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DNA Methylation Alterations in Cancer 

NORMAL CELL 

• Methylated CpG Island promoters are transcriptionally silenced in cancer 

• Areas of low-CpG density may lose DNA methylation in cancer 

GLOBAL 
HYPOMETHYLATION 

• CpG Islands may acquire abnormal hypermethylation in cancer 

FOCAL 
HYPERMETHYLATION 

CANCER CELL 



Epigenetic Silencing of BRCA1 in 
Serous Ovarian Cancer 
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• Red: Fallopian Tubes 
• Purple – Somatic Mutation 
• Green – Germline Mutation 
• Blue – Epigenetic Silencing 
° Hollow – Not Sequenced 
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TCGA Research Network (2011) Nature 474, 609 



Outline 

• CpG Island Methylator Phenotypes - Glioblastoma 



Glioma-CpG Island Methylator 
Phenotype (G-CIMP) (TCGA) 
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Noushmehr et al. 2010 Cancer Cell 17, 510 
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Verhaak et al. 2010 
Cancer Cell 17, 98 



G-CIMP Is a Subset of Proneural 
Glioblastomas with Better Survival 

Noushmehr et al. 2010 Cancer Cell 17, 510 



Glioma-CpG Island Methylator 
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G-CIMP is Tightly Linked to IDH1 Mutation 

Noushmehr et al. 2010 Cancer Cell 17, 510 
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Model for G-CIMP 

IDH1 Mutation Causes Aberrant CpG Island Methylation 

2HG m-IDH 

mC HmC TET DNA Hypomethylation 

αKG IC IDH 

…..Does not explain G-CIMP IDH1wt cases 



• Cross-tumor Comparisons 

Outline 

• CpG Island Methylator Phenotypes - Glioblastoma 



Comparison of 2,275 TCGA Cancer 
Samples and 409 Normal Tissues  
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• Cross-tumor Comparisons 

• Bisulfite Sequencing - Epigenetic Origins of Cancer 

Outline 

• CpG Island Methylator Phenotypes - Glioblastoma 



TCGA Whole Genome Bisulfite 
Sequencing (WGBS) 

TCGA Sample Type Description 

Bisulfite 
non-
conversion 

Mean 
cvg 

# 
CpGs 

1x cvg 
(% 
CpGs) 

5x cvg 
(% 
CpGs) 

AA-3518-01A COAD MSI-H 0.92% 23x 51.8M 92% 90% 

AA-3518-11A COAD - N 0.86% 22x 51.5M 91% 90% 

A7-A0CE-01A BRCA Basal-like subtype 0.31% 19x 50.7M 90% 86% 

A7-A0CE-11A BRCA - N 0.36% 19x 50.3M 89% 85% 

AA-3518-01A UCEC Grade 1 endometrioid 0.31% 19x 52.1M 92% 90% 

AA-3518-11A UCEC - N 0.31% 18x 51.8M 92% 89% 

60-2722-01A LUSC Classical subtype 0.30% 21x 51.8M 92% 89% 

60-2722-11A LUSC - N 0.61% 5x 39.3M 69% 33% 

- In Production: 3 Lung squamous Tumors, 3 Breast Tumors 
- In Sample Selection: 2 GBM Tumors, 3 Renal Cell Kidney Pairs 



Whole Genome Bisulfite Sequencing of 
TCGA Tumors and Normal Tissues 

C
O

LO
N

 T
U

M
O

R
 

LO
W

 
H

IG
H

 

LOW HIGH 
COLON NORMAL 

COAD 

B
R

EA
ST

 T
U

M
O

R
 

LO
W

 
H

IG
H

 

LOW HIGH 
BREAST NORMAL 

BRCA 

U
TE

R
IN

E 
TU

M
O

R
 

LO
W

 
H

IG
H

 

LOW HIGH 
ENDOMETRIUM 

UCEC 

LU
N

G
 T

U
M

O
R

 
LO

W
 

H
IG

H
 

LOW HIGH 
ENDOMETRIUM 

LUSC 

MP: 
Methylation 

Prone 
Regions 



ENCODE chromatin types from J. Ernst et al. Nature 2011 
- Active promoter: K4me3, K9ac, K27ac 
- Weak promoter: K4me3, K9ac 
- Poised promoter: K4me1/2, K27me3 

- Strong enhancer: K4me1/2, K9ac, K27ac 
- Weak enhancer: K4me1/2 
- CTCF Insulator: CTCF 

Methylation-Prone Elements are 
Enriched for Stem-Cell Polycomb Marks 



ARTKQTARKSTG      RKSAP 
4 9 27 

ACTIVATION 

REPRESSION EZH2  
(POLYCOMB REPRESSIVE MARK - PRC2) 

Transcriptional Potential Associated 
with Histone H3 Methylation 

H3 

MLL, SET7/9 
(TRITHORAX ACTIVATION MARK) 

Polycomb Target Genes in Embryonic Stem Cells: 
• Master regulators of differentiation and development 
• Poised to be turned on during differentiation 
• Bivalent epigenetic state: Active (H3K4me3) and Repressive Marks (H3K27Me3) 
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Polycomb Target DNA Methylation 
Starts in Normal Tissues 

EMBRYONIC STEM CELLS 
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Model: Polycomb Crosstalk Leads to 
Cumulative Stochastic Methylation 

PRC PRC PRC PRC 

Widschwendter at al. (2007) Nature Genetics 39, 157 

Abnormal DNA Methylation 
at ES-Cell Polycomb Targets 
Even though Polycomb Repressors 
no Longer Occupy these Promoters 

DIFFERENTIATED CELL STEM CELL 

CANCER CELL 



This Model…. 

• Would explain the DNA methylation behavior for about half of 
cancer-specifically methylated genes 

• Suggests that therapeutic cloning strategies using human ES cells 
or IPS cells should incorporate screening for PRC2 DNA 
methylation abnormalities 

• Is consistent with the stem-cell like behavior of cancer cells and 
with the evidence for tumor-initiating cells 

• Is consistent with the observation of epigenetic field effects 
adjacent to tumors 

• Suggests that the first steps of oncogenesis may be epigenetic 

Widschwendter at al. (2007) Nature Genetics 39, 157 
Hinoue et al. (2011) Genome Research, In Press 



• Cross-tumor Comparisons 

• Bisulfite Sequencing - Epigenetic Origins of Cancer 

Outline 

• Bisulfite Sequencing – Long Range Instability 

• CpG Island Methylator Phenotypes - Glioblastoma 



Methylation-Prone CpG Islands 
STK33 gene 
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Berman et al. 2011 Nature Genetics 43, In Press 



Hypomethylated in Cancer 
Hypermethylated in Cancer 

Regions of Focal Hypermethylation and 
Long-Range Hypomethylation Coincide 

Berman et al. 2011 Nature Genetics 43, In Press 

Part of Chromosome 3q 
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CpG Islands 

ES-Cell Methylation 

Normal Colon Methylation 
Colon Tumor Methylation 



A Subset of the Cancer Epigenome 
Has Partially Lost Methylation 

20-kb Windows 

Berman et al. 2011 Nature Genetics 43, In Press 



Regions of Focal Hypermethylation and 
Long-Range Hypomethylation Coincide 

Berman et al. 2011 Nature Genetics 43, In Press 



• Cross-tumor Comparisons 

• Bisulfite Sequencing - Epigenetic Origins of Cancer 

Outline 

• Bisulfite Sequencing – Long Range Instability 

• CpG Island Methylator Phenotypes - Glioblastoma 

• Bisulfite Sequencing – Nuclear Architecture 



Colon Tumor Methylation 

Hypomethylated in Cancer 
Hypermethylated in Cancer 

Hypomethylated “Oceans” Correspond 
to Lamin Attachment Domains 

Berman et al. 2011 Nature Genetics 43, In Press 
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Spatial Organization 
 of the Epigenome 

Bas Van Steensel,  
Curr Opin Cell Biol 2010 

• Lamin Attachment 
• Late Replication 
• Epigenetic Instability in Cancer 

• Active Transcription 
• Epigenetically Stable in Cancer 



• CpG Island Methylator Phenotype in Glioblastoma – IDH1 Mutation 
 

Epigenetic Subtypes 

• Polycomb Repressor Binding in ES-Cells Predisposes to Aberrant 
DNA Methylation in Cancer 

Epigenetic Origins of Cancer 

SUMMARY 

The Role of Nuclear Architecture in Epigenetic Instability 
• Focal Hypermethylation and Long-Range Hypomethylation Coincide in 

Partially Methylated Domains (PMDs) 

• Polycomb Repressor Predisposition Seen Across Cancer Types 

• Epigenetically Unstable PMDs are Associated with Nuclear Lamina 
Attachment and Late-Replicating Regions 
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