

Large-scale Cancer Genomics Data Analysis

David Haussler
Center for Biomolecular Science and Engineering,
UC Santa Cruz

Cancer Genomics Hub

- Being built to store BAM & VCF for TCGA, TARGET and CGAP/CGCI projects
- Designed for 25,000 cases with average of 200 gigabytes per case
- 5 petabytes (5 x 10¹⁵) total,
 scalable to 20 petabytes
- General Parallel File System,
 Dual RAID 6 subsystems,
 Redundant I/O paths, 16
 application processors, 12
 storage controllers
- co-location opportunities

CGHub Goals

- ➤ Enable direct comparison and combined analysis of many large-scale cancer genomics datasets
- aggregate enough data to provide the statistical power to attack the full complexity of cancer mutations
- Set standards for data storage and exchange; encourage data sharing
- ➤ Maintain compatibility with EGA, dbGaP, ICGC, 1000 Genomes Project, ENCODE and other large-scale genomics efforts (e.g. VCF format, data access coordination)

Given the same BAM files, different mutation calling pipelines do not completely agree

Total calls:	Called by 2 other centers	Called by at least 1 other			
Broad: 3,194	62%	85%			
UCSC: 2,688	74%	89%			
WUSTL: 3,125	63%	82%			

Still work to do to harden mutation-calling software

We are just beginning to look at accuracy and consistency in the detection of structural variation

Case study: UCSC and Broad analysis of whole genome GBM data

Samples Analyzed

Sample	Broad	UCSC	Sample	Broad	UCSC
TCGA-06-0145	Y	Y	TCGA-06-0881	Y	Y
TCGA-06-0152	Y	Υ	TCGA-06-1086	Y	Y
TCGA-06-0155	Y	Υ	TCGA-14-0786	Υ	Y
TCGA-06-0185	Y	Υ	TCGA-14-1401	Υ	Y
TCGA-06-0188	Y	Υ	TCGA-14-1454	Υ	Y
TCGA-06-0208	Y	N	TCGA-14-1459	Υ	Y
TCGA-06-0214	Y	Υ	TCGA-16-1063	Υ	Y
TCGA-06-0648	Y	Y	TCGA-16-1460	N	Y
TCGA-06-0877*	Y	Y	TCGA-26-1438	Y	Y

Gene fusions: BamBam 167, dRanger 188

Sample	CoordL	CoordR	Reads	GeneL	FrameL	StrandL	HitsL	GeneR	FrameR	StrandR	HitsR	In Frame?	dRanger?
06-0152	12 :56459798-56460131	12 :62794669-62794987	4727	METTL21B	2	+	4	SRGAP1	2	+	1	у	Т
06-0152	12 :62997663-62998007	12 :63924457-63924766	3540	C12orf56	2	-	32	LEMD3	2	+	2	у	Т
06-0145	7 :55168952-55169237	7 :55190240-55190601	848	EGFR	1	+	26	EGFR	1	+	4	у	N/A
06-0145	7 :55159358-55159628	7 :55190429-55190764	525	EGFR	1	+	26	EGFR	1	+	4	У	N/A
06-0145	7 :55159093-55159397	7 :55190829-55191346	427	EGFR	1	+	26	EGFR	1	+	4	у	N/A
06-0155	7 :55208694-55208864	7 :55236748-55236915	106	EGFR	0	+	1	EGFR	0	+	1	n	N/A
06-0214	7 :55099712-55099860	7 :55190184-55190294	81	EGFR	1	+	18	EGFR	1	+	5	у	N/A
06-0152	1:207945895-207946107	1 :209346251-209346555	58	HSD11B1	0	+	1	KCNH1	2	-	6	n	T
06-0188	9 :32404350-32404647	9 :32413764-32414060	48	ACO1	2	+	1	ACO1	0	+	1	n	N/A
06-0152	12 :63865716-63865854	12 :64580482-64580671	38	LEMD3	1	+	9	HMGA2	0	+	6	n	Т
06-0188	1 :51368056-51368360	1 :52099020-52099368	35	C1orf185	0	+	4	NRD1	2	-	3	n	Т
06-0152	12 :64582920-64583109	12 :69368141-69368373	34	HMGA2	0	+	6	PTPRR	1	-	3	n	T
06-0188	1:19307279-19307560	6 :123987092-123987380	34	UBR4	0	-	1	TRDN	1	-	10	n	Т
06-0188	1:51060452-51060737	1 :51344515-51344812	34	FAF1	0	-	6	C1orf185	1	+	1	n	Т
06-0188	1:23281690-23281984	1 :24591765-24592075	34	KDM1A	0	+	15	C1orf201	0	-	1	у	Υ
26-1438	12 :56505031-56505165	12 :61187823-61187959	34	CTDSP2	0	-	1	MON2	0	+	1	у	T
06-0152	1:209345875-209346029	1 :220929229-220929418	32	KCNH1	2	-	6	AIDA	1	-	1	n	Υ
06-0188	1 :51934334-51934652	1 :90248771-90249118	32	OSBPL9	1	+	4	ZNF326	1	+	1	у	T
06-0188	1:21651761-21652066	1:26174704-26175018	31	NBPF3	1	+	37	PAFAH2	2	-	1	n	T
26-1438	12 :58448404-58448547	12 :61204142-61204266	30	SLC16A7	1	+	4	MON2	0	+	1	n	Т
06-0188	1:22940842-22941131	1 :23667423-23667689	29	EPHB2	1	+	11	ASAP3	0	-	12	n	N
06-0152	19 :50247112-50247303	22 :24613034-24613228	28	CLASRP	0	+	1	MYO18B	0	+	3	у	Υ
06-0188	1:51598552-51598840	1 :51620907-51621163	26	EPS15	0	-	1	EPS15	1	-	7	n	N/A
06-0188	1:51017338-51017620	1:51981653-51981916	22	FAF1	1	-	2	OSBPL9	0	+	2	n	Т
06-0648	12 :67515167-67515368	22 :48690695-48690822	22	MDM2	0	+	3	ALG12	1	-	1	n	Υ
06-0152	1:209034515-209034675	1:209345389-209345572	21	KCNH1	1	-	7	KCNH1	2	-	6	n	N/A
06-0188	1:25894320-25894607	1 :26233102-26233380	21	MAN1C1	1	+	13	EXTL1	2	+	1	n	N
06-0152	1:30967854-30968002	1 :31181864-31182056	20	MATN1	1	-	1	PUM1	0	-	1	n	N
06-0145	3 :50030328-50030491	3 :50795045-50795273	20	RBM6	0	+	10	DOCK3	1	+	3	n	Υ

136 potentially overlapping events

Whole Genome View

- •Circle plot shows amplifications, deletions, inter/intra chromosomal rearrangement
- These 2 samples have 23/25 top dRanger, 21/29 top bambam events

Glioblastoma: TCGA-06-0145

Homozygous loss of CDKN2A/B

via inter- and intra-chromosomal rearrangements.

Independent events lead to somatic homozygous loss of tumor suppressors CDKN2A/B

Similar double-loss motif in other GBMs

In 11/16 cases similar events lead to homozygous loss of CDKN2A/B

	One Copy Deleted by	Other Copy Deleted by		
5 GBMs	Focal Loss	Arm-Level loss of chr9p (via inter-chrom translocation)		
3 GBMs	Focal Loss	Arm-Level loss of chr9p (mechanism unknown)		
2 GBMs	Focal Loss	Complete loss of chr9		
1 GBM	Focal Loss	Complex event		
5 GBMs	No loss detected	No loss detected		

Features of CDKN2A/B normal samples

Sample	Exp subtype	G-CIMP	EGFR	CDK4	MDM2	Other
TCGA-06-0152	mes		amp	amp	amp	
TCGA-06-0881	mes		amp			DTEN
TCGA-14-1454	pro					PTEN deln+FS
TCGA-16-1460	pro	+		rearr*	rearr*	IDH1 mut
TCGA-26-1438	mes			amp	amp	

LEMD3 - c12orf56 Fusion

GBM: TCGA-06-0152

Chromothripsis in a gliblastoma

EGFR Amplifcation/Mutation

- ➤ I I/I7 samples have chr7 amplifications including EGFR
- ➤ 4/11 also have EGFRviii mutations
- > Exon 2-7 deletion at low copy
 - > Probably happened after amplification events
 - Selection for low copy?

Example: EGFRviii mutation

GBMs release exosomes. Could some GBM tumor DNA show up in the blood?

Astrocytes and Glioblastoma cells release exosomes carrying mtDNA

Michele Guescini · Susanna Genedani · Vilberto Stocchi · Luigi Francesco Agnati

Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers

Johan Skog¹, Tom Würdinger^{1,2}, Sjoerd van Rijn¹, Dimphna H. Meijer¹, Laura Gainche^{1,} Miguel Sena-Esteves¹, William T. Curry, Jr.³, Bob S. Carter³, Anna M. Krichevsky⁴ and Xandra O. Breakefield^{1,5}

Amplified events may provide enough reads to detect this

GBM: TCGA-06-0152

left-hand edge of EGFR amplicon, connected to chr12

Copy Number States

Overall Copy Number

GBM: TCGA-06-0185

Simulated Progression Model to Infer

Karyotype Mixture

UCSC Cancer Integration Group

Josh Stuart, Co-PI

Jing Zhu

Charlie Vaske

Steve Benz

Zack Sanborn *

James Durbin

Mark Diekhans * **Melissa Cline Dan Carlin Kyle Elrott Brian Craft** Sofie Salama * **Chris Wilks Artem Sokolov**

Chris Szeto

Sam Ng

Mia Grifford

Amie Radenbaugh

Ted Golstein

Allele-Specific Copy Number

Tumors exhibit multiple rounds of duplication, rearrangement and loss

Overall Copy Number

Copy Number Profile Analysis

Many rearrangements in amplified regions

