANARY are explored, utility operators are 

able to find new applications for these capabilities to improve 

system management.  

“ Even for the most 
experienced chemists 
or operators, it is an 
overwhelming and 
time-consuming 
task to monitor 
and interpret the 
enormous amount of 
sensor output, much 
less correlate it with 
thousands of pieces 
of hydraulic and 
operational data. ”
American Water Works Association 
Research Foundation Request for 
Proposals (4182, March 2008)
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Product’s Competitors
To date, the competing solutions to event detection for water 

security have been developed by commercial water quality 

sensor vendors who have focused on connecting their proprietary 

event detection capabilities exclusively to their sensor hardware.  

Event detection systems that only operate with sensors from a 

single manufacturer are incompatible with operations at most 

utilities where prior investments in water quality sensors from 

a variety of manufacturers must work together simultaneously 

to monitor water quality.  CANARY solves this problem by 

working with sensor hardware from any manufacturer as long as 

sensor performance characteristics (i.e., precision, accuracy) are 

known.  CANARY provides the end-user with transparency in the 

algorithms and their parameterization that “black box” proprietary 

systems do not. This transparency is critical for utility-specific and 

location-specific customization of an event detection system and 

development of associated response strategies.

Currently, there are no other publicly available event detection 

systems.  Two commercial water security event detection 

systems that are closest in functionality to CANARY are Event 

Monitor, manufactured by Hach, and con::stat, manufactured 

by S::can.  These two products have recently been developed to 

be more open to integration with sensor hardware from other 

manufacturers.
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Comparison Matrix

Hach, Guardian 
Blue

S::can con::stat CANARY

Cost: Event Detection Software 
(10 stations)

$92,500 $60,000 $0.00

Cost: Required Computing 
Hardware (10 stations)

$0.00 (included) $0.00 (included) $3500

Cost: Total $92,500 $60,000 $3500

Algorithm Transparency Proprietary Proprietary Fully Transparent

Direct Integration of Operational 
Data into Event Detection

No No Yes

Centralized processing on a single 
computing platform

No No Yes

Ability to work with sensors from 
multiple vendors

Custom Request Yes Yes

The following considerations were made in the construction of this comparison table.

•	�The costs are based on installation of an EDS applied to 10 water quality 

monitoring stations. It is assumed that the monitoring stations exist, are fully 

operational, and connected to a central SCADA system.  Costs of the sensor 

hardware are not considered here and are assumed to be the same for all three 

event detection solutions.

•	�The cost estimates for the two commercial systems are based on generally 

available information from the vendors. 

•	�Both commercial systems include integrated computing hardware for each 

monitoring station and this hardware is included in the cost estimates.  CANARY 

only requires a single computer.

•	�The cost estimate for CANARY is based on purchase of a single desktop computer 

having moderate performance and memory capabilities with a standard MS 

Windows installation.  Previous experience has shown this level of computing 

power is easily capable of processing all data produced by 10 monitoring 

stations.

•	�CANARY processes all signals at a central location and therefore requires a single 

computer connected to the existing SCADA system.  If the number of monitoring 

stations were to double to 20, the total costs (third row) of the commercial 

systems would also double, while the cost of CANARY would remain the same.
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How Product Improves on Competition
CANARY has been designed from the start to fully leverage the 

existing investments in water quality sensors and SCADA systems 

made by utilities.  Commercial event detection systems have 

been developed by water quality sensor vendors under the design 

philosophy of creating additional markets for sensor hardware.  

Several advantages result from the design philosophy taken in 

development of CANARY, including: 

•	�CANARY is not tied to sensors from a single vendor.  This 

protects a utilities’ investment in sensor hardware and, in most 

cases, enables immediate start up of event detection on the 

existing data streams at a utility.  

•	�CANARY utilizes the existing utility SCADA system to enable 

analysis of data from all monitoring stations at a single central 

location.  Centralized processing saves costs by only requiring 

a single computer for event detection no matter how many 

monitoring stations are connected to CANARY.  

•	�Centralized processing enables execution of follow-on 

analyses that integrate event detection results from across the 

network.  These follow-on analyses include distributed event 

detection (discussed above), fusion of event detection results 

with other data streams from outside the utility (e.g., public 

health data), and development of strategies to respond to a 

contamination event.

The other guiding principle in the development of CANARY was to 

make the event detection approach completely open to the users.  

An end-goal of this open-source model is to increase the collective 

knowledge and experience of the water quality event detection 

community by allowing transparency in the algorithms and their 

operations as well as the ability to modify and extend CANARY 

functionality.  Competing technologies have taken a strongly 

proprietary, “black box” approach to event detection.  CANARY meets 

the goal of creating an open resource in multiple ways: 

•	�The software is open source and can be modified and 

extended by anyone to meet their specific needs.  
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“ Extensive interaction 
with utilities has led 
the CANARY team to a 
deeper understanding 
of how operational 
changes can impact 
water quality and 
the importance of 
integrating operational 
signals into event 
detection. ”

•	�The open source license fully provides for linking of 

CANARY with proprietary software packages allowing 

software vendors to integrate functionality of CANARY with 

commercial products.

•	�The parameters controlling the event detection algorithms 

are well documented in the CANARY User’s Manual and 

all of them can be modified by the end-user.

•	�CANARY is extensible in that new algorithms can be added 

to CANARY through external implementation in Java.

Extensive interaction with utilities has led the CANARY team to 

a deeper understanding of how operational changes can impact 

water quality and the importance of integrating operational signals 

into event detection. This realization has led to development 

of two approaches for integrating operational signals available 

through the existing SCADA systems within CANARY: composite 

signals and pattern matching through trajectory clustering.  

Competing technologies are focused solely on water quality 

signals and do not access additional data from the SCADA systems 

and therefore cannot capitalize on the additional information 

contained in operational data.
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Product’s Prinicpal Applications
The principal application for CANARY is real-time, online 

detection of anomalous water quality events, ranging from 

accidental introduction of poor quality water to intentional 

injection of chemical, biological, or radiological agents within 

municipal water distribution systems.  This water security 

application is closely tied to improved management of the 

distribution network.  The dual-use benefits of CANARY to assist 

operators in making sense of increasing amounts of online data 

and to provide better understanding of operational factors that 

alter water quality have made significant impacts within utilities 

using CANARY.  These impacts include improved efficiency 

of utility operations as well as increased appreciation for the 

knowledge that can be extracted from data being collected 

within these networks. 
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Other Applications
CANARY is written to be generally applicable to online event 

detection from multivariate time series data collected in noisy 

environments.  Other applications being investigated include:

•	�Computer network traffic logs: Detecting periods of 

anomalous behavior from online monitoring of measured 

parameters regarding the type and volume of internet traffic 

through a particular network node has many similarities 

with online water quality event detection.  Internet traffic 

exhibits trends and periodicity as a function of the time of 

day and day of the week, much like water quality values.  

Identification of anomalous periods of traffic may provide 

early warning of denial-of-service attacks or other periods 

of concern.

•	�Geophysical log analysis: Geophysical logs provide a 

multivariate description of the subsurface.  Here the time 

dimension is replaced by the depth or distance along 

the borehole.  In particular, real-time event detection 

provides advantage in measurement while drilling (MWD) 

situations.  The goals of this analysis are early detection 

of overpressured zones prior to drilling into them and 

repeatable detection of hydrocarbon-bearing pay zones.

•	�Satellite telemetry: Application of CANARY to analysis of 

satellite telemetry data is currently being assessed.  Satellite 

sensor platforms also work in noisy environments and there 

is a need for real-time segregation of signals of interest 

from background noise.
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Summary
CANARY provides water utilities around the globe free access 

to state-of-the art online event detection capabilities in an 

operational software package.  It is specifically designed to 

identify significant changes in signals within noisy data while 

reducing false alarms.  For water quality monitoring, CANARY 

analyzes data from commecially available off-the-shelf water 

quality sensors and has been demonstrated to identify events 

resulting from injection of less than 1.0 parts per million of 

a chemical contaminant into a pipe. In an operating water 

distribution system with an adequate water quality monitoring 

network, contamination events caused by sewer cross-

connections, breaks in pipes that introduce material into the water 

system and injection of chemical and or biological contaminants 

are several of the types of events CANARY is designed to detect.  

CANARY plays a significant role in protection of critical 

infrastructure and the public health and economic functions that 

rely on that infrastructure. CANARY’s capabilities are critical 

to the effective deployment of contamination warning systems 

(CWSs) using water quality sensors. The widespread deployment 

of CWSs can significantly reduce the risks associated with 

catastrophic contamination incidents.  

CANARY provides a user-friendly and fully customizable event 

detection capability that has been developed with extensive 

feedback from the end-user utility operators.  CANARY brings 

to bear a novel blend of technologies from different fields on 

the problem of online event detection.  To leverage existing 

investments in water quality monitoring, CANARY is able 

to connect with common existing data formats and SCADA 

databases as well as work with water quality sensors from a 

wide variety of manufacturers.  CANARY provides complete 

transparency in algorithms and parameterization as well as in 

the integration of operational data allowing the end-user to 

fully customize the settings to meet conditions throughout the 

distribution network.  

“ ...CANARY analyzes 
data from commercially 
available off-the-
shelf water quality 
sensors and has been 
demonstrated to identify 
events resulting from 
injection of less than 
1.0 parts per million of 
a chemical contaminant 
into a pipe. ”
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AFFIRMATION
By uploading this form to R&D Magazine’s website you affirm 

that all information submitted as a part of, or supplemental to, this 

entry is a fair and accurate representation of this product. 

Sean A. McKenna
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Appendices
Appendix Item A:

	 Letters of Support:

		  PUB

		�  Mr. Harry Seah, Director, Technology and Water 

Quality Office

		  �(PUB is the Singaporean National Water 

Management Authority and was honored for its 

exemplary management of water resources and 

application of novel technologies in 2007 with 

the Stockholm Industry Water Award.  This award 

recognizes outstanding contributions made by 

businesses and industries to improve the world 

water situation:  (see: http://www.siwi.org/

stockholmindustrywateraward )

		  �Metropolitan Water District (MWD), Southern 

California

		�  Mr. Eric Crofts, Interim Chemistry Unit Manager and 

Water Quality EDS Project Manager 

		�  (MWD is the largest water distribution utility in the 

US with over 18 million customers)

		  Philadelphia Water Department (PWD)

		�  Mr. Thomas Taggart, Environmental Engineer, 

Scientific and Regulatory Affairs

		  �(PWD has provided integrated water management 

for Philadelphia for nearly 200 years)

Appendix Item B: �Research articles documenting technological 

advances and testing results made in the 

development of CANARY
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Koch, M.W. and S.A. McKenna, (in review), Distributed Sensor Fusion in Water 

Quality Event Detection, submitted to: ASCE Journal of Water Resources Planning and 

Management, November, 2009

Vugrin, E., S.A. McKenna and D. Hart, 2009, Trajectory Clustering Approach for 

Reducing Water Quality Event False Alarms, in proceedings of ASCE Annual World 

Environmental and Water Resources Congress, Kansas City, Missouri, May 17-21

Hart, D.B. and S.A. McKenna, 2009, CANARY User’s Manual, Version 4.2, U.S. 

Environmental Protection Agency, Office of Research and Development, National 

Homeland Security Research Center, EPA 600/R-08/040A, 51 pp. 

McKenna, S.A., M. Wilson and K.A. Klise, 2008, Detecting Changes in Water Quality 

Data, American Water Works Association Journal, Vol. 100, No. 1, pp. 74-85.  

McKenna, S.A. and D.B. Hart, 2008, On-Line Identification of Adverse Water Quality 

Events from Monitoring of Surrogate Data: CANARY Software, In Proceedings of: 

Singapore International Water Week, June 23rd-27th, Singapore

Koch, M.W., and S.A. McKenna, 2008, Distributed Network Fusion for Water Quality, 

in Proceedings of ASCE World Environmental and Water Resources Congress, 

Honolulu, Hawaii, May 13-16. 

McKenna, S.A., D.B. Hart, K.A. Klise, V.A. Cruz and M.P. Wilson, 2007, Event 

Detection from Water Quality Time Series, in proceedings of: ASCE World 

Environmental and Water Resources Congress, Tampa, FL, May, 2007, May 15-19th.  

McKenna, S.A., K.A. Klise and M.P. Wilson, 2006, Testing Water Quality Change 

Detection Algorithms, in Proceedings of the 8th Annual Water Distribution System 

Analysis Symposium, Cincinnati, OH, August 27-30, 2006.

Klise, K.A. and S.A. McKenna, 2006, Multivariate Applications for Detecting 

Anomalous Water Quality, in Proceedings of the 8th Annual Water Distribution System 

Analysis Symposium, Cincinnati, OH, August 27-30, 2006.
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McKenna, S.A., D.B. Hart and L. Yarrington, 2006, Impact of sensor detection limits 

on protecting water distribution systems from contamination events, Journal of Water 

Resources Planning and Management, Special Issue on Drinking Water Distribution 

Systems Security, 132 (4), pp. 305-309.

Klise, K.A. and S.A. McKenna, 2006, Water quality change detection: multivariate 

algorithms, in Proceedings of SPIE (International Society for Optical Engineering), Defense 

and Security Symposium 2006, April 18-20, Orlando. Florida, 9pp.
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Distributed Sensor Fusion in Water Quality Event Detection 
 

Mark W. Koch
1
 , Sean A. McKenna

2 

 

 

Abstract 

 

To protect drinking water systems, a contamination warning system can use in-line 

sensors to indicate possible accidental and deliberate contamination. Currently, reporting 

of an incident occurs when data from a single station detects an anomaly. This paper 

proposes an approach for combining data from multiple stations to reduce false 

background alarms. By considering the location and time of individual detections as 

points resulting from a random space-time point process, Kulldorff’s scan test can find 

statistically significant clusters of detections. Using EPANET to simulate contaminant 

plumes of varying sizes moving through a water network with varying amounts of 

sensing nodes, it is shown that the scan test can detect significant clusters of events. Also, 

these significant clusters can reduce the false alarms resulting from background noise and 

the clusters can help indicate the time and source location of the contaminant. Fusion of 

monitoring station results within a moderately sized network show false alarm errors are 

reduced by three orders of magnitude using the scan test. 

                                                
1
 Sandia National Laboratories, P.O. Box 5800, MS 1163, Sensor Exploitation Applications Department, 

Albuquerque, NM; mwkoch@sandia.gov 
2
 Sandia National Laboratories, P.O. Box 5800, MS 0751, National Security Applications Department, 

Albuquerque, NM; samcken@sandia.gov 

 

Koch, M.W. and McKenna, S.A., (in review), Distributed Sensor Fusion in Water 

Quality Event Detection, submitted to: ASCE Journal of Water Resources Planning and 

Management, November, 2009
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Trajectory Clustering Approach  
for Reducing Water Quality Event False Alarms 

 
Eric Vugrin1, Sean A. McKenna1, David Hart1 

 
1Sandia National Laboratories, Energy, Resources and Systems Analysis Center,  
PO Box 5800  MS 1138, Albuquerque, NM  87185-1138, 
{edvugri,samcken,dbhart}@sandia.gov 
 
ABSTRACT 
Event Detection Systems (EDS) performance is hindered by false alarms that cause 
unnecessary resource expenditure by the utility and undermine confidence in the EDS 
operation.  Changes in water quality due to operational changes in the utility 
hydraulics can cause a significant number of false alarms.  These changes may occur 
daily and each instance produces similar changes in the multivariate water quality 
pattern.  Recognizing that patterns of water quality change must be identified, we 
adapt trajectory clustering as a means of classifying these multivariate patterns.  We 
develop a general approach for dealing with changes in utility operations that impact 
water quality.  This approach uses historical data water quality data from the utility to 
identify recurring patterns and retains those patterns in a library that can be accessed 
during online operation.  We have implemented this pattern matching capability 
within CANARY and describe several example applications that demonstrate a 
decrease in false alarms. 
 
INTRODUCTION 
Event detection software (EDS) tools are an integral part of contaminant warning 
systems being developed and deployed at water utilities.  EDS constitute an integral 
part of contaminant warning systems (Hasan et al., 2004) and can also provide 
utilities with enhanced monitoring and management of daily operations.  Here we 
focus on the CANARY EDS developed at Sandia National Laboratories (Hart et al., 
2007). 
 
A key component of the effectiveness of these EDS tools in actual operating 
distribution networks is their ability to reduce false positive (false alarm) detections.  
EDS parameters can be tuned to be more or less sensitive to changes in water quality 
with increasing sensitivity resulting in fewer missed detections (false negatives), but 
also increased false alarms.  The tradeoff between false negatives and false alarms 
can be defined through a receiver operating characteristic curve built on historical 
data with simulated events and an acceptable EDS sensitivity can be defined from the 
receiver operating characteristic curve (McKenna et al., 2008).   
 
Deployment of EDS tools in distribution networks has shown that changes in water 
quality at a monitoring location that are caused by changes in the hydraulic operations 
of the utility are often responsible for false positive alarms.  As an example, 
examination of deployment of the EDS CANARY at the Greater Cincinnati Water 
Works (GCWW) over six month period has shown a number of instances where 

590World Environmental and Water Resources Congress 2009: Great Rivers © 2009 ASCE

Vugrin, E., S.A. McKenna and D. Hart, 2009, Trajectory Clustering Approach for Reducing 

Water Quality Event False Alarms, in proceedings of ASCE Annual World Environmental 

and Water Resources Congress, Kansas City, Missouri, May 17-21
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Hart, D.B. and S.A. McKenna, 2009, CANARY User’s Manual, Version 4.2, U.S. 

Environmental Protection Agency, Office of Research and Development, National 

Homeland Security Research Center, EPA 600/R-08/040A, 51 pp. 

SCIEN
CE

United States
Environmental Protection
Agency

EPA 600/R-08/040A | November 2009 | www.epa.gov/ord

CANARY User’s Manual
VERSION 4.2

Office of Research and Development
National Homeland Security Research Center
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McKenna, S.A., M. Wilson and K.A. Klise, 2008, Detecting Changes in Water Quality Data, 
American Water Works Association Journal, Vol. 100, No. 1, pp. 74-85. 
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On-Line Identification of Adverse Water Quality Events 
from Monitoring of Surrogate Data: CANARY Software 

Sean A. McKenna*, David Hart** 

*Sandia National Laboratories, P.O. Box 5800, MS-0751, Albuquerque, NM 87185-0751, 
U.S.A., (E-mail: samcken@sandia.gov)
**Sandia National Laboratories, P.O. Box 5800, MS-0751, Albuquerque, NM 87185-0751, 
U.S.A., (E-mail: dbhart@sandia.gov) 

Abstract:  
Real-time monitoring of water quality parameters in drinking water distribution networks is 
becoming commonplace and this monitoring provides information critical for the efficient 
and safe operation of these networks.  Water quality monitors deployed to date are focused 
on measuring the general water quality within the network (e.g., residual chlorine levels, 
pH, electrical conductivity, etc.).  Sensors that can provide reliable, real-time, in-situ 
monitoring of specific contaminants and pathogens are not yet deployed.  Therefore, it is 
essential to use the currently available information as effectively as possible to identify 
significant changes in water quality that can be a sign of adverse conditions in the network.   

Here we demonstrate an approach to automatic on-line detection of anomalous water 
quality events from surrogate monitoring data.  The three steps in this approach are: 1) 
State estimation where statistical models applied to previous measurements of multiple 
water quality variables are used to predict the next measured value for each water quality 
variable; 2) Integration of the residuals between the predicted and measured values across 
all water quality variables as the measurements become available; and 3) Analysis of the 
residuals across consecutive time steps against an expected failure rate to determine the 
probability of an adverse water quality event.   

This three-step process for on-line water quality event detection has been implemented in 
the CANARY software.  Examples of off-line analysis of water quality data using 
CANARY allow for determination of false positive rates for different parameter settings in 
background water quality where no adverse water quality events have occurred.  
Additionally, water quality data containing simulated contamination events allows for the 
quantification of false positive and false negative results.  The impact of different event 
detection operating parameters on the false positive rate and the number of missed 
detections is examined for two locations in a water distribution system. 

Keywords  Water quality, Event detection, Surrogate parameters, SCADA system 

INTRODUCTION
Continuous, reliable delivery of safe drinking water to customers is an essential component of 
the viability of large metropolitan areas.  The distribution networks used to deliver water 
represent a critical component of municipal infrastructure systems.  Accidental or intentional 
contamination events that could degrade water quality within water distribution systems have 
focused recent discussion on various means of hardening both the physical and cyber 
components of these systems against contamination events.  The concept of a contaminant 
warning system (CWS) has been proposed as an integrated tool that employs in-situ sensors, 
supervisory control and data acquisition (SCADA) systems, and water quality event detection 
systems (EDS) to continuously monitor network conditions and warn operations personnel of 
any potential contamination events (see Hasan, et al., 2004; Grayman, et al., 2001).   

The sensor component of a CWS can be comprised of various water quality sensing platforms 
including contaminant-specific sensors that make use of recent developments in “chem-lab on 
a microchip” technologies, or more commonly, of existing water quality sensors (e.g., pH, Cl, 

McKenna, S.A. and D.B. Hart, 2008, On-Line Identification of Adverse Water Quality 

Events from Monitoring of Surrogate Data: CANARY Software, In Proceedings of: 

Singapore International Water Week, June 23rd-27th, Singapore
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Koch, M.W., and S.A. McKenna, 2008, Distributed Network Fusion for Water Quality, 

in Proceedings of ASCE World Environmental and Water Resources Congress, Honolulu, 

Hawaii, May 13-16. 

Distributed Network Fusion for Water Quality+

Mark W. Koch1 , Sean A. McKenna2

1 Sandia National Laboratories∗, P.O. Box 5800, MS 1163, Sensor Exploitation 
Applications Department, Albuquerque, NM; mwkoch@sandia.gov 

2 Sandia National Laboratories, P.O. Box 5800, MS 0735, Geohydrology Department, 
Albuquerque, NM; samcken@sandia.gov 

Abstract
To protect drinking water systems, a contamination warning system can use in-line 
sensors to detect accidental and deliberate contamination. Currently, detection of an 
incident occurs when data from a single station detects an anomaly. This paper 
considers the possibility of combining data from multiple locations to reduce false 
alarms and help determine the contaminant’s injection source and time. If we 
consider the location and time of individual detections as points resulting from a 
random space-time point process, we can use Kulldorff’s scan test to find statistically 
significant clusters of detections. Using EPANET, we simulate a contaminant moving 
through a water network and detect significant clusters of events. We show these 
significant clusters can distinguish true events from random false alarms and the 
clusters help identify the time and source of the contaminant. Fusion results show 
reduced errors with only 25% more sensors needed over a nonfusion approach. 

1. Introduction 
To maintain the safety and security of drinking water, water utilities need innovative 
technologies to detect deliberate or accidental contamination in water distribution 
systems. One approach uses water quality sensors in the water distribution system 
and measures attributes of the water such as free chlorine, total organic carbon, pH, 
temperature, and electrical conductivity. While these measurements do not 
necessarily measure contaminant levels directly, a sudden change in their readings 
can indicate contamination or an abnormal operation of the water distribution system. 
One approach uses change detection algorithms to compare the current measurements 
with models of the background. We call each location with sensors and algorithms a 
sensing-node and a change in water quality detected by the algorithms an event.
     In conjunction with the National Homeland Security Research Center we are 
extending research from detection at a single sensing-node to detection at multiple 
nodes distributed throughout the water distribution network. Here, we want to use the 
topology of the water distribution network and sensor fusion to combine multiple 

+ This work was funded by the U.S. EPA National Homeland Security Research Center 
(NHSRC)
∗ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin 
Company, for the United States Department of Energy’s National Nuclear Security 
Administration under contract DE-AC04-94AL85000
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McKenna, S.A., D.B. Hart, K.A. Klise, V.A. Cruz and M.P. Wilson, 2007, Event Detection 

from Water Quality Time Series, in proceedings of: ASCE World Environmental and Water 

Resources Congress, Tampa, FL, May, 2007, May 15-19th.  
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TESTING WATER QUALITY CHANGE DETECTION ALGORITHMS 

Sean A. McKenna1, Katherine A. Klise1 and Mark P. Wilson2
1Sandia National Laboratories 

Albuquerque, New Mexico 
samcken@sandia.gov, kaklise@sandia.gov 

2GRAM Incorporated 
Albuquerque, New Mexico 

mpwilso@graminc.com 

Abstract
Rapid detection of anomalous operating conditions within a water distribution network is desirable for 
the protection of the network against both accidental and malevolent contamination events.  In the 
absence of a suite of in-situ, real-time sensors that can accurately identify a wide range of contaminants, 
we focus on detecting changes in water quality through analysis of existing data streams from in-situ 
water quality sensors.  Three different change detection algorithms are tested: time series increments, 
linear filter  and multivariate distance.  Each of these three algorithms uses previous observations of the 
water quality to predict future water quality values.  Large deviations between the predicted or previously 
measured values and observed values at future times indicate a change in the expected water quality.  The 
definition of what constitutes a large deviation is quantified by a threshold value applied to the observed 
differences.

Both simulated time series of water quality as well as measured chlorine residual values from two 
different locations within a distribution network are used as the background water quality values.  The 
simulated time series are created specifically to challenge the change detection algorithms with 
bimodally distributed water quality values having a square wave and sin wave time series, with and 
without correlated noise.  Additionally, a simulated time series resembling observed water quality time 
series is created with different levels of variability.  The algorithms are tested in two different ways.  
First, background water quality without any anomalous events are used to test the ability of each 
algorithm to identify the water quality value at the next time step.  Summary statistics on the prediction 
errors as well as the number of false positive detections quantify the ability of each algorithm to predict 
the background water quality.  The performance of the algorithms with respect to limiting false positives 
is also compared against a simpler “set point” approach to detecting water quality changes.  The second 
mode of testing employs events in the form of square waves superimposed on top of modeled/measured 
background water quality data.  Three different event strengths are examined and the event detection 
capabilities of each algorithm are evaluated through the use of receiver operating characteristic (ROC) 
curves.  The area under the ROC curve provides a quantitative basis of comparison across the three 
algorithms.  Results show that the multivariate algorithm produces the lowest prediction errors for all 
cases of background water quality.  A comparison of the number of false positives reported from the 
change detection algorithms and a set point approach highlights the efficiency of the change detection 
algorithms.  Across all three algorithms, most prediction errors are within one standard deviation of the 
mean water quality.  The event detection results show that the best performing algorithm varies across 
different background water quality models and simulated event strength. 
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Impact of Sensor Detection Limits on Protecting Water
Distribution Systems from Contamination Events

Sean A. McKenna1; David B. Hart2; and Lane Yarrington3

Abstract: Real-time water quality sensors are becoming more commonplace in water distribution systems. However, field deployable,
contaminant-specific sensors are still in the development stage. As development proceeds, the necessary operating parameters of these
sensors must be determined to protect consumers from accidental and malevolent contamination events. This objective can be quantified
in several different ways including minimization of: the time necessary to detect a contamination event, the population exposed to
contaminated water, the extent of the contamination within the network, and others. We examine the ability of a sensor set to meet these
objectives as a function of both the detection limit of the sensors and the number of sensors in the network. A moderately sized
distribution network is used as an example and different sized sets of randomly placed sensors are considered. For each combination of
a certain number of sensors and a detection limit, the mean values of the different objectives across multiple random sensor placements
are calculated. The tradeoff between the necessary detection limit in a sensor and the number of sensors is evaluated. Results show that
for the example problem examined here, a sensor detection limit of 0.01 of the average source concentration is adequate for maximum
protection. Detection of events is dependent on the detection limit of the sensors, but for those events that are detected, the values of the
performance measures are not a function of the sensor detection limit. The results of replacing a single sensor in a network with a sensor
having a much lower detection limit show that while this replacement can improve results, the majority of the additional events detected
had performance measures of relatively low consequence.

DOI: XXXX

CE Database subject headings: Hydraulic networks; Sensors; Hydraulic models; Water distribution systems; Water pollution.

Introduction

The concept of a contaminant warning system �CWS� that can be
deployed within a water distribution network to give rapid and
accurate indication of conditions within the distribution system
that may be adverse to human health has recently gained interest
�ILSI 1999; Grayman et al. 2001�. The majority of effort in CWS
research has concentrated on the development of contaminant
sensor technologies; however, as pointed out by Hasan et al.
�2004�, an effective CWS must also include analysis of sensor
data towards making decisions that protect public health while
minimizing community concern.

Considerable CWS research has been done to determine the
optimal locations for sensors within a distribution network to pro-
vide for the greatest protection of human health �see Ostfeld and
Salomons �2004�; Uber et al. �2004�; Watson et al. �2004�; Berry

et al. �2006��. The majority of these sensor location optimization
studies have focused on algorithm development and, to avoid
other complications, have typically assumed a “perfect sensor.”
This assumption states that any amount of contamination reaching
the location of the sensor will cause the sensor to correctly indi-
cate a positive contamination event, or in the case of quantitative
measurements, to accurately measure the contaminant concentra-
tion at that location. Under the perfect sensor assumption, issues
associated with sensors deployed in actual distribution networks
such as: detection limits, accuracy and precision of the sensor,
false positive and false negative readings, the ability of the sensor
to integrate a contaminant level within a volume of water, and the
robustness of the sensor readings against calibration drift and
changes in the distribution system operating conditions are not
considered.

This work begins to examine the effects of varying sensor
performance on the ability of a CWS to mitigate adverse conse-
quences from a contamination event within a water distribution
system. This goal is accomplished by injecting a contaminant at a
single node in a distribution network and placing sensors at nodes
to detect this contaminant. Sensor locations are varied randomly
and different numbers of sensors are examined. In each case, the
perfect sensor assumption is relaxed by varying the detection
limit relative to the average injection concentration.

Problem Formulation

For a contaminant injected into the system at a network node
�junction�, the average source concentration, Cs

*, over the period
of the contaminant source injection, Ts, is
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Water quality change detection: multivariate algorithms 
 

Katherine A. Klise
*
 and Sean A. McKenna 

Geohydrology Department, Sandia National Laboratories, PO Box 5800, MS 0735,  

Albuquerque, NM 87185 
 

ABSTRACT 
In light of growing concern over the safety and security of our nation’s drinking water, increased attention has been 

focused on advanced monitoring of water distribution systems.  The key to these advanced monitoring systems lies in the 

combination of real time data and robust statistical analysis.  Currently available data streams from sensors provide near 

real time information on water quality.  Combining these data streams with change detection algorithms, this project 

aims to develop automated monitoring techniques that will classify real time data and denote anomalous water types.  

Here, water quality data in 1 hour increments over 3000 hours at 4 locations are used to test multivariate algorithms to 

detect anomalous water quality events.  The algorithms use all available water quality sensors to measure deviation from 

expected water quality.  Simulated anomalous water quality events are added to the measured data to test three 

approaches to measure this deviation.  These approaches include multivariate distance measures to 1) the previous 

observation, 2) the closest observation in multivariate space, and 3) the closest cluster of previous water quality 

observations.  Clusters are established using kmeans classification.  Each approach uses a moving window of previous 

water quality measurements to classify the current measurement as normal or anomalous.  Receiver Operating 

Characteristic (ROC) curves test the ability of each approach to discriminate between normal and anomalous water 

quality using a variety of thresholds and simulated anomalous events.  These analyses result in a better understanding of 

the deviation from normal water quality that is necessary to sound an alarm.   

 

1. INTRODUCTION 
The ability to detect anomalous changes in water quality has application to both maintaining normal operations of water 

distribution systems as well as detecting anomalous events as a result of accidental or malicious contamination within 

the system.  To address the concerns of the safety and security of our nation’s drinking water, enhanced monitoring of 

water distribution systems is vital.  Contaminant warning systems are critical to correctly initiate a response if 

anomalous water quality is detected.  Contaminant warning systems are gaining interest
1
, and efforts must focus on 

protecting public health while minimizing public concern
2
.  To do this, water quality monitoring needs to integrate real 

time data and robust statistical analysis.  

 

Under an interagency agreement between the U.S. EPA National Homeland Security Research Center and Sandia 

National Laboratories, this project aims to develop automated monitoring techniques that will classify real time data to 

sound an alarm when anomalous water types are detected.  Using all available water quality sensor data, the algorithms 

calculate the multivariate distance between the current water quality measurement and expected water quality within a 

moving window of previous measurements.  Three approaches to defining the distance to expected water quality are 

tested.  These approaches include multivariate distance measures to 1) the previous observation, 2) the closest 

observation in multivariate space, and 3) the closest cluster of previous water quality observations.  ROC curves define 

the ability of each approach to discriminate between normal and anomalous water quality using a variety of thresholds 

and simulated anomalous events.  Water quality data in 1 hour increments collected from sensors at 4 locations within a 

single utility are used for the study.  Simulated events are added to the data to test the ability of each approach to find a 

variety of anomalous water quality deviations within the measured data. 

 

The purpose of this study is to develop a change detection algorithm and assess its ability to discriminate normal water 

quality and anomalous water quality while tracking the probability of detection and the false alarm rate. This study 

details the specific aspects of multivariate algorithms, and uses measured and simulated data to test the reliability of such 

methods.  The analysis results in a better understanding of the magnitude and type of deviation from normal water 

quality that is needed to alert a utility of uncertain water quality. 

 

2. WATER QUALITY DATA 
Evaluating change detection algorithms requires a set of known anomalous events against which the algorithm is tested.  

Measured water quality data streams obtained from in-line utility sensors represent normal operating conditions.  
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