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Executive Summary 

Anomaly detection systems are designed to help analysts and operators uncover attacks that cause 

unusual deviations from well-known typical or baseline behavior. Large volumetric anomalies, 

such as distributed denial of service (DDoS) attacks or internet-wide vulnerability scans, are easy 

to see once the attack is fully underway, but they are sometimes preceded by more subtle yet 

serious deviations in activity. This activity is even more difficult to detect when it occurs on only 

a handful out of thousands of monitored assets. But the task of scaling techniques to large 

networks while controlling false positives is often unaddressed in proof-of-concept anomaly 

detection methods. 

Unusual port-specific behavior is an example of a subtle predictive indicator for the widespread 

release of new vulnerability exploits. The CERT Network Situational Awareness (NetSA) team at 

Carnegie Mellon University’s Software Engineering Institute (SEI) scaled and implemented a 

statistical proof-of-concept methodology to identify anomalous port-specific network behavior 

among the 65536 ports used in daily internet connections. The goal of the case study and 

recommendations we present is to help high-level analysts and researchers develop plans for 

implementing, adapting, and maintaining large-scale operational anomaly detection systems.  

A port is an integer value between 0 and 65535 that represents a logical connection place for 

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) communications. 

Sudden jumps in incoming traffic volume to a single port, or slowly increasing trends over time, 

can indicate new or renewed interest in a vulnerability associated with that port. Internet-wide 

outbreaks of malicious activity associated with newly released exploits can be preceded by port-

specific scanning from multiple hosts. Detection of this activity may help forewarn network 

defenders of an impending attack.  

Port-specific network behavior also arises from user activity that either occurs infrequently or 

migrates among unreserved ports (ports that typically range from 1025 to 65535) to evade firewall 

rules. This activity, such as instant messaging or peer-to-peer file sharing, may represent only a 

small change in volume relative to daily or weekly trends, but, if isolated, it can pinpoint internal 

clients that are bypassing established security policies. 

Each port in an active network can be characterized by a discrete sequence of measurements over 

time, called a time series. To identify port-specific behavior, we apply statistical trending and 

outlier detection to these time series. We then calculate a Z-score, which represents the “oddity” 

of the port activity as the number of standard deviations an observed value lies away from its 

expected value. In addition to calculating Z-scores, we also display diagnostic measures that help 

to determine whether an anomaly is a sign of an internet attack.  

In 2008, we analyzed a test set of three weeks of hourly data and evaluated 351 instances of 

anomalous behavior. Less than 1% of events we flagged as anomalous were classified as 

statistical false positives (arising from cyclical user behavior that should have been included in the 

model). However, the utility of the remaining flagged events for security purposes was limited. 

41% of events were traced back to peer-to-peer “ghosting” activity, in which an idle internal IP 

address suddenly starts receiving SYN packets from a number of external addresses known to also 
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be communicating on standard peer-to-peer ports. This pattern can arise when an internal peer-to-

peer user shares a temporary IP address that persists in external trackers after the user has gone 

offline. Ghosting is characterized by a many-to-one relationship: many external hosts attempting 

to connect to one host on one port. Normal but infrequent user behavior, such as secure web 

sessions, FTP, and mail sessions, were also flagged.  

Based on our evaluation and analysis of our port anomaly detection algorithm, we recommend the 

following for volumetric anomaly detection: 

1. Choose variables in context. Simple measurements may be useful for very specific trend 

analysis, for example, on a single-host level. But as the scope of the network monitor 

increases, and as metrics aggregate over many nodes, interpretable and actionable anomaly 

detection should become more targeted in scope, with appropriate metrics chosen to give a 

useful volumetric view that highlights a specific type of anomaly. Multivariate methods can 

incorporate information from several metrics simultaneously and may be more useful than 

the univariate methods often cited in the literature. 

2. Carefully model both trend and residuals. Statistical models like those developed in this 

report describe both trend and residual variation once trend is removed. In anomaly 

detection, the residual variation is important to model accurately, especially for describing 

which extreme values are nonetheless typical (tails of the distribution) and which are truly 

anomalous. It is most important that the model for these residual extreme values is accurate 

across the population of assets that are being monitored, before universal thresholding can be 

used. Building models to monitor thousands of assets requires extensive historical reference 

data, diagnostics designed to validate the model at extreme values, and an exploratory pre-

implementation phase focused on ranking goodness of fit across network assets that will be 

monitored. 

3. Correct for multiple hypothesis testing. When faced with the possibility of thousands of 

statistical tests to determine alerts, a method that controls for multiple hypothesis testing, 

such as Benjamini and Hochberg’s [6] method for controlling the False Discovery Rate (the 

FDR method), or the FDR method coupled with control-chart methods, should be used to 

ensure that any system conform to pre-determined type I error rates. The FDR method is 

especially appealing because the algorithm is simple and easy to implement on a large scale. 

4. Provide adaptive, interpretable methods for model diagnostics and evolution. Anomaly 

detection systems based on statistical models should include methods for diagnosing model 

misfit and for updating model parameters. Inline methods (such as exponential moving 

averages) can be used, but even these methods may not be robust enough to adapt the model 

adequately over time. Simulations and application to historical data can be used to devise 

schedules for model maintenance. Analysts and operators that rely on any large-scale 

anomaly detection system should be trained on the interpretation of model diagnostics, and 

on the procedures that should be taken when diagnostics indicate model mis-specification.  
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Abstract 

Increasing trends in traffic volume on specific ports may indicate new interest in a vulnerability 

associated with that port. This activity can be a precursor to internet-wide attacks. Port-specific 

behavior can also arise from stealthy applications that migrate to different ports in order to evade 

firewalls. But detecting this subtle activity among thousands of monitored ports requires careful 

statistical modeling as well as methods for controlling false positives. The analysis documented in 

this report is a large-scale application of statistical outlier detection for determining unusual port-

specific network behavior. The method uses a robust correlation measure to cluster related ports 

and to control for the background baseline traffic trend. A scaled, median-corrected process, 

called a -score, is calculated for the hourly volume measurements for each port. The Z-score 

measures how unusual each port’s behavior is in comparison with the rest of the ports in its 

cluster. The researchers discuss lessons learned from applying the method to the hourly count of 

incoming flow records for a carrier-class network over a period of three weeks.  
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1 Introduction 

Anomaly detection systems are designed to help analysts and operators uncover attacks that cause 

unusual deviations from well-known typical or baseline behavior. Large volumetric anomalies, 

such as distributed denial of service (DDoS) attacks or internet-wide vulnerability scans, are easy 

to see once the attack is fully underway, but they are sometimes preceded by more subtle yet 

serious deviations in activity. This activity is even more difficult to detect when it occurs on only 

a handful out of thousands of monitored assets. But the task of scaling techniques to large 

networks while controlling false positives is often unaddressed in proof-of-concept anomaly 

detection methods. 

Unusual port-specific behavior is an example of a subtle predictive indicator for the widespread 

release of new vulnerability exploits. The CERT NetSA team scaled and implemented a statistical 

proof-of-concept methodology to identify anomalous port-specific network behavior among the 

65536 ports used in daily internet connections. The goal of the case study and recommendations 

we present is to help high-level analysts and researchers develop plans for implementing, adapting 

and maintaining large-scale operational anomaly detection systems.  

A port is an integer value between 0 and 65535 that represents a logical connection place for 

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) communications. In a 

two-way, client-server communication paradigm, a client opens a connection on a local port, and 

sends a message to the server on one of its ports. Application protocols often reserve a specific 

port on which the server should listen for requests associated with the application (for example, 

web servers listen on port 80). These ports are known as service ports. See Section 2 for more 

information on network communication.  

Sudden jumps in incoming traffic volume to a single service port or slowly increasing trends over 

time can indicate new or renewed interest in a vulnerability associated with an application running 

on that port. In some cases, internet-wide outbreaks of malicious activity associated with newly 

released exploits are preceded by port-specific scanning from multiple hosts. Detection of this 

activity may help forewarn network defenders of an impending attack.  

Port-specific network behavior also arises from user activity that either occurs infrequently or 

migrates among ports to evade firewall rules. This activity, such as instant messaging or peer-to-

peer file sharing, may represent only a small change in volume relative to daily or weekly trends, 

but if isolated, it can pinpoint internal clients that are bypassing established security policies. 

With 65536 active ports, the task of modeling individual port volumes over time, and alerting on a 

port-by-port basis, can be prohibitive. Many volume measurements exhibit characteristics such as 

non-constant variance over time, self-similarity, seasonality, and non-normality, which make 

traditional time series models such as those detailed in Brockwell and Davis [1], difficult to apply. 

McNutt and DeShon [2] showed that activity from gateway servers and vertical scans from 

external hosts leads to correlation in flow volumes over time across multiple ports. Figure 1 

shows an example. 
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Figure 1: Flow Volume for Multiple Ports Exhibits Correlation over Time 

The authors suggest clustering ports based on this correlation and using the median value per hour 

of each cluster as an expected value for the cluster’s constituent ports (Figure 2). Using cluster 

medians to predict port volumes over time is advantageous because it can capture both smooth 

trends and global discontinuities across many ports, which would be difficult to capture with, for 

example, moving averages or autoregressive moving average (ARMA) models applied on a port-

by-port basis. Furthermore, these methods do not rely on sequential storage of past data points for 

each series in order to calculate predictions. 

 

Figure 2:  A Cluster of Flow Volumes of Related Ports and Cluster Median 

A cluster of flow volumes of related ports (blue lines), and the associated cluster median 

(black line). An anomalous 16-hour surge occurs from hours 192 through 208. 
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Toward the goal of implementing this approach as a large-scale operational alerting method, this 

report defines the following formal methods for application to network flow data: 

 Robust, efficient clustering. We employ a method called Minimum Covariance 

Determinant (MCD) correlation, from Rousseuw and Van Dreisen [3], to cluster time series 

of port volumes on the log scale in the presence of outliers. MCD correlation is used as a 

distance metric in single-linked agglomerative hierarchical clustering of groups of adjacent 

ports. 

 Statistical models for residuals. Post-clustered residuals are standardized to follow a 

standard normal distribution (zero mean and unit variance), using a model that estimates a 

constant offset from the median for each port and variability related to individual port 

fluctuations—peak versus off-peak work hours, weekdays versus weekends, and volume of 

the cluster median. The resulting standardized residual is called a Z-score. Standardization of 

Z-scores across ports and clusters allows for application of a single threshold to all ports 

simultaneously to determine anomalous behavior. 

 Multiple hypothesis testing. Alerts are generated via hypothesis tests—comparison of Z-

scores to a threshold determined by probabilistic methods. When thousands of hypothesis 

tests are performed, the fraction of elements flagged due to random noise can result in many 

false positives. We suggest a tiered approach in order to reduce the number of hypothesis 

tests performed at any time period. Clusters are flagged based on an overall cluster health 

score determined via a chi-squared test. Once a cluster is flagged, the ports within are ranked 

by Z-score to determine the extent of anomalous behavior. 

In Section 2, we introduce network monitoring via flow data and provide an overview of the 

relationship between port numbers, protocols, and client-server or peer-to-peer communication. In 

Section 3, we outline the formal port-specific anomaly detection method, with further details in 

the appendices. In Section 4, we present a case study of the method applied to three weeks worth 

of hourly incoming flow volumes to a large network. In Section 5, we discuss the implications of 

this case study on fully operationalizing the technique, as well as future directions of research. 



 

4 | CMU/SEI-2010-TR-010 

2 Network Communication: Protocols, Ports, and Flows 

The basic communication model for machines on the internet is a client-server connection. The 

client initiates a connection request in search of information, and the server responds to the 

request and provides the requested information. In the client-server model, each machine 

maintains its role, either client or server, for the duration of the communication. An alternative to 

this model is peer-to-peer connections, in which each machine is willing to act as either a client or 

a server, in order to share information or files across a large network of peers. Peers broadcast 

requests to the network, but they also listen for requests for information that they can provide.  

The majority of client-server or peer-to-peer communications are negotiated using one of two 

protocols: TCP or UDP. Both TCP and UDP protocols require the assignment of a source port 

(from the initiator) and destination port (to the responder) within the connection. These ports are 

each represented as a 16-bit integer in the header for the communication protocol, hence the use 

of values from 0 through 65535. The port number is a logical representation of the connection; 

machines can use port numbers to keep track of multiple communications, either initiations or 

responses, at once. A machine or application that accepts communication requests to a specific 

port is said to be listening on that port.  

Ports labeled from 0 through 1023 are known as reserved ports. Reserved ports are generally used 

only as destination ports in a client-server connection. Each reserved port is assigned a fixed 

application, common across networks and connections. For example, port 80 is reserved for 

HTTP connections, port 22 is reserved for SSH connections, and port 20 is reserved as an FTP 

control channel. Fixed or traditional application ports are not limited to reserved ports, however. 

A number of applications listen on ports greater than 1024; for example, port 6667 listens for IRC 

chat, port 5222 listens for the Instant Messaging protocol XMPP (run by Google Talk, among 

others), and port 8080 listens for HTTP proxies. In some cases, such services are registered with 

the Internet Assigned Numbers Authority (IANA), in which case these service ports in the 1024+ 

port range are referred to as registered ports. 

While technically port 1024 could be used, the ports numbered 1025 through 5000 are used as 

source ports in client connection initiations by hosts running all versions of the Microsoft 

Windows operating system prior to Server 2008 and Vista. Windows Server 2008 and Windows 

Vista switched to using the range 49152-65535 (recommended by IANA for ephemeral port 

usage), as will subsequent versions of Windows. Specific UNIX-like operating systems use 

particular port ranges for initiating client requests (Macintosh OSX and BSD use 49152-65535; 

the Linux kernel 2.4 and 2.6 and Solaris 10 use 32768-65535). Client source port values are 

neither reserved for nor associated with any particular application, and these port values are 

meaningful only for the duration of the connection. Because of this, the client source port is often 

called an ephemeral port in a connection. Because ephemeral connection ports use the high-

valued numbers 1024 through 65535, the port numbers themselves are also often referred to as 

ephemeral ports, even though many may also be associated with applications (registered or 

unregistered). 
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Port values play an important role in network flow monitoring. A flow record is an aggregation of 

volume, measured in both bytes and in packets, between two communicating network agents over 

time. Flows are defined and volumes are aggregated over short time intervals according to the IP 

addresses for both agents—the protocol used and, if the protocol is port-based, ports used for both 

agents as well. A unidirectional flow, used for example in the System for Internet-Level 

Knowledge (SiLK) flow collection system
1
, counts the number of bytes and packets coming from 

a single source to a single destination. A two-way conversation is thus made up of two 

unidirectional flow records. Flow records can be used to count volumes and IP addresses 

associated with external connection requests to a single port in a monitored network. Although no 

payload data is recorded, the size, duration, IP addresses, and ports associated with the flow can 

give insight into the features of the communication and the applications used. A skilled analyst 

can use these features to draw inferences about the purpose of the communication and its 

underlying causes. 

Scan activity appears as collections of flows showing low-volume (three packets or fewer) TCP 

connection requests, sent from a few external IP addresses to a wide cross-section of both active 

and inactive internal IP addresses, and receiving little to no communications in return. When scan 

activity increasingly targets a reserved or traditionally-used application port, it can indicate that 

attackers are interested in a newly discovered vulnerability. For example 

 In November 2004, (CAN-2004-1080) a remote exploit for the WINS service was released, 

leading to a surge in activity on TCP port 42. 

 In March 2005, (MS-ISAC #2005-004) a remote exploit for the Oracle FTP application was 

released, leading to a surge in activity on TCP port 2100. 

 In June 2005, (CAN-2005-0773) an exploit for the Veritas Backup Exec Agent application, 

allowing for remote file access, led to a surge in activity on TCP port 10000. 

 In May 2006 and January 2007, (SYM06-010 CVE-2006-2630) exploits for a buffer 

overflow vulnerability in the Symantec AV suite led to a surge in activity on TCP port 2697. 

Of course, not all port surges are indications of malicious activity or exploits. Typical network 

behavior such as misconfigurations, large FTP file transfers, infrequent user behavior, and 

backscatter resulting from an IP address being used as a spoofed mail server can also lead to 

increased activity on a single port. Most of this activity can be characterized by the existence of 

either a single external host’s or single internal host’s involvement with the port-specific surge 

(many-to-one or one-to-many). One hallmark of vulnerability scanning is that, due to increased 

interest community-wide, it involves an increasing number of external hosts scanning a large 

number of internal hosts (many-to-many).  

 
1
  Available at http://tools.netsa.cert.org/silk. 

http://tools.netsa.cert.org/silk
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3 Modeling Approach 

Adapting the proof of concept from McNutt and DeShon to a formal methodology for a port-

specific alerting system requires four steps 

1. calculating a correlation metric 

2. clustering ports based on pairwise correlation 

3. modeling port volume based on the median value of ports in a cluster 

4. setting threshold values to determine anomalous ports 

In this section, we address each of these steps in detail. In Section 3.1, we introduce notation for 

the methodological framework and discuss preliminary data transformations typical for count 

data. In Section 3.2, we introduce the Minimum Covariance Distance (MCD) method for robust 

correlation. In Section 3.3, we introduce local hierarchical clustering for finding groups of related 

ports. In Section 3.4, we discuss methods for modeling ports within a cluster. In Section 3.5, we 

discuss methods for determining alerts and measuring model health. In Section 3.6, we summarize 

the tuneable parameters, thresholds, and implementation details for the method. 

3.1 Notation and Data Transformations 

Let  represent a port assignment, ranging from  to . For example,  refers to port 

, reserved for SSH communications using the TCP protocol. Let  represent a discrete time 

index, for example hours. Let  refer to a univariate measure of volume that can be recorded for 

a port  at time , for example, flow volume, or byte count. The values  represent 

a stochastic process of volumes associated with port  over time. In notation, we will drop the 

time index  when referring to the process  as a whole. 

Network data in the form of counts is often self-similar or bursty in arrival. This leads to time 

series  that exhibit skewed distributions with long tails spanning high values. Variability often 

increases as the count value increases, which makes interpretation of a correlation coefficient 

between two skewed time series difficult. Furthermore, these distributions tend to persist in 

residuals even after seasonal and daily trends are removed. The goal of analysis with Z-scores is 

to make use of thresholds based on Gaussian white noise with unit variance, as opposed to 

calculating thresholds based on empirical distributional percentiles, which require sorted data. 
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Figure 3: Histogram of Flow Volumes 

Left: A histogram of flow volumes for a week of hourly counts on a random sample of 

ephemeral ports shows a long tailed, skewed distribution. Right: Log-transformed flows show 

a more balanced distribution over the range of potential values. 

To ameliorate the effect of heavily skewed distributions, we change the scale over which the 

analysis is performed. This is done by transforming the counts to a less skewed distribution a 

priori, performing the analysis in the scaled space, and transforming conclusions back to the 

original scale. Nth-root or log transformations can be used in order to condense right-skewed 

distributions to appear more bell-shaped (see, for example, Chapter 12 in [4]). For port-specific 

anomaly detection, we use the transformed time series 

 

The values account for skewness using the natural logarithm transformation. To prevent 

undefined counts for time indices  where , each count is incremented by  before 

applying the logarithm. Figure 3 shows an example of the effect of the log transformation on 

hourly flow counts aggregated from a random sample of ephemeral ports. 

In the course of this method, the set of ports  from  through  are each assigned to one of 

the  clusters (which could also include clusters with only one element). Let  represent a cluster 

index ranging from  to . Denote by  the ports belonging to cluster . Let  be the volume 

of the -th port in the -th cluster at time . In notation, we drop the time index  when referring 

to the process as a whole. 

3.2 Robust Correlation as a Distance Metric 

In this section we develop the concept of robust correlation as a distance metric relating two port 

processes that can then be used as the basis for hierarchical clustering. 

Suppose  and  represent the time series of log-volume metrics for ports  and , 

respectively. Correlation measures how well the value of  at any time  predicts the value of  at 

time  (or vice versa), assuming a linear relationship. Correlation is a numerical value ranging 

from  (strongly negatively correlated) to  (strongly positively correlated). Values near  
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indicate a weak relationship. Figure 4 shows an example with  and  over 

one week’s worth of hourly incoming flow counts.  

 

Figure 4: Two Ports Exhibiting Strongly Correlated Behavior (left) as Time Series and (right) in a 

Scatterplot 

Mathematically, the correlation  between two processes is defined as 

 

To estimate  from observed values at time points we plug in the sample 

covariance and sample variance estimators to obtain 

 

where is the sample average of values of . Since port volume metrics are very rarely 

negatively correlated, we can use  as the basis of a distance metric for  and  

 

The value  is not strictly a distance metric (it fails the triangle inequality), but it can be used in 

clustering applications to describe a relative or predictive distance between two variables. 

Using  as a metric for clustering ports implicitly assumes that there is no anomalous behavior 

in any of the time points  that appear in the calculation of . In practice, it is often impractical to 

filter outliers or anomalies from the observed data by hand. In this case, a robust estimator of the 

correlation  is calculated using the following steps: 

1. For an integer value , find a subset of values , such that  

a.  has  elements, and 

b.  minimizes the trimmed covariance determinant,  

c.  
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d. across all subsets of size . Here,  is the sum of squares obtained using only the  

elements of the subset , for example . 

2. Calculate the trimmed correlation 

 

where , and use the robust distance metric 

 

This algorithm finds the subset of size  out of the  data points that maximizes the correlation 

between  and . It is robust in that it excludes outlying points that may have arisen due to 

fluctuations or anomalies within the data set. A typical value for  would be, for example, 

, yielding a 5% trimmed correlation. 

As  grows, even a relatively large value of  can lead to a combinatorial explosion of sets over 

which to minimize The Minimum Covariance Distance (MCD) method is a Monte Carlo 

algorithm that can be used to efficiently find a set  when the space of all possible subsets is too 

large to perform a systematic search. The MCD algorithm starts with a number  of initial subsets, 

randomly chosen and refines these subsets in parallel using a method called the C-step. The 

refined subset with the lowest observed value of  is chosen as the subset for calculating . 

Details of the algorithm are given in Appendix A. 

3.3 Agglomerative Hierarchical Clustering 

Agglomerative hierarchical clustering [5] (Chapter 12.3) builds a tree of relationships between 

series  by successively merging individuals and clusters together that have the highest similarity. 

The algorithm uses the following steps to cluster  individuals: 

1. Start with  clusters, each containing one individual, and an  symmetric distance 

matrix  whose -th element is the robust distance  

2. Find the nearest (most similar) pair of clusters. Say these clusters are  and . Denote 

by  the distance between  and . 

3. Merge clusters  and  into a new cluster . Update the entries in the distance 

matrix  by deleting the rows and columns associated with  and , and adding a row 

and column denoting the distance of  to all other clusters. 

4. Repeat steps 2 through 4 a total of  times, recording the identity of the clusters merged 

at each step, and the distances at which clusters are merged at each step. 

This algorithm yields a tree of successive merges that consist of a single cluster of all individuals 

at the root, and  singleton clusters at the leaf nodes. 
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Figure 5: Dendogram Showing Hierarchical Agglomerative Clustering 

A dendrogram showing the result of hierarchical agglomerative clustering performed on 100 

adjacent ports. The cutoff point of 0.02 yields three clusters. 

To determine distances between clusters with multiple elements, we use the complete linkage 

metric: For clusters  and , define  as 

 

This distance ensures that at the point at which  and  are merged, all elements in the new 

cluster  are pairwise within the distance . This calculation requires pairwise 

comparison of all ports in each successive cluster, an operation requiring  calculation 

time, where  is the number of elements in . However, since  does not satisfy the triangle 

inequality, bounds cannot be determined based on less compute-intensive processes, for example, 

comparison of cluster centroids, or of individuals to a cluster centroid. 

Figure 5 shows a graphical representation, called a dendrogram, of the tree resulting from 

hierarchical agglomerative clustering of 100 adjacent ephemeral ports. Given a threshold distance 

, the set of all merges that occur with  partitions individuals into clustered subsets. 

To fully cluster all  ports using pairwise distances would require over  billion calculations 

to populate a distance matrix, which is prohibitive in computational cost. Because ports tend to 

cluster with their neighbors, we use a heuristic, window-based approach to clustering these ports: 
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1. Define a maximum subset size . 

2. Starting at port , split the  ports into successive subsets, with each set containing  

adjacent ports. 

3. Perform agglomerative hierarchical clustering within each of the  subsets. 

A typical value for  would be between 100 and 200. In practice, this method works well for 

ephemeral and quiescent ports that are not highly associated with a popular protocol. In public 

communication, peers suggested abandoning hierarchical clustering and simply using the adjacent 

subsets of size  as clusters. However, in practice, only a small number of ports are 

needed to define a cluster with stable median behavior, and clustering within subsets allows the 

threshold  to apply universally to clusters and removes potential outliers.  

3.4 Modeling the Z-score 

The purpose of clustering related ports is to remove time-dependent trends arising from scans, 

gateway activity, and other multi-port activity from the time series . For each cluster , let  

be the cluster median 

 

For a port , a natural choice for removing time-dependent trends is to study the residual 

process . But this median-corrected residual process does not remove all sources of 

variation, nor does it standardize all time series to a standard normal process. Thus, for each port 

, we define the median-corrected, scaled series 

 

The value  is a baseline mean value estimated for each port using a trimmed average, excluding 

the top % of observations, where . This value accounts for a port’s tendency to be 

either consistently higher or consistently lower than the cluster median. The value  is a port-

specific baseline standard deviation term, estimated from the data using a trimmed standard 

deviation based on the trimmed average. For a cluster  with a relatively large number of 

ports, the median-corrected, scaled process follows a zero-mean Normal distribution across time 

values. Details for estimating  and  are given in Appendix B. 

In practice, the baseline standard deviation  does not completely capture the tendency for 

counts for a single port to have higher or lower variability depending on the time of day and on 

the overall port volume. For alerting, we use a scaled version of the median-corrected series called 

a -score 

 

The values and are port-independent scale parameters based on cluster size, time of day, 

and cluster median. This correction allows us to compare the rescaled  across many different 

clusters and ports, and to set universal threshold values when looking for anomalies. Details on 
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how the parameters and are estimated are given in Appendix B. We will denote by  

the Z-scores associated with cluster . 

3.5 Alerting 

The basis of any anomaly detection system is an alerting method, but in a typical operational 

environment, this often requires thousands, if not more, of significance tests to be performed with 

each data update (for example by the minute, hour, or day). Alerting methods based on fixing the 

type I error rate (the proportion of false positives) in a hypothesis test must also control for this 

multiple testing environment or risk an explosion of false positives across all tests. For example, if 

100 hypothesis tests are performed, each with a type I error rate , then the expected 

number of false positives is equal to 5. And even a type I error rate of  (1 in one 

thousand) across  independent tests, for example using one test per port, results in 

approximately 65 false positives per cycle. If data is updated hourly, even this strict threshold can 

lead to a large number of false positives per day. 

We address the multiple hypothesis testing problem in two ways. First, we use a cluster-based chi-

squared test that allows for a tiered approach to alerting and reduces the number of initial tests 

necessary to discover anomalies. Second, we use the FDR method, as detailed by Benjamini and 

Hochberg [6], to determine the threshold at which to flag an alert.  

For a cluster  we define the chi-squared value at time  as 

 

This statistic can be used to test the cluster-based hypothesis 

 No unusual or anomalous activity is evident in the cluster, versus 

 At least one port in the cluster has anomalous traffic values (either high or low) 

Under the null hypothesis of no unusual activity,  follows a  distribution with degrees of 

freedom equal to the cluster size. For each cluster, we can use this distribution to calculate a p-

value 

 

This hypothesis test rejects  when the test statistic  is sufficiently large. This test is 

performed for each cluster, as opposed to each port, reducing the amount of simultaneous 

hypothesis tests that are performed. To control the average false positive rate among the multiple 

hypothesis tests at this stage, the FDR method is implemented as follows: 

1.  Choose a family error rate . 

2.  For  independent hypothesis tests, sort the p-values from smallest to largest to obtain the 

ordered set . Note that denotes the -th order statistic of elements  

3.  Reject all  such that . 

Note that the test statistic does not differentiate between a large contribution from one port 

and a series of smaller contributions from many ports. While the first situation is indicative of a 
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surge or volumetric anomaly, the second situation may be a sign that the model for the cluster 

(independent normal(0,1) residuals) is failing to account for trends or variation in the data. This 

failure is often referred to as model mis-specification. We use the term cluster health to describe 

the degree of model mis-specification evident in the cluster. A healthy cluster shows Z-scores 

following time-independent standard Normal distributions, with the possible exception of 

anomalies flagged due to surges in a few outlying ports.  

When a cluster is flagged, we can then examine the individual -scores within the cluster to 

determine the source of the anomaly. For a cluster of  ports, we define the nth-outlier statistic as 

the value , the largest order statistic after the first  outliers have been removed. To search 

for high outliers corresponding to surging ports in a flagged cluster, we can compute a p-value for 

each ordered observation, based on the premise that  is the largest of  ports, using the formula 

 

where  is the cumulative distribution function (CDF)  of a standard normal (mean zero and 

unit variance) random variable. This p-value is conservative as compared with a joint p-value of 

all order statistics. However, when the highest order statistics are extreme outliers, and when the 

outliers represent only a small fraction of the cluster, the effect is negligible, and the p-value can 

be useful for ranking and flagging outliers. Ideally, port-specific anomalies would be a result of 

large contributions from only a few ports in the cluster. Large numbers of flagged ports (that is, 

over 30% of the cluster), or, alternatively, failure to detect any outliers in a flagged cluster, are 

signs of model mis-specification and poor cluster health. We present some examples in Section 

4.3.2. 

3.6 Summary of Tuning Parameters 

Table 1 shows a list of the parameters that need to be set or tuned when implementing the port 

correlation algorithm, along with a set of suggested default values. The subset size  and number 

of MCD repetitions  contribute to the computational burden of initially clustering ports, but they 

do not affect the speed of calculating -scores and flagging alerts, beyond the notion that  

determines the maximum possible subset size. Depending on the initial noise of the data, the value 

of  may be set much smaller than the recommended 500 repetitions by Rousseuw and van 

Driesen. As each pairwise calculation uses  steps to calculate the MCD correlation, reducing  

can improve speed dramatically.  
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Table 1:  Tuning Parameters for the Port Correlation Algorithm 

Tuning parameters for the port correlation algorithm, with suggested default settings. Here, N 

is the number of data points recorded in the training set for each port. 

Tuning Parameter Symbol Default 

Subset size  150 

Number of MCD repetitions  500 

Robust correlation threshold  0.95N 

Clustering threshold  0.05 

Port model trim percentage  0.99 

Alerting family error rate  0.05 

The robust correlation threshold  and clustering threshold  can both be tuned to affect the 

predictive power in port clusters. A low value of  assumes that the training data is already noisy 

with events that cause surges in traffic that would correspond to a desired alert. High values of  

assume that most of the training set contains only baseline, typical behavior. Lower values of  

result in looser clusters of ports, consigning more variability to the model of typical behavior. 

This results in fewer alerts for low-volume surges. The family error rate  is the expected value of 

false positives as a percentage of the number of tests performed at each cycle. Low values of  

also contribute to fewer flagged alerts.  

Parameters that are estimated from the data, once tuning parameters have been set, include 

baseline means  and standard deviations  for each clustered port, as well as parametric 

models for estimating the scale parameters  and . More detail on estimation is given in 

Appendix A. 
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4 Application to Flow Data 

4.1 Data Collection 

To test the methodology and alerting system, three weeks of data were collected from a large 

network with visibility across more than  class C net blocks, each consisting of 256 IP 

addresses. The unit of measurement collected was a flow record, as described in Section 2, 

created using the SiLK flow collection system. To measure external interest in ports, flow records 

were collected that originated from external hosts on the internet directed into the network and 

aggregated by destination port. Counts of this incoming flow data were recorded for each of the 

65536 ports on an hourly basis, for the period of April 1 through April 21, 2008.  

To reduce the effects of backscatter and unsolicited replies, traffic collection included only 

incoming flows using the TCP protocol that did not have the following qualities:  

 SYN ACK flags only set 

 RST flag only set 

 RST ACK flags only set 

The week of April 1 through 7 was reserved as a training set, used to cluster ports and to estimate 

model parameters for each port cluster. The remaining two weeks were used as a test set, to flag 

alerts based on the models developed using the training data. 

4.2 Parameter Tuning and Estimation 

Port clusters were determined using a correlation distance threshold of 0.05 and an MCD 

threshold of 0.95 on 168 hours comprising the training data. Clustering was performed using the 

open source C Clustering library
2
 (version 1.36) on a Linux cluster of 4 Intel 3GHz processors 

and 12GB RAM capacity. To determine the subset size  and MCD repetitions , taking into 

account operational computing time and robustness for the clustering metric, we performed 

benchmark tests on several combinations of parameters and compared clustering results for 

representative subsets from both the reserved and ephemeral range. Table 2 shows the results. The 

results suggest a feasible run time for subsets of 150 adjacent ports, with 30 MCD repetitions. 

This increases the number of pairwise comparisons calculated, with a number of repetitions 

chosen to increase speed while maintaining robustness of the MCD algorithm.  

 

 

 

 

 
2
  Available at http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm. 

http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm
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Table 2: Benchmark Results for Combinations of Subset Size and MCD Repetitions  

Benchmark results for several combinations of subset size (M) and MCD repetitions (ν). 

Parameters from the last row (*) were chosen for the training data, to keep the subset size 

large and cluster as many adjacent ports as possible, while conserving time. 

 M  Reserved 

Subset  

Ephemeral 

Subset  

Cluster Time 

per Subset 

#Reserved 

Clusters 

#Ephemeral 

Clusters 

Estimated Full 

Clustering Time 

 100 100 0-99 45000-45099 3m 10s 77 4 34 hr 

 100 50 0-99 45000-45099 1m 45s 77 4 18 hr 

 100 30 0-99 45000-45099 1m 5s 77 4 11 hr 

 150 50 0-149 45000-45149 3m 55s 108 5 27 hr 

*150 30 0-149 45000-45149 2m 30s 107 5 18 hr 

4.3 Summary of Results 

4.3.1 Clusters 

Using the correlation threshold of 0.05, 63476 out of 65536 possible ports were clustered into 

groups of two or more ports, yielding a total of 1127 clusters. Figure 6 shows a histogram of 

cluster sizes, with a minimum and mode of 2 ports per cluster, and a maximum of 150 ports due to 

the subset size . Cluster sizes tend to favor three ranges: below 30, between 60 and 80, and 

above 125.  

 
Figure 6:  Histogram of Cluster Sizes for 63476 Ports Assigned to 1127 Clusters 
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Figure 7 shows cluster size as a function of the median numerical value of the port in the cluster. 

This graph illuminates some trends in network behavior by port. Reserved ports (ports below 

1024) do not tend to correlate closely with their neighbors. Only 15% of reserved ports were 

clustered within the 0.05 threshold, with only three clusters consisting of five or more ports. Two 

clusters of 8 ports appear, one within the 450-600 range (452, 462, 485, 502, 506, 507, 575, 579), 

and one within the 600-700 range (623, 634, 639, 656, 662, 671, 678, 682). In comparison, 98% 

of Microsoft Windows ephemeral ports (1025 to 5000) were clustered with at least one neighbor, 

with only 73 ports (1.8%) belonging to clusters with between two and five ports. The group of 

ports between 5001 and 10000 show wider variation in cluster size than the ports typically used 

for both Windows client connection initiations, as well as the high-valued ephemeral ports used in 

UNIX connections. A total of 312 ports (6.8%) belong to clusters with between two and five 

ports; the maximum cluster size within the unassigned range is 118 ports. High-valued ports 

appear most highly correlated with their neighbors in general; 98.5% of ports were clustered with 

at least one neighbor, with a total of only 609 ports (1.1%) belonging to clusters with between two 

and five ports, and 38997 ports belonging to clusters with 140 ports or higher. 

 

Figure 7:  Cluster Size by Median Port Value per Cluster, Shown on a Log2 Scale  

Few reserved ports (0-1024) show correlated activity strong enough for clustering. Windows 

ephemeral ports (1025-5000) show similar cluster sizes to Unix ephemeral ports (10001-

65535), with the exception of a group of clusters of size ~75 in the 10001-32768 range. 

Unassigned ephemeral ports (5001-10000) show much higher variation in cluster size. 

Visualizations such as Figure 6 and Figure 7 may contain both global features that may be 

expected in any implementation of port clustering and features specific to a monitored network. 

For example, smaller cluster sizes can indicate a prevalence of ports in that region that receive a 

substantial amount of application-specific traffic. Reserved ports tend to cluster only in small 
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groups, if at all. On the other hand, the larger ephemeral ports (10000 to 65536) seem to have 

many more similar adjacent ports. This pattern may also arise from a smaller set of internal UNIX 

hosts that use those ports, as opposed to a large group of Windows hosts. These figures can be 

used as a high-level baseline of standard activity. Changes in cluster sizes as the algorithm is re-

run over time may be indicative of changes in overall port usage or in internal network structure. 

4.3.2 Frequency of Alerts 

Port-specific means and variances (  were estimated using the training data for every port 

correlated with at least one neighbor. Post-clustering variance adjustments were also computed 

using the training data, as noted in Appendix B, in order to produce -scores for both the training 

data (April 1 through April 7) and for the test data (April 8 through April 21). Figure 8 shows the 

number of cluster rejections by hour over time, flagged using the FDR method with a family error 

rate .  

Despite the post-variance modeling adjustments for time dependency, a distinct daily trend is seen 

in rejection rates, suggesting a model mis-specification error. Rates also increase with time, 

suggesting that model maintenance should include re-estimation of both cluster assignments and 

data-dependent parameters. Based on ordered p-values, the average hourly port rejection rate was 

0.004, which corresponds to approximately 255 port rejections per hour out of the 63476 ports. 

On average, each cluster was rejected in 12% of hours during which it was tested. Nine clusters 

were flagged for over 50% of the 504 hours. This high cluster-specific volume can be attributed 

both to port surges and to model mis-specification.  

 

Figure 8:  The Number of Cluster Rejections Over Time, Flagged Using a Family Error Rate . 

The number of cluster rejections over time, flagged using a family error rate . 

Despite the post-variance modeling adjustments for time dependency, a distinct daily trend is 

seen in rejection rates, suggesting a model mis-specification error. Rates also increase with 

time, suggesting that model maintenance should include re-estimation of both cluster 

assignments and data-dependent parameters. 

We use a visualization called a cluster summary graph to examine clusters in more detail. Figure 

9 shows an example. The top row is a time series plot of all Z-scores in the cluster. The ports with 

the ten highest Z-scores over the plotted interval are listed on the far left column, along with the 
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color of each port in the time series plot. The summary graph also displays several visual 

depictions of cluster health. The middle row is an indicator of the number of ports that were 

flagged as anomalous in the cluster, using the two-step alerting technique described in Section 

3.5. A circle indicates that more than five ports in the cluster were flagged, a sign that the cluster 

may be unhealthy. The bottom row shows two diagnostic plots of Z-scores to determine the 

adherence to the normal model. A standard normal histogram displays a bell shape with almost all 

mass concentrated between  standard deviations. The QQ-plot indicates deviations from the 

normal model when the ordered percentiles deviate from the marked blue line. Heavy tails cause 

an “S” shape—first dipping below, then veering above the blue line. High numbers of rejections, 

as well as S-shaped QQ-plots, are indications of poor cluster health. 

The cluster in Figure 9 is generally healthy with several anomalies. Time series plots of Z-scores 

do not show daily trend patterns. Obvious spikes in activity during week 3 are flagged by the 

FDR-based cluster rejection step, with generally fewer than three ports flagged using ordered p-

values. The histogram and QQ-plot show adherence with standard normal tails, barring outliers 

from the port surges. The 10-hour surge on April 16
 
corresponds to a scan of port 5110 over 

several class B networks by multiple external hosts. Although activity post-scan increased on the 

morning of April 17, in this instance there was no internet-wide outbreak. Port 5110 is associated 

with the ProRat (remote administration tool) Trojan that runs a backdoor on that port. Port 5110 is 

also the default port for command line and GUI tools to connect to the IBM Tivoli Storage 

Productivity Center for Replication server. The activity we observed on port 5110 could be 

associated with either of these systems or could be related to some unknown other system. 
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Figure 9:  A Healthy Cluster with Several Anomalies  

Time series plots of Z-scores (top row) show little daily trend patterns. Obvious spikes in 

activity during week 3 are flagged by the FDR-based cluster rejection step (middle row), with 

generally fewer than three ports flagged using ordered p-values. The histogram and QQ-plot 

(bottom row) show adherence with standard normal tails, barring outliers from the port 

surges. 

The cluster in Figure 10 shows signs of poor health along with anomalies. Both the Z-score time 

series and number of rejected ports show evidence of daily trend as well as multiple ports 

triggering anomalies. The histogram and QQ-plot show slight skewness toward heavy upper tails. 

The cluster appears to gain anomalies over the course of the two-week testing period, an 

indication for the need of re-clustering with time. 
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Figure 10:  A Cluster Showing Signs of Poor Health along with Anomalies  

Both the Z-score time series and number of ports rejected show evidence of daily trend as 

well as multiple anomalies. The histogram and QQ-plot show slight skewness toward heavy 

upper tails. The cluster appears to gain anomalies over the course of the two-week testing 

period, an indication for the need of re-clustering with time. 

The cluster in Figure 11 is unhealthy; despite few visible surges or spikes in the Z-scores, this 

cluster was flagged in 54% of hours in which it was tested. Daily trends can be seen in the Z-score 

time series plots, with few obvious outliers. However, ordered p-values often flag multiple ports 

in a single hour. The histogram and normal QQ-plot suggest that Z-scores in this cluster have 

much heavier tails than the standard normal distribution. This model mis-specification leads to 

high rejection rates and false positives. 
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Figure 11:  An Unhealthy Cluster Rejected in 54% of the 504 Hours Using the FDR Method 

Daily trends can be seen in the Z-score time series plots, with few obvious outliers. 

However, ordered p-values often flag multiple ports in a single hour. The histogram and 

Normal QQ-plot suggest that the Z-scores have much heavier tails than a Normal 

distribution. This model mis-specification leads to high rejection rates and false positives. 

4.3.3 Alert Classification and Evaluation 

We took a stratified sample of 351 Z-scores with values greater than  across  strata used for 

post-processing variance adjustments (see Appendix B for details). Each sampled Z-score was 
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then expanded into a temporal event, based on the associated port’s activity in adjacent hours. The 

port was marked as surging for the duration of contiguous hours that both spanned the sampled 

point and that had a Z-score greater than . A panel of experts on our team investigated each 

event to determine the source of the anomaly. We used this sample evaluation to estimate the 

percentage of all flagged events belonging to each category for the duration of the study. The 

results are presented in Table 3. 

Table 3: Percentages of Categories of Events Discovered Using Port Clustering and Two-Stage 

Statistical Outlier Detection  

The average duration of events ( ) is reported in hours, with associated standard deviations. 

Type % of Events  (hours) SD(  

P2P Ghosting 41.0 19.8 1.6 

Keep-alive 14.0 9.0 2.8 

HTTPS (port 443) activity 12.0 7.6 1.4 

FTP/SMTP activity 5.2 8.6 2.8 

Misconfiguration/Backscatter 4.3 6.2 1.3 

Connection Attempt 4.3 7.6 3.3 

User Non-Web activity 3.9 22.0 11.9 

SYN flood 3.6 9.0 4.4 

Beaconing (Non-443) 3.6 20.5 5.0 

Large Data Transfer 3.1 16.0 7.0 

Scan activity 2.8 6.5 2.9 

Statistical False Positive 0.8 1.2 0.2 

File Transfer 0.6 3.0 2.0 

The most common event type (an estimated 41% of all flagged events) is a specific kind of peer-

to-peer ghosting activity. This anomaly is characterized by an inactive internal IP address that 

suddenly starts receiving variable-sized connection requests from multiple external IP addresses. 

The activity initiates suddenly, and can persist for long periods of time. This activity is observed 

when the internal IP address is mistakenly listed as a valid peer in a peer-to-peer network. 

The majority of anomalous events flagged in the system can be classified as benign network 

activity. Session keep-alives (14%), HTTPS activity (12%) and FTP or SMTP activity (5.2%) 

represent user-initiated behavior that, while port-specific, generally does not require a security 

alert. Misconfigurations or backscatter (4.3%) and repeated connection attempts (4.3%) are 

attributable to repetitive machine activity.  

An estimated 13% of flagged events are composed of suspicious events such as beaconing (keep-

alives on non-standard ports), SYN floods, scanning, and large data transfers. For example, Figure 
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12 shows a visualization of a large multi-port scan that was flagged across several clusters. Each 

comb plot in the figure represents a successive hour and displays a port number on the  axis and 

a -score on the  axis. Only -scores with values greater than 10 are plotted. Blue dashed lines 

correspond to ports: 1024, 500, 10000, and 32768. Activity first occurs at 4 a.m. on low-valued 

Windows server ports (1024 to approximately 1500) and low-valued UNIX ephemeral ports 

(10000 to approximately 15500). By 5 a.m., the activity migrates across Windows server ports, 

ephemeral unassigned ports (5000-10000), and a cross-section of the remaining UNIX ephemeral 

ports. There are indications of reserved port activity (0-1024) for the 6 a.m. hour that may also be 

associated with the scan. 

Statistical false positives (an estimated 0.8% of all flagged events) are events that appear to show 

no port-specific behavior upon examination. The rate of statistical false positives appears 

consistent with the FDR rate that was set for the two-stage hierarchical outlier detection. But the 

failure of the algorithm to detect actionable anomalies is due less to the statistical methods and 

more to variable selection and data pre-processing. The simple flow volumes that were used as 

inputs for port correlation and anomaly detection also contained a large amount of benign port-

specific activity.  

 

 

Figure 12: Sequential Comb Plots Show the Result of a Two-Stage Multi-Port Scan  

For visual reference, blue dashed lines correspond to ports: 1024, 500, 10000, and 32768. 

Activity first occurs at 4 a.m. on low-valued windows server ports (1024 to approximately 

1500) and low-valued UNIX ephemeral ports (10000 to approximately 15500). By 5 a.m., the 
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activity migrates across Windows server ports, ephemeral unassigned ports (5000 to10000), 

and a cross-section of the remaining UNIX ephemeral ports. There are indications of 

reserved port activity (0 to1024) for the 6 a.m. hour that may also be associated with the 

scan. 

4.4 Future Work: Variable Selection and Context 

One way to increase the utility of the port-specific anomaly detector is to use more context-

specific volumetric data, as opposed to hourly flow counts per port. For example, a flow count for 

a single port can be abnormally high due to any of the following events occurring on that port: 

 One external host sends flows to one internal host. 

 One external host sends flows to multiple internal hosts. 

 Multiple external hosts send flows to one internal host. 

 Multiple external hosts send flows to multiple internal hosts. 

Event 1 is associated with misconfigurations, backscatter, and machine-initiated connection 

attempts, which are not high-priority actionable security events. Event 2 is the hallmark of a lone, 

loud scanner—an IP address that does not use any proxies or other obfuscation when performing 

port scans. These blatant scanners are generally easy to find in the course of day-to-day network 

monitoring with, for example, top-N lists. Event 3 is typified by the peer-to-peer ghosting activity 

that, while anomalous, is a low-priority actionable event. Event 4 is the event most likely to 

precede a port-specific surge due to increased interest in a recent vulnerability. As news of the 

vulnerability spreads among hacker communities, increasing numbers of external hosts should be 

observed performing scans of multiple internal hosts on the network.  

To track port-specific anomalies due to new exploits or vulnerability releases, a more informative 

measure might be the number of unique external IP addresses scanning each port per hour, with 

an associated summary of the number of unique destination ports scanned per IP address. 

Restricting IP addresses to only those marked as scanners by a blacklist, IDS tool, or prior 

analysis also gives the measured data a smaller scope and context for flagging volumetric 

anomalies.  

To explore this new data, we used the combined Thresholded Random Walk and MISSILE 

algorithms, built into the SiLK rwscan tool
3
, to flag a set of scanners between the dates of 

November 1 and December 31, 2008. In six-hour intervals, we recorded the number of unique 

external IP addresses scanning a large network, as well as a 6-tuple summary (min, max, median, 

75
th
 percentile, 97.5

th
 percentile, and log-mean) of the number of unique internal addresses 

scanned by each source IP address. These seven time series were recorded for each of the 65536 

unique ports. As a first step to explore surging ports, we performed linear regressions of unique 

source IP (log-scaled) over time and ranked ports by the steepness (either increasing or 

decreasing) of the resulting slope estimate. Figure 13 shows some examples of highly ranked 

ports, plotted on a log scale. The 97.5
th
 percentile of the number of unique destinations scanned is 

represented on the log scale by color on the graph. Green colors indicate that the majority of IP 

addresses in the six-hour window scanned fewer than  internal hosts. Yellow and red indicate a 

log-scale increase in this number.  

 
3
 Available at http://tools.netsa.cert.org/silk/rwscan.html. 

http://tools.netsa.cert.org/silk/rwscan.html
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Figure 13:  Volume of Unique Sources Scanning Several Different Destination Ports 

In the case exemplified by port 16340, the volume of unique scanners increases gradually over 

time, as we hypothesized would occur with a vulnerability announcement. However in other 

cases, such as ports 8443 and 7193, the number of scanning IP addresses increases rapidly by 

orders of magnitude. Rather than a continued increase, the high-volume activity stabilizes, often 

over a period of weeks or months. Rapid declines, as exemplified by port 5579, are also evident. 

We hypothesize that this activity pattern is due to botnets. The colors of the points represent the 

number of addresses scanned by the majority of source IP addresses, with green indicating few 

addresses scanned per source, and red and yellow colors indicating higher numbers. Only in the 

case of port 8443, during the week of November 17, does it appear that incoming sources also 

scan large parts of the internal network.  

This kind of botnet activity can lead to false positives in an alerting system looking for new port-

based vulnerabilities; none of these incidents were associated with an outbreak. We hypothesize 

that scanning would not only increase, but that scanners would become bolder in scope, targeting 

larger areas for scanning of the vulnerable port, as opposed to targeted surgical attacks. We can 

also see evidence of correlation among ports with this data as well. For example, Figure 14 shows 

time series plots for ports 7193 and 8516 that display strikingly similar patterns, perhaps 
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indicating a strong overlap in the external hosts that scanned both ports. Such fingerprinting can 

be used not only as a basis to cluster similar ports but also to track botnets and related scanners as 

they cycle among hosts. 

 

Figure 14:  Time Series Plots Displaying Similar Patterns 

Similar patterns in port scanning activity suggest coordination among unique sources and 

motivate a cluster-based approach for discovering botnet associations. 
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5 Discussion  

The port-specific anomaly detection methodology, implementation, and evaluation discussed in 

this report provide a case study in applying proof-of-concept research techniques to a large-scale, 

operational network security environment. This report details the steps our research team took for 

scaling a novel volumetric anomaly detection method (clustering and median-based trend 

correction) into an automated, adaptive system tasked to monitor thousands of internal resources 

simultaneously. Section 5.1 details the lessons learned specific to the port-based anomaly 

detection methodology. Section 5.2 provides some broader recommendations for large-scale 

volumetric anomaly detection.  

5.1 Lessons Learned 

5.1.1 Clustering 

The main reasons for using correlation-based clustering as the method for modeling trend were  

 to categorize related ports into groups in order to organize and present information to the 

analyst 

 to take advantage of a state-free, simple median correction for obtaining residuals on which 

to base thresholds 

 to reduce the number of hypothesis tests needed for initial flagging of events 

Although the original research provided a proof of concept that highlighted several empirical 

clusters, scaling the port clustering algorithm to automatically correlate and group 65536 ports 

was a substantial challenge. To relax the requirement of looking only at small sets of adjacent 

pairs, agglomerative hierarchical clustering, which requires full pairwise comparisons, can be 

replaced by a faster, adaptive method such as BIRCH [7]. But finding useful thresholds for both 

pairwise MCD correlation and for defining clusters requires an extensive exploratory analysis. 

Parameter settings generally will not translate well between differently configured and sized 

networks, or between different measures of activity (for example, byte counts vs. flow counts vs. 

unique host counts). It is also clear from the three-week data set that clusters based on flow 

volumes age rapidly, and that re-clustering would need to be performed often in an operational 

environment. Normal user activity can initiate large deviations from established trends, which 

calls to question examining changes to clusters over time as an anomaly detection method. 

In our case study, the simplicity of state-free, median-corrected residuals also did not scale well to 

an automated anomaly detection system. Median-corrected time series were not sufficiently 

stationary and uniform for removing temporal trends and applying universal thresholding to 

discover statistical outliers. Distributions of median-corrected port series varied with time of day, 

cluster size, and cluster median value. We required significant post-processing of median-

corrected port volumes to account for these sources of variation, with limited success. The log-

scale transformation was not sufficient to correct for changes in both trend and variation with 

time, and the post-processed -scores also continued to suffer from temporal and volumetric 

effects, as well as individual differences among ports. This suggests that port-specific parameters 

(that is, keeping state per port) are still required in an operational setting, even when ports are 
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grouped into clusters. Although the cluster-based method did require significantly fewer 

hypothesis tests per iteration for flagging outliers, the advantage came at a much higher cost of 

complexity in the baseline modeling than we anticipated.  

5.1.2 Parameters  

To transform median-corrected series into -scores, a simple model was chosen to account for 

residual trend. Once the cluster median value was subtracted, any remaining trend was modeled 

only by time-independent baseline means  for each clustered port. Port-specific variance, 

cluster size, median value, and temporal effects were all modeled as variance components. But 

daily trends in rejection rates in both training and test data suggest that the baseline trend model 

should be more flexible. For example, a linear model with global, cluster-specific and port-

specific coefficients can be implemented. We anticipate that increasing flexibility in baseline 

trend modeling will help to alleviate the temporal effects in rejection rates. Following Lambert 

and Liu [8], autocorrelation functions of trend-corrected residuals can be examined to determine if 

the resulting residuals are time-independent.  

5.1.3 Data Collection and Alerts  

For the hourly count data used in this analysis, it appears that training the anomaly detection 

system on one week of data is insufficient for generalizing cluster values and parameter estimates 

beyond a few days. Baseline studies of network behavior, using historical data collected over 

many weeks, will help to inform trend models.  

Though flow counts were filtered to reduce the effect of backscatter, the resulting volumes still 

displayed surges due to benign network activity. Adapting the method to count unique source IP 

addresses and unique destination addresses restricts the scope of the port-specific anomaly 

detector to events including multiple external addresses and multiple internal addresses. This 

provides a more targeted scope for an anomaly detection system, and preliminary analysis 

indicates that the reduced scope may produce more actionable anomalies. The method can also be 

adapted to calculate -scores based on outlying points in multivariate distributions. This kind of 

adaptation would produce alerts based on information from more than one measurement, 

simultaneously.  

Statistical false positives appear to be managed well using the FDR method. To detect surges, 

however, it may be more useful to track average -scores by port over time. A similar technique 

is also suggested by Lambert and Liu [8], who apply exponentially weighted moving average 

models to -scores in a control chart approach. Smoothing -scores before flagging anomalies 

can help to reduce false positives, but corrections for multiple hypothesis testing will still be 

required when many thousands of network resources are monitored simultaneously.  

5.2 Recommendations 

In a large-scale operational environment, even a simple statistical model must often be 

conceptualized as an expert system. Scaling a proof-of-concept idea to an implemented system for 

monitoring thousands of assets requires attention to more than a simple predictive model. A 

proof-of-concept methodology that neither addresses nor evaluates diversity of assets, scaled false 

positive rates, model evolution, and diagnostics and maintenance after implementation presents 

many challenges and unknowns to the applied researcher tasked with turning that concept into a 
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useful tool. Based on our evaluation and analysis of the port clustering and alerting algorithm, we 

recommend the following for large-scale automated volumetric anomaly detection: 

1. Choose variables in context. Simple measurements may be useful for very specific trend 

analysis, for example, on a single-host level. But as the scope of the network monitor 

increases, and as metrics aggregate over many nodes, interpretable and actionable anomaly 

detection should become more targeted in scope, with appropriate metrics chosen to give a 

useful volumetric view that highlights a specific type of anomaly. Multivariate methods can 

incorporate information from several metrics simultaneously and may be more useful than 

the univariate methods often cited in the literature. 

2. Carefully model both trend and residuals. Statistical models describe both trend and 

residual variation once trend is removed. In anomaly detection, the residual variation is 

important to model accurately, especially for describing which extreme values are 

nonetheless typical (tails of the distribution) and which are truly anomalous. It is most 

important that the model for these residual extreme values is accurate across the population 

of assets that are being monitored, before universal thresholding can be used. Building 

models to monitor thousands of assets requires extensive historical reference data, 

diagnostics designed to validate the model at extreme values, and an exploratory pre-

implementation phase focused on ranking goodness of fit across network assets that will be 

monitored. 

3. Correct for multiple hypothesis testing. When faced with the possibility of thousands of 

statistical tests to determine alerts, a method that controls for multiple hypothesis testing, 

such as Benjamini and Hochberg’s [6] method for controlling the False Discovery Rate (the 

FDR method), or the FDR method coupled with control-chart methods, should be used to 

ensure that any system conform to pre-determined type I error rates. The FDR method is 

especially appealing because the algorithm is simple and easy to implement on a large scale. 

4. Provide adaptive, interpretable methods for model diagnostics and evolution. Anomaly 

detection systems based on statistical models should include methods for diagnosing model 

misfit and for updating model parameters. Inline methods (such as exponential moving 

averages) can be used, but even these methods may not be robust enough to adapt the model 

adequately over time. Simulations and application to historical data can be used to devise 

schedules for model maintenance. Analysts and operators that rely on any large-scale 

anomaly detection system should be trained on the interpretation of model diagnostics and 

on the procedures that should be taken when diagnostics indicate model mis-specification.  



 

31 | CMU/SEI-2010-TR-010 

Appendix A The Minimum Covariance Determinant (MCD) 

Algorithm 

For a cloud of  data points in -dimensional space, with , the MCD algorithm constructs 

a robust measure of center and spread of the cloud. For non-robust methods, the center is 

measured by the -dimensional mean vector , and spread is measured with a  covariance 

matrix , where the -th element of  stores the covariance measured for dimensions  and . The 

MCD algorithm takes as an argument a subset size  and computes  and , where the 

mean and covariance measures are taken not over all data points, but over the  data points for 

which the resulting covariance matrix has a minimum determinant over all possible subsets of size 

. This provides a robust estimate of center and spread that is not strongly influenced by outliers. 

Despite having many nice statistical properties, the MCD estimator was not used in practice (it 

was supplanted by a method called MVE or “minimum volume ellipsoid”) because it was slow to 

compute. However, Rousseeuw and van Dreisen [3] devised a fast method for computing  and 

 and now maintain that MCD is the preferred method for robust center and spread measures as 

opposed to MVE. 

The workhorse of the MCD algorithm is the C-step or “concentration step.” Starting with a center 

 and spread calculated using a subset of arbitrary size, the C-step first requires computation 

of the Mahalanobis distance of each data point  to  with respect to , given by 

 

The data points  are sorted according to their distances , and the subset of  points with 

smallest distances are used to obtain a new center  and spread , for which 

. Because covariance matrices are positive-definite, their determinants are bounded 

below by 0, and so repeated applications of C-steps are assured to converge. 

The method for finding  does not compute all possible subsets, but instead proceeds as follows: 

1. Repeat  times: 

a. Construct an initial ,  using a randomly chosen subset of  points for which 

. 

b. Carry out two C-steps. 

2.  For the 10 results in Step 1 with lowest determinant, carry out C-steps until convergence. 

3.  Report  and  as the solution with the smallest observed determinant. 

Rouseeuw and van Dreisen suggest  as a reasonable number with which to seed the 

algorithm.  
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Appendix B Port-Specific Models and Post-Clustering 

Variance Adjustments 

The model for each clustered port includes a port-specific baseline mean  and standard 

deviation . These are estimated using the median-subtracted time series . To 

calculate the trimmed mean for  observations in a time series, let  be a trim 

proportion. To estimate the baseline mean, calculate 

 

where , and the index  indicates the -th ordered value of the  

observed values in the time series. This is a trimmed mean taken across the middle  proportion 

of the median-subtracted port volumes. To estimate the baseline standard deviation, calculate 

 

The use of the trimmed mean and standard deviation is to account for noisy data collection that is 

contaminated by the same kinds of events that would initiate alerts for surges. The estimated 

values  and  are plugged in to the calculation of  

 

Figure 15 shows the median-corrected series  for the training set (April 1 through April 7), 

plotted against general port volume across several different strata of time and cluster size. In each 

sub-plot, the y-axis is , and the x-axis is the log-scaled cluster median that was subtracted at 

time  to obtain . The names in each plot title correspond to the following variables: 

 Cluster group (CG) 

 CG=1: Cluster size < 20 ports 

 CG=2: Cluster size between 21 and 50 ports 

 CG=3: Cluster size between 51 and 100 ports 

 CG=4: Cluster size between 101 and 150 ports 

 Peak hours (PK) 

 PK=0: Relative time is between 8 p.m. and 8 a.m. 

 PK=1: Relative time is between 8 a.m. and 8 p.m. 

 Workday (WK) 

 WK=0: Day of the week is a Saturday or Sunday 

 WK=1: Day of the week is Monday through Friday 
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The red line in each graph corresponds to a cluster median value of 20. We note from this 

diagnostic that despite scaling  by a port-specific standard deviation, the variation changes with 

port volume, time, and cluster size. Starting with a median value of approximately 20, variance 

decreases with volume across almost all strata, leading to the cone shape in  as the median 

value increases. Variance seems stable but large across all strata when the cluster median is 20 or 

less. The cone effect also seems more pronounced in the second and third columns corresponding 

to weekdays, and less pronounced for the first row corresponding to clusters of 20 or fewer ports.  

We use the diagnostic plots in Figure 15 to heuristically group residuals for modeling variability 

in terms of median. For any value  calculated when the median , we scale it by a factor 

 according to the following model: 

1.  

2.  

The expression for  bins median values into groups of 10 (for example, 21-30, 31-40, 41-50, 

etc.), and assigns each bin a numeric value starting at 1. The coefficients  and are 

estimated independently for 8 subgroups resulting from all combinations of conditions for peak 

versus non-peak hours, weekdays versus weekends, and small cluster size (  ports) versus 

large cluster size (21 to 150 ports). 
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Figure 15:  Residual Plots Vs. Cluster Median for 16 Different Strata  

Residual plots versus cluster median for 16 different strata according to peak time of day 

(PK, 1 = 8am to 8pm, 0 = 8pm to 8am), day of week (WK, 0 = Mon-Fri, 1 = Sat or Sun) and 

cluster size (CG, 1 = 2 to 20 ports, 2 = 21 to 50 ports, 3 = 51 to 100 ports, 4 = 101-150 

ports). Residuals appear to follow a universal pattern across all strata for median sizes below 

20 (the red line in each graph). Residual variance universally decreases as the median size 

increases. 
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To estimate , and  from the data, for each observed bin  with a total of  observations, 

we calculate  

 

We then regress  on the bin value  with the model as expressed in Equation 2 on page 34. 

We use weighted least squares to account for unequal numbers of observations per bin. Figure 16 

shows plots of the observed  by median on a log-log scale, with the associated regression lines. 

Table 4 lists the values of the parameters , , and  estimated from the data for each category.  

The final scaling factor , used to obtain the -score, takes one of seventeen values depending 

on the cluster size associated with port , and the cluster median value and time of day at time . A 

scaling factor for all residuals corresponding to a cluster median of under  is estimated using 

the standard variance calculation applied to training data from all 16 strata, with an observed 

median value of  or below (all points left of the red line in all strata in Figure 15). Scaling 

factors are estimated by strata for each of the remaining 16 strata using the standard variance 

calculation applied to the median-corrected values . 

 

Figure 16:  Weighted Quadratic Regressions of Variance  

Weighted quadratic regressions of variance (estimated as average binned squared residuals) 

by median for 8 different strata, according to peak time, work day versus weekend, and 

cluster size. 
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Table 4: Estimated Parameters for the Regression Model of Variance Correction Values   

Hour of day Day of week Cluster size    

Peak hours Weekday   0.9740 0.0411 -0.1313 

Peak hours Weekday  0.6839 0.0508 -0.1309 

Peak hours Weekend   1.0110  -0.0464  -0.1141 

Peak hours Weekend  0.3600  -0.5851  0.0553  

Off-peak hours Weekday   1.0907  0.2149  -0.2866 

Off-peak hours Weekday  0.6164  0.0336  -0.1697 

Off-peak hours Weekend   1.0600  0.0787 -0.1814 

Off-peak hours Weekend  0.6677  -0.6578  0.0212 

 

 

 Median 

 

Cluster 

Baseline variance  

Off-Peak Weekend Off-Peak Weekday Peak Weekend Peak Weekday 

  All groups 2.9321 (all timing conditions) 

  CG = 1 0.9421 0.9275 0.9521 0.9405 

 CG = 2 0.6729 0.5729 0.7475 0.4722 

 CG = 3 0.8209 0.6657 0.8771 0.7417 

 CG = 4 0.9715 1.0144 0.9656 1.0185 
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