Assessing Motorists' Vulnerability to Flash Flooding

Insights from a French case study

Isabelle RUIN

National Center for Atmospheric Research

<u>isar@ucar.edu</u>

- I- Statement of research problem
- 2- Objectives, study area and methods
- 3- Main results
- 4- Conclusion and looking ahead

More drowning deaths occur in cars than anywhere else

✓ In France about half of all flash flood fatalities are vehicle-related

- ✓ In 2007 in U.S.:
 - 87 persons died from flood including 70 from flash floods.
 - ✓ In Flash flood 70% were vehicle-related
 - ✓ Texas State is # I in deaths

1- Statement of research problem

Why people decide to travel in flash flood conditions?

- 1 People's unwillingness to change their daily routines
- 2 Discrepancy between individual space-time representations and actual flash flood phenomenon characteristics

2- Investigating public response components

Study area and methods

→ Post-flood investigations (2002, 2005)

- **√**30 in-depth interviews
- √Analysis of loss of life circumstances
- √Observations during the crisis period
- Questionnaires surveys
 - 960 residents (representative sample)
 - ✓ 260 tourists
- Cognitive mapping
 - 200 residents: spatially stratified sampling

A vulnerable area

Nîmes

Boulevard G. Pompidou

October 1988

3- Main results

External factors

- Spatio-temporal scales of Flash floods
- Road network exposure
- ✓ Human exposure

Internal factors

- Motorists' danger perceptions on daily itineraries
- Perceptions of vulnerability
- ✓ Personal traits
- ✓ At-risk travel patterns in the Gard region

✓ Contextual factors

- ✓ Influence of spatial and temporal settings
- Social constraints

Spatio-temporal scales of Flash Floods

Large road network exposure

Human exposure during the 2002 Flash flood event (1)

Loss of life: hydrometeorological circumstances

- ✓ II young individuals died in 9 watersheds smaller than 20 km²
- ✓ 11 old individuals died in 5 watersheds bigger than 1000 km²

Human exposure during the 2002 Flash flood event (2)

Loss of life: Warning efficiency

Motorists' danger perception on daily itineraries

- ✓ 29% of the road sections used by our sample are prone to flooding
- → The 2/3 are not considered as dangerous
 - Main streams
 - East rural zone
 - South urban zone
 - West rural zone
 - North urban zone
- Road sections prone to flooding
- Road sections used and perceived as non dangerous

Road sections used and perceived as dangerous by:

Perceptions of vulnerability

- ✓ Rapidity of watershed time response is mostly underestimated, especially for small catchments
- ✓ More than 60% underestimate the height of moving water that can sweep a car away. But they are more realistic about the water depth for a person to be knocked off their feet.
- ✓ Only 35% of the residents think Météo-France Orange alert represents a warning for fatal danger, but 55% associate it with danger on their own daily itinerary
 - Traveling during a flash flood event is known to be dangerous, but thresholds of dangerousness are hardly perceived

Age influence perception and declared behaviors

Youngest people tend to undervalue dangerous water depth

They also tend to be more mobile in emergency situation

Three kinds of at-risk mobility in the Gard area

1 Commuting is highly risky

- 30% of the sample
- frequent and highly hazardous travels
- weak perception of risk on roads

2 At-risk mobility of rural retired

- 20% of the sample
- frequent but little hazardous travels
- weak perception of risk on roads

3 Inter-state mobility fairly risky

- 10% of the sample
- unfrequent and fairly hazardous travels
- weak perception of risk on roads

Influence of spatial and temporal settings

- ✓ People located at the confluence of watersheds of different sizes
- ✓ Succession or simultaneity of flood peaks due to differences in catchment sizes
- ✓ Vulnerability variations within the time of the day, week, season...

Social constraints

- Immediatly pick up their children
- Nothing, you know they are safe in school
- You ask a relative to pick them up
- Others

✓ Workers would hardly cancel their travels

✓ In reaction to warnings, 50% of the parents would pick up their children from school.

Responses to Météo-France watches (orange) and warnings (red) for heavy precipitations

4- Conclusion and looking ahead

- Behavioral verification
- Synthesis of vulnerability factors in crisis period
- Research perspectives

Behavioral verification

Synthesis of vulnerability factors in crisis period

Individual adaptative behavioral capacity

(Perry, 1983, D'Ercole, 1991, Mileti, 1995)

Research perspectives

Need for **Behavioral**verification surveys to assess

adaptative capacities of drivers in

different weather conditions:

- I. Observe behaviors in both normal daily life and extreme weather conditions
- 2. Organize extreme events post investigations

1- Observe drivers' behavior

Objective 1: Identify environmental factors influencing drivers' behaviors at low water crossings in Texas

- ✓ Do different types of barriers prevent motorists from driving through flooded roads?
- ✓ How are behaviors influenced by environmental cues (visibility, rainfall, water depth, water flow...), weather forecast, watches and warnings?
- ✓ Does the type of car make a difference in terms of behavior?

Quantitative assessment through car counting and video observations

1- Observe drivers' behavior

- Objective 2: Identify personal factors influencing drivers' behavior at low water crossings in Texas
 - ✓ How much local knowledge and cognitive mapping of neighborhoods' residents influence driving behaviors?
 - √What personal traits may be correlated with risky or cautious behaviors?
 - √What travel purposes lead to most risky behaviors?

Qualitative assessment thru travel diaries and in-depth interviews

2- Improve post-flood investigations

DELUGE: Eve Gruntfest new initiative

Disasters Evolving Lessons Using Global Experience

- Focus on post-event field studies for floods to maximize interactions between social scientists, hydrologists and meteorologists
- New guidelines on postevent investigations for use by integrated teams of physical scientists, social scientists, and practitioners.

U.S. and E.U. flash flood research opportunities

HYDRATE: Hydrometeorological data resources & technologies for effective flash flood forecasting

HYMEX: HYdrological cycle in the Mediterranean Experiment (Observation campaign)

FLASH FLOOD: Development of a European-wide integrated framework for flash flood and associated debris flow risk management

Intl FF Lab: Negociations underway for a development at the James and Marilyn Lovell Center for Environmental Geography and Hazards Research, Texas State University

Thank You for your attention

