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Abstract

Quantifying the carbon storage, distribution, and change of urban trees is vital to understanding the role of vegetation in the urban

environment. At present, this is mostly achieved through ground study. This paper presents a method based on the satellite image time series,

which can save time and money and greatly speed the process of urban forest carbon storage mapping, and possibly of regional forest mapping.

Satellite imagery collected in different decades was used to develop a regression equation to predict the urban forest carbon storage from the

Normalized Difference Vegetation Index (NDVI) computed from a time sequence (1985–1999) of Landsat image data. This regression was

developed from the 1999 field-based model estimates of carbon storage in Syracuse, NY. The total carbon storage estimates based on the NDVI

data agree closely with the field-based model estimates. Changes in total carbon storage by trees in Syracuse were estimated using the image data

from 1985, 1992, and 1999. Radiometric correction was accomplished by normalizing the imagery to the 1999 image data. After the radiometric

image correction, the carbon storage by urban trees in Syracuse was estimated to be 146,800 tons, 149,430 tons, and 148,660 tons of carbon for

1985, 1992, and 1999, respectively. The results demonstrate the rapid and cost-effective capability of remote sensing-based quantitative change

detection in monitoring the carbon storage change and the impact of urban forest management over wide areas.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Urban trees play an important role in reducing atmospheric

CO2 through assimilation. They can also reduce fossil fuel

usage through the processes of transpiration, shading, and the

blocking of winds (Nowak & Dwyer, 2000). By reducing the

energy usage of man-made structures, carbon emission from

power plants also is reduced. Therefore, the quantification of

urban tree carbon storage can lead to a better understanding of

the relationship between urban trees in global carbon account-

ing for greenhouse gas emissions and improved urban planning

and management. It can also lead to improved human and

environmental health. Quantifying carbon stored by urban trees

should be accompanied by change detection because the spatial

pattern of the landscape in urban ecosystems is dynamic due to

anthropogenic and natural factors.

Traditionally, forest management data have been obtained by

field sampling and visual interpretation of aerial photos. These
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methods are expensive, generally labor-intensive and time-

consuming. Besides, they monitor only a fraction of the area of

interest. Monitoring forested areas using digital remote sensing

offers a faster, repeatable, objective, and efficient way tomonitor

urban forest dynamics at the landscape level. Additionally,

image-based methods can potentially enable mapping of larger

areas using the increasing number of temporal databases of

satellite imagery. One common way to monitor biomass at the

landscape level is to use spectral indices (Asrar et al., 1985;

Curran, 1981; Franklin & Hiernaux, 1991; Goward & Dye,

1987; Tucker & Sellers, 1986; Tucker et al., 1985). Spectral

indices can also be used to detect changes in carbon storage by

trees since half of the dry-weight biomass of trees is carbon (e.g.,

For. Prod. Lab, 1952). The most commonly used spectral index

is the Normalized Difference Vegetation Index (NDVI) using red

and near-infrared reflectance values. This research used NDVI

based on the red band and near-infrared band of Landsat

Thematic Mapper (TM) imagery.

Change detection based on remote sensing is a process of

identifying changes in the state of an object or phenomenon by

observing images at different times (Singh, 1989). There is a
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basic assumption that land-cover changes result in changes in

the radiance value of the remotely sensed data (Ingram et al.,

1981). Therefore, extraneous factors, such as different (or

changing) sensor calibration, should be minimized or removed

in advance (Hall et al., 1991; Jensen, 1983; Schott et al., 1988;

Yang & Lo, 2000; Yuan & Elvidge, 1996). Satellite imagery

from different sensors and acquisition dates needs to be

corrected for differences between satellite calibrations and

environmentally introduced radiometric effects. Correction

methods that do not rely on information regarding atmospheric

conditions are needed since such data rarely exist for historic

satellite imagery. Radiometric correction methods based on

pseudoinvariant features (PIFs) show potential for imagery-to-

imagery radiometric normalization (Salvaggio, 1993; Schott et

al., 1988; Yang & Lo, 2000; Yuan & Elvidge, 1996). Once

multitemporal imagery is appropriately corrected, remote

sensing can then be used to monitor changes over wide areas

for improved estimates of carbon storage, for better assessment

of damage from natural or anthropogenic events, and for

effective environmental management support.

The primary objective of this study was to develop rapid and

cost-effective methods to quantify the above-ground carbon

storage of urban trees using Landsat TM imagery as an

alternative to more elaborate, limited, and expensive ground-

based or photogrammetric methods. A second objective was to

assess the effectiveness of the image normalization of a

modified PIF method in normalizing multi-temporal imagery.

A third objective was to detect the change of carbon storage by

trees in an urban area over time.

2. Materials and methods

2.1. Study area and imagery

The study area was Syracuse, NY, USA. To investigate

temporal changes, Landsat images from three different dates

were used. These selected images were 7 years apart and were

taken between late June andmid July to minimize the differences

in sun angle and stage of vegetation growth. The three sets of

images were taken on June 27, 1985, July 16, 1992, and July 3,

1999. All images were georeferenced to the NAD83 datum. The

1985 and 1992 images were in the UTM zone 18 coordinate

system, and the 1999 image was in the USGS Albers coordinate

system. The 1985 and 1992 images were acquired by Landsat 5

TM with one pixel equal to a 25 m�25 m area; the 1999 image

was acquired by Landsat 7, ETM+ and provided in 30 m�30 m

resolution. The 1985 and 1992 images had some cloud

contamination due to the difficulty of acquiring cloud-free

imagery in central New York state.

2.2. Image processing

2.2.1. Converting digital numbers to at-satellite reflectance

Corrections were made for temporal differences in sensor

calibration and in environmental factors between image

acquisitions. This was performed for Landsat ETM+ bands 3

and 4. Digital numbers (DNs) were converted to at-satellite
reflectance values (Huang et al., 2000). First, radiance was

calculated from DN by:

Lk ¼ DNkIgainkÞð þ biask ð1Þ

where L is radiance; k is the spectral band; gain is the spectral

band gain; and bias is the spectral band offset. Then, the signal

in each band and at each pixel was converted to in-band

planetary albedo using the following equation:

qk ¼
pILkId

2

EsunkIcos hð Þ ð2Þ

where q is the unitless planetary reflectance; k is the spectral

band; L is radiance; d is the Earth-Sun distance; Esun is mean

the solar atmospheric irradiance; and h is solar zenith angle in

degree. This correction compensated for different sun angles at

different acquisition dates.

2.2.2. Image registration for change detection

The 1999 image was resampled to 25 m�25 m pixel size

and all images were prepared in the UTM zone 18 coordinate

systems before registering. The 1992 and 1985 TM images

were registered to the 1999 ETM+ image. The 1999 image was

selected as the reference because of the availability of carbon

reference data for this date. The root mean square error

(RMSE) of 1999 and 1992 image registration was 5.9 m and

that of 1999 and 1985 was 4.0 m. Although resampling affects

the radiometric values on the image, these effects will be much

less important for change detection than the effects of

misregistration. In addition, the radiometric normalization

(described in the next section) matches image values to a

reference image, thereby reducing the influence of radiometric

artifacts on identification of image differences and calculation

of change estimates.

2.2.3. Radiometric correction and NDVI layer generation

Performing quantitative studies with radiometrically uncor-

rected multi-date imagery presents great difficulty. Therefore, it

is necessary to use radiometric correction for multiple dates’

imagery. The absolute radiometric correction approaches uses

ground measurement at the time of imagery acquisition (Yang

& Lo, 2000). However, this method is often practically

impossible to apply due to the lack of coexisting data for

different dates. To overcome this difficulty, numerous relative

radiometric correction methods have been developed (Hall et

al., 1991; Jensen, 1983; Schott et al., 1988; Yuan & Elvidge,

1993). These procedures use one image in a time sequence of

images as a reference image and adjust the radiometric

properties of all other images to the same datum in solar

geometry, sensor calibration and environmental parameters as

the reference image. Among these methods is the PIF method

developed by Schott et al. (1988) and applied in several studies

(Salvaggio, 1993; Yang & Lo, 2000; Yuan & Elvidge, 1996).

The PIF method involves the analysis of features, such as

roads, rooftops, and parking lots, where the reflectance

characteristics are invariant over time. In the original PIF

method, invariant features were not necessarily colocated



Table 1

The scene normalization coefficients and the correction statistics for each

subject image

1992 1985

Band 3 Band 4 Band 3 Band 4

a 0.8494 1.2489 0.5113 0.9283

b 5.1828 �0.4007 6.6343 4.4065

r2 0.8002 0.8738 0.8583 0.9098
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Fig. 1. Carbon storage (kg C/pixel) and scaled NDVI for 190 plots. The r2 is

0.67 and each pixel is 25 m�25 m. The solid line represents the final model for

carbon storage and vegetation index.

Table 2

Imagery statistics within Syracuse boundary before and after normalization

1999 1992 1985

Before After Before After

NDVI Mean 109.03 94.96 114.35 74.77 114.35

S.D. 51.19 52.36 47.46 51.92 46.05

Band 3 Mean 33.56 32.61 32.39 51.24 32.35

S.D. 11.94 12.29 10.44 18.34 9.37

Band 4 Mean 88.85 74.48 92.17 95.27 92.35

S.D. 26.20 23.12 28.83 30.21 28.04
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between images because PIFs were selected using threshold

values from the imagery (Salvaggio, 1993; Yang & Lo, 2000;

Yuan & Elvidge, 1996).

In this study, the original PIF method was modified. Instead

of using threshold values, invariant features (e.g., road,

rooftops, quarries and deep water) colocated on multiple years

images were manually selected. Although labor-intensive, this

modification improves statistical consistency because the

selected pixels are located at the same locations on every

image, thereby limiting the possibility of using statistical

outliers such as dramatic land cover change. Furthermore,

regions where clouds existed on some images were avoided.

Polygons were used to select the pixels of PIF, producing a

total of 8500 pixels by including the surrounding areas of

Syracuse. The pixels then were used to develop a linear

relationship between the reference image (1999) and the

subject images (1992 and 1985). The coefficients for image

normalization were found for band 3 and band 4 (Table 1). The

linear relationships were applied to the whole image sets to

normalize the subject images using the following equation:

DNref ¼ aDNsub þ b ð3Þ

where ref is the reference image (the 1999 image); sub is the

subject image (the 1992 and 1985 images); a is the slope for

the linear transformation; and b is the intercept for the linear

transformation. The root mean square error (RMSE) was

computed before and after normalization to indicate the

effectiveness (Yuan & Elvidge, 1996). The RMSE values

should decrease after a successful normalization. The RMSE is

computed by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
~ DNref � DNsubÞð 2

r
ð4Þ

where n is the number of pixels for RMSE computation. The

RMSE used the pixels of the extended study area excluding

some areas with cloud contamination. After radiometric

correction, an NDVI layer was generated for all three images

using the equation:

NDVI ¼ red� NIR

redþ NIR
ð5Þ

where red represents the red (Landsat ETM+ band 3) in-band

planetary albedo and NIR represents the near infrared (Landsat

ETM+ band 4) in-band planetary albedo.

2.2.4. Urban forest carbon storage

To quantify carbon storage by urban trees from the imagery,

a regression equation was developed using NDVI as the
independent variable and carbon storage (kg C/pixel) for 1999

as the dependent variable. The data were drawn from 190 plots

established through a stratified random sampling scheme,

based on the land use type such as residential areas and

commercial areas within the City of Syracuse. Of the 190 plots,

43 were treeless.

This research used the Urban Forest Effects (UFORE)

model, which determines the tree carbon storage for each plot

using field data, such as tree species, diameter at breast height,

and tree height (Nowak & Dwyer, 2000; Nowak et al., 2001).

Carbon values on each plot were standardized to kg C/pixel (25

m�25 m), and registered to the image pixel at the plot

location. The examination of various linear and nonlinear

equations demonstrated that a nonlinear regression Eq. (6)

provided the best estimate of carbon storage for the NDVI data.

Carbon ¼ ae NDVIbð Þ ð6Þ

Evaluation of seven random selections of subdata sets revealed

that this equation provided consistent results (within 4.2

percent of the field-derived model estimate) with relatively

high r2 values (average r2=0.66). The analysis of the subdata

sets also showed high statistical significance. Residual analysis

indicated that the errors were distributed with homogeneous

variance. Eq. (6) was developed using training plots previously

described and was then used to estimate carbon for each pixel,

and the total carbon storage was computed by summing carbon

storage values for all pixels in the study area. Carbon storage

estimates for 1999 using NDVI were compared with the field-

derived model estimate for the entire city. After applying Eq.



Table 3

Root mean square error (RMSE) between reference image and subject images

for before and after normalization for each band using 1999 as the reference

image

1992 1985

Band 3 Band 4 Band 3 Band 4

Before After Before After Before After Before After

RMSE 9.03 8.93 32.40 23.32 24.59 11.02 24.92 23.76
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(6) to the normalized past images, the total carbon storage

values for 1982 and 1999 were compared to detect changes in

carbon storage by trees over time.

3. Results

3.1. Urban forest carbon storage equation

The plot of stored carbon (kg C/pixel) vs. scaled NDVI for

the 190 plots is shown in Fig. 1. The final regression equation

of the carbon storage and the vegetation index is:

Carbon ¼ 107:2e NDVI0:0194Þð ð7Þ

where Carbon is carbon storage (kg C/pixel) and NDVI is the

Landsat NDVI value. The r2 for Eq. (7) is 0.67.

3.2. The effect of radiometric correction

Image statistics significantly differ from each other among

years prior to normalization (Table 2). After normalization, the

RMSE of each band was reduced (Table 3). Despite some
Fig. 2. The scaled NDVI images with 1985 and
cloud contamination, which tends to increase RMSE, normal-

ization reduced problems associated with images from different

dates and allowed more reasonable comparison of changes

between years (Fig. 2).

3.3. The total carbon storage change over time

From Eq. (7), this research estimates that the total amount of

carbon storage for 1999 is 148,659 tons. Based on the field-

based carbon storage data, Nowak et al. (2001) estimated

carbon storage by trees in Syracuse to be 148,334 tons. Thus,

the NDVI equation for 1999 is further validated since it was

within 0.2 percent of the field data estimates. Applying Eq. (7)

to past images revealed significant differences in carbon

storage estimates before and after image normalization (Table

4). According to the normalized data, carbon storage in

Syracuse increased by 1.79 percent from 1985 to 1992, but

decreased by 0.52 percent from 1992 to 1999. The net change

from 1985 to 1999 was a 1.25 percent increase.

4. Discussion

Using multitemporal satellite image data potentially enables

the mapping of the urban forest carbon storage regionally,

rather than using limited ground measurements. The advantage

of satellite, compared to aerial imagery, is the ease of

registration because the satellite provides stable ephemeredes.

Due to the lack of historical field measurements of carbon

storage by urban trees, detecting past carbon storage of a city is

only possible using historical imagery. To minimize both
1992 shown before and after normalization.



Table 4

Estimated total tree carbon (tons) before and after normalization in Syracuse

area

1985 1992 1999

Before After Before After

70,057 146,803 112,820 149,432 148,659
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atmospheric and instrumental effects, images were normalized

using a modified pseudoinvariant features (PIF) approach in

this study. In the original PIF method, no ground truth or

elaborate atmospheric measurements are necessary because

PIFs are selected by threshold values from a certain band of

imagery or a band ratio. However, the PIF method might

include pixels of outliers such as clouds or significant

landscape changes over time. Here, areas were selected based

on prior knowledge and using the rule that cloud should not be

present over any area during any acquisition. This modified

PIF method requires labor and knowledge of the study area to

find and to delimit the pseudoinvariant features. In addition, the

manual selection of PIF targets is subjective to misregistration.

Although misregistration of multitemporal images can cause

serious errors, even a well-developed normalization method

still has misregistration. To minimize this problem, Furby and

Campbell (2001) suggested avoiding the use of small or narrow

features to minimize misregistration problems. If sufficient

labor and knowledge of ground surfaces are available, it is

advisable to use the modified PIF method. The results in this

paper demonstrate the potential of the modified PIF method for

quantitative analysis of multitemporal imagery.

Forests, especially urban forests, are heterogeneous surfaces

where complicated interactions among features can be ob-

served in the spectral response. Depending on spatial resolu-

tion, the heterogeneity of the urban forest interacts with the

sensor response function to give mixed pixel effects resulting

in a scale-dependent variance. Factors such as shadows cast by

individual tree crowns and the herbaceous understory greatly

influence the reflectance and are causes for confusion in

estimates of tree carbon storage. Li & Strahler (1985)

suggested that the biophysical characteristics might be strongly

related to canopy cover and shadow fraction. Mixed pixels in

conjunction with the inherent variability of regression estima-

tion equations lead to over- and under-estimation of carbon

storage throughout the city. However, the variability was

balanced such that the citywide carbon storage estimate was

useful. Considering that urban areas have considerable mixed-

pixel effects, the results of carbon storage estimation in this

study are satisfactory.

Another factor to note in this study’s approach is the

saturation effect of a vegetation index. Ripple (1985) showed

that the nature of the spectral response to the grass canopy

variable is curvilinear. Moreover, many other studies (Asrar et

al., 1984; Badhwar et al., 1986; Price & Bausch, 1995; Spanner

et al., 1994) reported that the relationship between vegetation

indices and either biomass or LAI is curvilinear. Franklin

(1986) suggested that when a forest’s cover approaches 100

percent, its basal area continues to increase. However, the
change in basal area does not directly affect the information

derived from remote sensing because remote sensing is more

sensitive to crown surface than below-canopy factors. There-

fore, the signal shows a saturation effect. A previous study

(Tucker & Sellers, 1986) investigated the relationship between

spectral vegetation indices derived from satellite data and field-

measured carbon storage data using regression and found that

as biomass increases, there is a trend of saturation in the

vegetation index. The nonlinear equation found in this study

also implied this limitation. However, this limitation was not

serious here since the study area was an urban area where forest

canopy density is low.

This study successfully estimated the total urban carbon

storage and the change in total urban carbon storage for the

City of Syracuse. The study also showed that Syracuse is

relatively stable in terms of the urban forest carbon storage,

which is reasonable as Syracuse did not undergo much

urbanization over the past few decades (Fig. 2). The estimated

value of the above-ground tree carbon storage for 1999 in

Syracuse using satellites is only about 0.2 percent different

from the field estimates of carbon storage. This consistency

suggests that low spatial resolution TM imagery could provide

reasonable results for the wide-area estimation of changes in

stored carbon over urban and suburban areas. However, more

research is needed to determine if this approach works for other

urban areas with different patterns of change, land cover, and

tree diameter distributions.
5. Conclusion

The results of this study showed that image analyses can

produce estimates of carbon storage by urban trees reasonably

well and that image normalization procedures offer a promising

method for detecting changes over time. Although this study

simplified some complex analysis through image processing, it

showed the potential payoff can be substantial. If this study can

be extended geographically, more economic and timely

estimation of the biomass resource and improved environmen-

tal management could be possible.
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