Presidential Advisory Council on HIV/AIDS: New Vaccine Initiatives

Carl W. Dieffenbach, Ph.D. Director, Division of AIDS October 22, 2008

- Image of NIH News Article "Immunizations Are Discontinued in Two HIV Vaccine Trials," 21 Sept 2007
- 3 Step Study Results

Vaccine did not protect against infection

Vaccine did not lower the viral "setpoint"

There were more infections in vaccinees than placebo recipients

- -This trend was more pronounced in participants with higher baseline Ad5 titlers
- Additional Step Analysis
 Increased risk of HIV infection among vaccinees was most evident in uncircumcised men with pre-existing Ad5 immunity

No evidence of increased risk among vaccinnees in circumcised men without pre-existing Ad5 immunity

Further studies underway to provide clues as to possible biological mechanisms

5 Immunogenicity Summary

- Immune responses as measured by γ -interferon ELISPOT were similar in infected and uninfected subjects
- No clear explanation for increased number of infections observed in vaccinees in the Ad5 seropositive volunteers
 - More activated PBMC in volunteers with high Ad5 antibody titers at baseline
 - No difference between vaccinees and placebo recipients
 - · Mucosal sites?
- Process in place to prioritize further studies

6 STEP's Unique Scientific Contributions

- · Demonstrated that a test-of-concept trial is useful to define vaccine efficacy
 - Quick pick-up of potential adverse or beneficial events
- · Recalibrated the NHP Challenge Model

Development")

- SHIV 89.6P is no longer favored for T cell vaccine evaluation
- Need to screen out or randomize genetically resistant animals (MamuA01+; certain MHC types)
- Demonstrated that vector induced immunity needs to be evaluated in vaccine development, including tissue specific responses
- · Raised questions about the "T cell vaccine" concept
- March 25, 2008
 Bethesda, Maryland
 (Slide shows image of "Summit on HIV Vaccine Research and
- 8 Classical Vaccinology Versus HIV Vaccinology
- Classical Vaccinology (image of down arrow) The response to natural infection provides the proof on concept
- Characteristics of Viral Infections for Which We Have Vaccines:

 Nature's Proof of Concept
 - *Variable courses and sequelae among different infections (e.g. polio, measles, smallpox); HOWEVER, the vast majority of people recover spontaneously.
 - *Virus is ultimately cleared and eradicated.
 - *Protective immunity against subsequent infection is usually complete and often lifelong.
- 11 Diagram presented on slide

Top Box: Vaccinology

First Down Arrow: Discovery

Items under Discovery: Often unpredictable, False leads,

Serendipity, "Eureka moments"

Second Down Arrow: Development

Items under Development: Generally orderly process

Classical Vaccinology: Relationship Between Discovery and Development

(Slide shows image with text Discovery and Development; button points to development)

- 13 Common Elements in Classical Vaccinology
 - *Discovery, definition and propagation of etiologic agent
 - *Choice of live-attenuated, whole or subunit approach
 - *Maximize immunogenicity versus reactogenicity
 - *Preclinical and early clinical assessment
 - *Proof of protective efficacy and long-term immunity
 - *Development of surrogate markers
 - *Scale-up, licensure, manufacturing and distribution Adapted from MR Hilleman, Nature Medicine, 5/98
- 14 HIV Is Different
 - *The natural immune response to HIV is inadequate
 - *HIV hides from the immune system
 - *HIV targets and destroys the immune system
 - *HIV mutates rapidly
 - (Slide shows image of HIV)
- Slide shows image of cover of the New England Journal of Medicine article titled "An HIV Vaccine Evolving Concepts"
- HIV Vaccinology: "Turning the Knob" Toward Discovery Research (slide shows image with the words Discovery and Development; button is pointing to Discovery)
- 17 New Approach—Back to Basics
 - Traditional approaches have yielded a tremendous amount of information but have not gotten us where we need to be after >27 years of research
 - New strategies for HIV prevention and control rest squarely upon our unraveling the basic biologic conundrum of HIV and its interaction with its human host
- 18 New Approach—Back to Basics

- Formation of Vaccine Discovery Branch
- · Major emphasis on antibodies already funded
 - B-cell Initiative
- Two major initiatives underway
 - HIT-IT
 - Basic Vaccine Discovery
- Additional initiatives are in development that reflect our increased discovery efforts

19 New Approach—Back to Basics

Discover and explore fundamental mechanisms of acquisition and progression of HIV disease

- · Biology of HIV and its interactions with its human host
 - Systems biology
 - Visualizing the immune response
- Population-based research on the acquisition, incidence and efficacy of treatment of HIV infection
- Movement of basic discovery to development and testing of potential as targets for HIV intervention

20 New Approach—Back to Basics

- · Emphasis on discovery research
 - Multiple opportunities with identified funding
 - Importance of hypothesis driven clinical research
 - Importance of research in non-human primates
 - · Partnerships at NIH
- Preserve some development resources
 - Need to make clinical products
- ²¹ Will There Ever Be an HIV Vaccine?
 - *Best case scenario high percentage protection against HIV acquisition
 - *Protection against HIV acquisition only in some individuals, related or not to genetic profile
 - *Slowing of disease progression in some patients, related or not to genetic profile
- ²² Slide shows diagram of "Comprehensive HIV Prevention"
- 23 Questions?