Communicating uncertainty in weather forecasts: Results from a survey of the U.S. public

Rebecca E. Morss

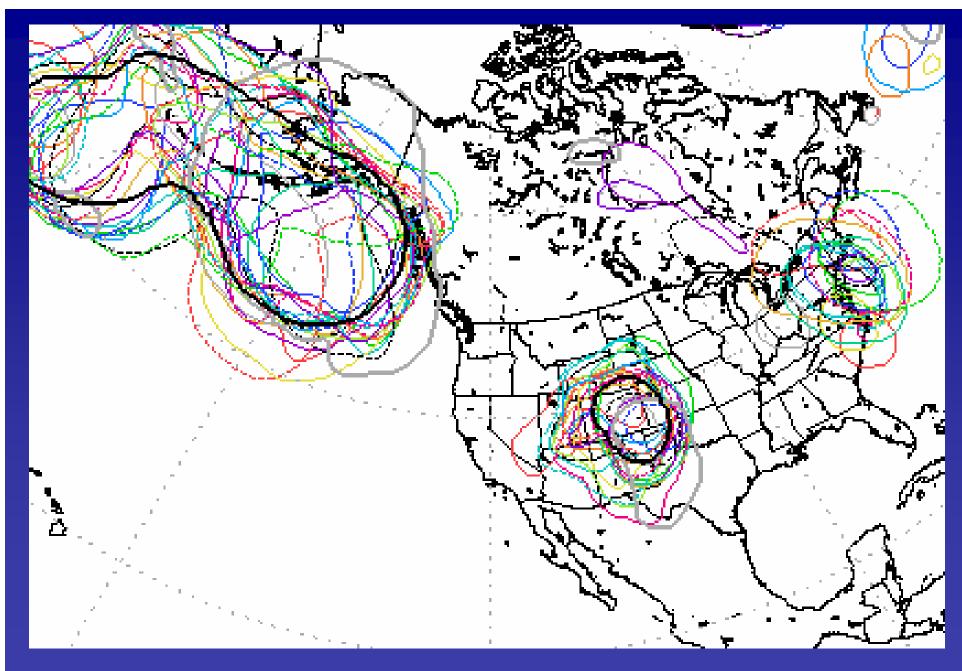
Jeffrey Lazo, Julie Demuth

National Center for Atmospheric Research (Societal Impacts Program)

Overview of talk


- Motivation, approach
- Nationwide survey to assess the public's views on
 - everyday weather forecasts(Lazo et al., *BAMS*, in preparation)
 - weather forecast uncertainty
 - weather forecast uncertainty information(Morss et al., Weather and Forecasting, in press)
- Ongoing and future work
- Discussion

Motivation


- Weather forecasting community wants to provide useful weather forecasts and communicate forecast information effectively
- Doing so requires understanding users' forecast information needs, perceptions, interpretations, preferences, and uses
- In context of NWS mission → audience for NWS forecasts includes intermediaries, specific user groups, and public

Motivation: Communicating uncertainty

- Weather forecasts are inherently uncertain ...
 And many users realize forecasts are imperfect ...
 But most current weather forecast information provided to the public is deterministic
- Interest in providing uncertainty information ...
 But it is challenging to do so effectively
- Community and NWS attention, e.g.:
 - National Research Council study (2006)
 - AMS Ad Hoc Committee on Uncertainty Forecasts
 - NOAA/NWS Forecast Uncertainty Steering Team
 - WMO Guidelines on Communicating Forecast Uncertainty (2008)

(Hurricane Charley – August 2004)

(Winter weather – December 2007)

Gaps between forecasts generated and those received and used ⇒

- Why don't people understand forecasts?
- Why don't people use forecasts?

Gaps between forecasts generated and those received and used ⇒

- Why don't people understand forecasts (the way we think they should)?
- Why don't people use forecasts (the way we think they should)?

Gaps between forecasts generated and those received and used ⇒

- How do people perceive and interpret forecasts?
- How do people use forecasts?
- How can we improve and communicate forecasts in ways that benefit interpretation and use?

Use social science / interdisciplinary research techniques

Frame from societal / use perspective

Study objectives

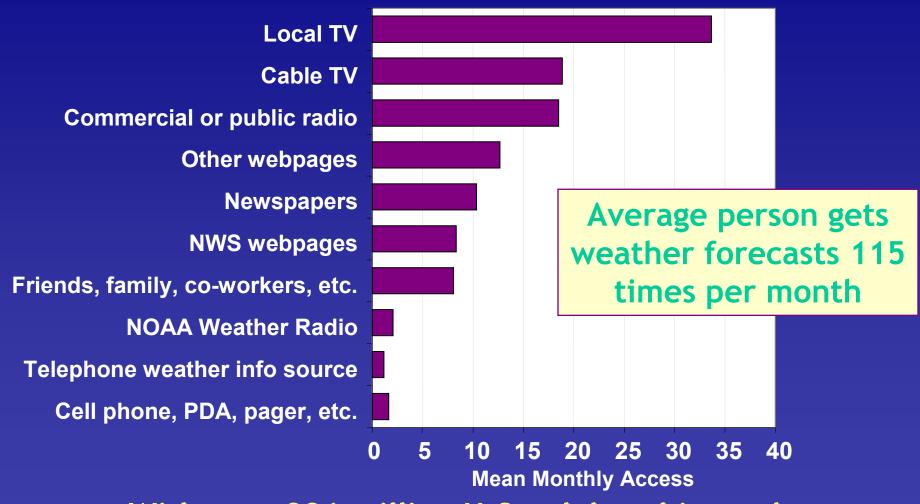
- To help the meteorological community in effectively providing weather forecast information, including uncertainty
 - by building empirical knowledge about what people think, want, use, etc.
 - starting with fundamental questions, "everyday" weather
- This understanding can help guide future work, aid user-oriented product development efforts

Study design and data

- Nationwide survey of U.S. households, implemented on Internet in November 2006
- Controlled-access, web-based implementation, with respondents provided by survey sampling company
- Analysis based on N=1465 respondents
- Respondent population is geographically diverse and similar to U.S. public, but somewhat older, wealthier, more educated

Survey questions

- Survey questions: some based on previous research, some to explore unaddressed aspects of forecast uncertainty communication
- Survey developed iteratively, pre-tested
- Survey questions on people's
 - sources, perceptions, uses, and value of weather forecast information
 - perceptions of, interpretations of, and preferences for weather forecast uncertainty information
 - use of weather forecast uncertainty information
 - "weather salience" (A. Stewart)
 - demographics


How often do you get weather forecasts from the sources listed below?

Two or

		Open		0	
	Rarely or	E alone	Once	times a	Onc
	never	month	week	week	P
Commercial or public radio	0	0	0	0	\cup
Telephone (dial-in) weather information source	0	0	0	0	0
Newspapers	0	0	0	0	U
Cable TV stations (e.g., CNN, The Weather Channel)	0	0	0	0	0
Local TV stations	0	0	0	0	U
Friends, family, co-workers, etc.	0	0	0	0	U
Cell phone, personal desk assistant (PDA), pager, or other electronic device	0	0	0	0	O
Other webpages	0	0	0	0	U
National Weather Service (NWS) webpages	0	0	0	0	0
NOAA Weather Radio	0	0	0	0	0

continue 🕨

How often do you get weather forecasts from the sources listed below?

With over 226 million U.S. adults, this totals to over 300 Billion forecasts accessed a year

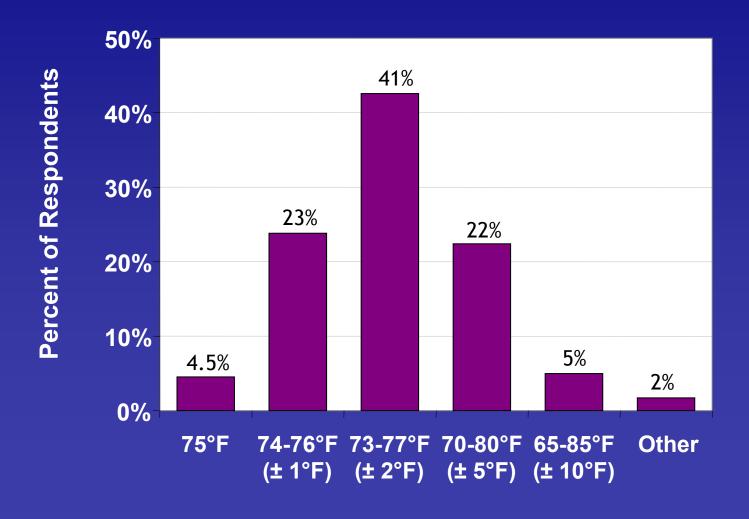
How important is it to you to have this information as part of a weather forecast?

Most important

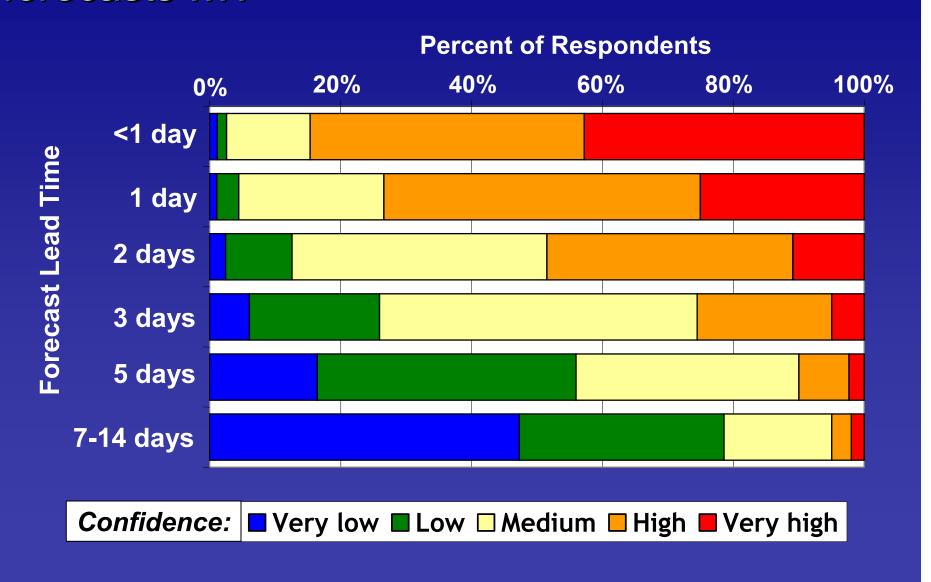
- Precipitation: When, where, type, chance (PoP)
 ~70% of responses: very or extremely important
- High temperature
- Amount of precipitation
- Low temperature
- Wind speed
- Humidity
- Cloudiness
- Wind direction

Least important

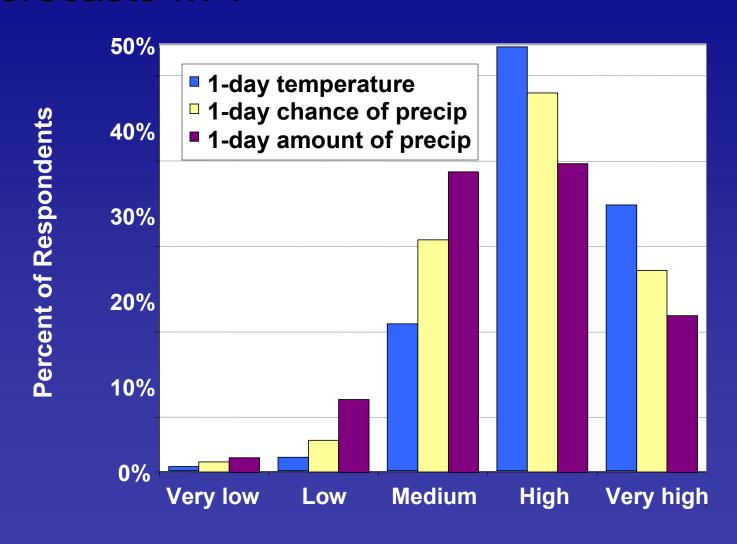
Uncertainty research questions


- Do people infer uncertainty into deterministic forecasts?
 If so, how much?

 PERCEPTIONS
- How much confidence do people have in different types of weather forecasts?
- How do people interpret a type of uncertainty forecast that is already commonly available: Probability of Precipitation (PoP) forecasts?
- To what extent do people prefer to receive deterministic forecasts vs. those that express uncertainty?
- In what formats do people prefer to receive forecast uncertainty information?


 PREFERENCES

Suppose the forecast high temperature for tomorrow for your area is 75°F.


What do you think the actual high temperature will be?

How much confidence do you have in forecasts ...?

How much confidence do you have in forecasts ... ?

Interpretation of PoP

- Builds on previous related work by Murphy et al. (1980), Gigerenzer et al. (2005), others
- Asked all respondents about 2 PoP forecasts:
 - "There is a 60% chance of rain tomorrow"
 - "Rain likely tomorrow"
- Two versions of each question:
 - Closed-ended: ~90% of respondents
 - Open-ended: ~10% of respondents ("Explain in your own words")

Suppose the forecast is "There is a 60% chance of rain tomorrow".

Which of the options do you think best describes what the forecast means?

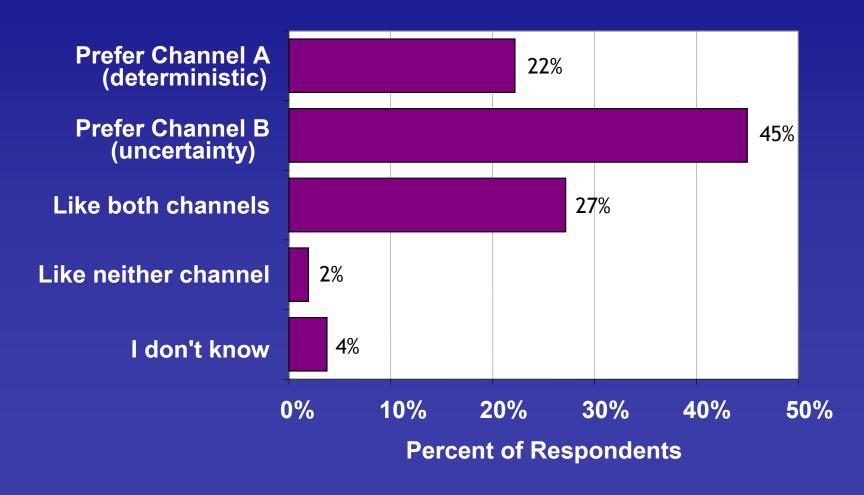
Response option (N=1330)	Percent of respondents
It will rain tomorrow in 60% of the region.	16%
It will rain tomorrow for 60% of the time.	10%
It will rain on 60% of the days like tomorrow.*	19%
60% of weather forecasters believe that it will rain tomorrow.	23%
I don't know.	9%
Other (please explain)	24%

^{*} Technically correct interpretation, according to how PoP forecasts are verified (Gigerenzer et al. 2005)

PoP: Open-ended interpretations

- Many responses repeat PoP, without clarification
- Few offered options from multiple choice version
- Variety of other responses, some from "personal" or "use" perspective
- Most people don't know technically correct definition of PoP — 60% chance of what?
 - But asking about PoP from a meteorological perspective may have limited relevance ...
 People must infer what the forecast means for their interests

Uncertainty research questions


- Do people infer uncertainty into deterministic forecasts?
 If so, how much?

 PERCEPTIONS
- How much confidence do people have in different types of weather forecasts?
- How do people interpret a type of uncertainty forecast that is already commonly available: Probability of Precipitation (PoP) forecasts?
- To what extent do people prefer to receive deterministic forecasts vs. those that express uncertainty?
- In what formats do people prefer to receive forecast uncertainty information?

 PREFERENCES

Suppose you are watching the local evening news

- Channel A: high temperature will be 76°F tomorrow
- Channel B: high temperature will be between 74°F and 78°F tomorrow.

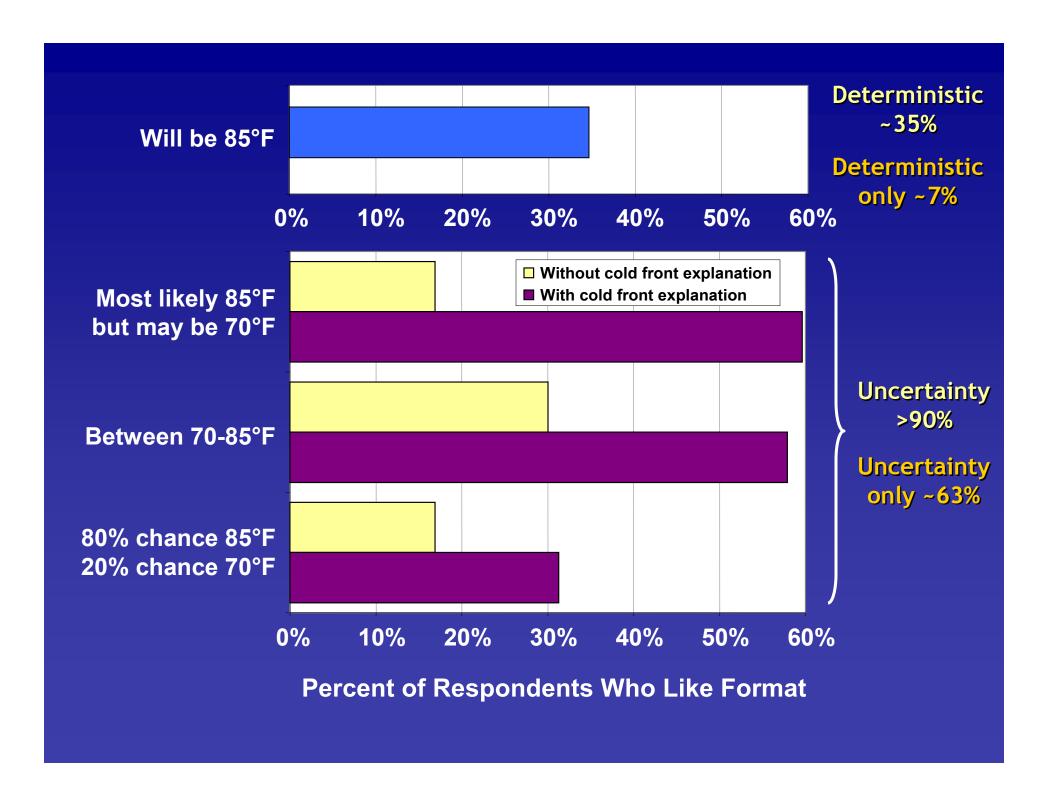
Suppose the high temperature tomorrow will probably be 85°F. However, a cold front may move through, in which case the high would only be 70°F.

Would you like the forecast given this way?

The high temperature tomorrow...

```
...will be 85°F (deterministic)
```

...will most likely be 85°F, but it may be 70°F (WITHOUT explanation)

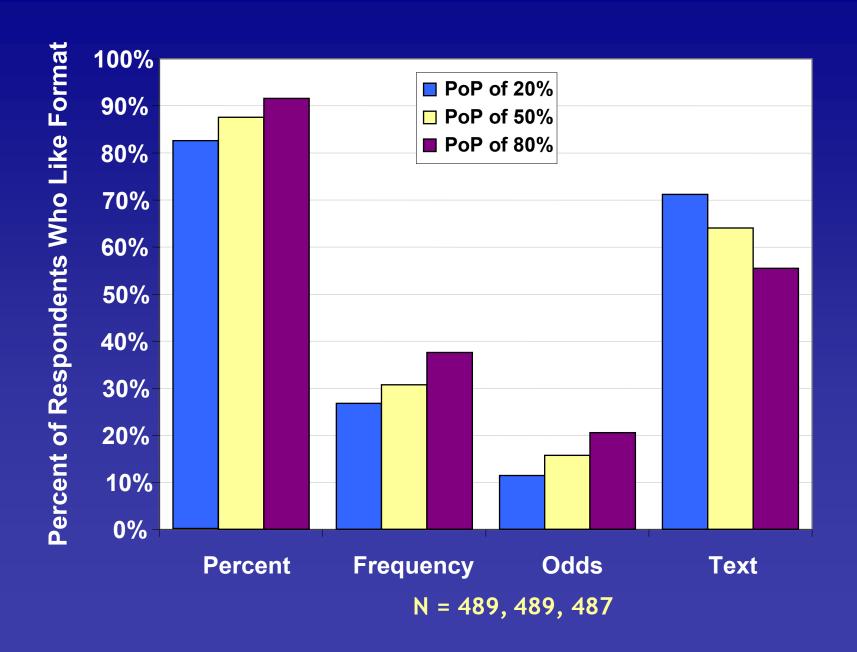

...will most likely be 85°F, but it may be 70°F, because a cold front may move through (WITH explanation)

...will be between 70°F and 85°F

...will be between 70°F and 85°F, because a cold front may move through

80% chance it will be 85°F, 20% chance it will be 70°F

80% chance it will be 85°F, 20% chance it will be 70°F, because a cold front may move through


All the choices below are the same as a probability of precipitation of 20%.

Do you like the information given this way?

- Chance of precipitation is 20%
- There is a 1 in 5 chance of precipitation
- The odds are 1 to 4 that it will rain
- There is a slight chance of rain tomorrow -> Text

- Percent
- Frequency
- → Odds

Asked this question 3 ways -using PoPs of 20%, 50%, and 80% with corresponding text descriptions from NWS

Summary of results

- Most people think weather forecasts are uncertain
- Most people have some understanding of relative uncertainty in forecasts
- Most people don't know the technical definition of Probability of Precipitation – but ...
 - PoP is important to many people
 - People have built sufficient understanding of PoP through experience?
- Majority of people like uncertainty forecast information, and many prefer it
- Need to understand people's communication preferences

Implications for communication

- Explicit communication of everyday weather forecast uncertainty
 - may not reduce forecasters' credibility
 - is desired by some and acceptable to many
 - may augment people's general notions of forecast uncertainty with situation-specific information
- Ask not whether people understand uncertainty forecast information precisely, but whether they can interpret it well enough to find it useful?
- Key: developing "effective" communication formats

Future work

- Further analysis of data from this survey (including geospatial analysis)
- Further interdisciplinary research on
 - Interpretations of and preferences for various communication formats (including graphics), for different weather types (including high-impact)
 - People's use of uncertainty information in decisions
- Integrate results with meteorological knowledge to improve forecast communication ⇒ Iterative, dynamic process that connects learning from forecast users with product development

Questions?

Contact

Rebecca Morss (morss@ucar.edu)
Julie Demuth (jdemuth@ucar.edu)
Jeff Lazo (lazo@ucar.edu)