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Executive Summary 

For several years, the Software Engineering Institute (SEI) at Carnegie Mellon University has 
been engaged in a project to compute the behavior of software with mathematical precision to the 
maximum extent possible. Air Force Office of Scientific Research (AFOSR) sponsorship has 
played a key role in this effort. The general thrust of the research for AFOSR has been in technol-
ogy for (1) overcoming difficult aspects of behavior computation and (2) analyzing and manipu-
lating computed behavior. In 2009, the research focused on computing the behavior of loops, a 
process subject to theoretical limitations. This resulted in practical methods for loop computation 
that minimize the effects of these constraints. The 2010 research focused on foundations and im-
plementations of algorithms that employ computed behavior and semantic reduction theorems to 
determine the true control flow of malware programs as an essential first step in computing over-
all malware behavior. Determining the true control flow of a program in the presence of computed 
jumps and jump table operations has been a difficult problem for some time. Syntactic methods of 
control flow analysis exhibit limitations that reduce their effectiveness. The semantic methods 
employed by behavior computation can produce improved results. The findings of this research 
have been implemented in a system for malware analysis and have improved capabilities for be-
havior computation in other applications. At the same time, the research has revealed a potential 
new approach to both reverse engineer and forward engineer software based on rigorous specifi-
cation and verification in the context of behavior computation.  
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1 The Behavior Computation Process 

The Software Engineering Institute (SEI) at Carnegie Mellon University has been engaged for 
several years in a project to automate the computation of software behavior with mathematical 
precision to the maximum extent possible. Since its inception, the research, sponsored by the Air 
Force Office of Scientific Research (AFOSR), has focused on solutions to difficult problems in 
behavior computation and on analysis of computed behavior for human understanding.    

In 2009, the emphasis was on developing theory and implementation for loop behavior computa-
tion, a difficult problem subject to theoretical constraints, as expressed in the Halting Problem. 
This effort was successful and resulted in methods that help to limit the effects of these con-
straints. The technology of Semantic Reduction Theorems (SRTs) developed in the AFOSR 
project played a major role in this work. SRTs are predefined microtheorems that can be used to 
analyze computed behavior for a variety of purposes, including  

• loop behavior computation  

• reduction of intermediate computed behavior to simpler form 

• abstraction of computed behavior to specification-level definitions in reverse engineering 

• specification and verification of intended behavior in new software development 

SRTs are generally applicable and can be defined. For example, a repository of SRTs for finite 
arithmetic will never change unless the processor architecture is changed, an unlikely possibility. 
SRTs are used within a behavior computation system for a variety of purposes in supporting the 
computation itself. From the user perspective, SRTs also play a role in reverse engineering, the 
understanding of existing behavior in legacy or acquired software, and in specifying and verifying 
intended behavior in new software development. SRTs have been a major focus of the AFOSR 
research program. 

In 2010, the research focused on SRT application to determine the true control flow of input pro-
grams as a necessary initial step in behavior computation. This has been a difficult problem for 
some time. Syntactic methods of control flow analysis exhibit limitations that reduce their effec-
tiveness. The semantic methods embodied in behavior computation permit more extensive analy-
sis of control flow than otherwise possible.    

1.1 The Architecture of Behavior Computation 

The architecture of a behavior computation system provides a useful context for describing this 
research and how true control flow determination supports the computational process. Control 
flow is often obfuscated by intruders to mask malicious operations. Behavior computation, or any 
other software analysis technology, requires knowledge of true control flow to be effective. Refer-
ring to the architecture diagram of Figure 1, the instructions of an input Intel assembly language 
program in binary form are first transformed into functional form using a predefined repository of 
instruction semantics. The repository definitions of instruction semantics account for all effects 



 

CMU/SEI-2011-TR-009 | 2  

each instruction can have on the state of the hardware, including all register, memory, and flag 
settings, plus effects of the finite nature of machine precision.  

Next, because the input program may contain complex control logic, including computed jumps 
and jump table operations, it is necessary to determine the true control flow produced by this logic 
as a preliminary step. As noted, this is a difficult problem that was a major focus of the 2010 
AFOSR effort. The solution employs behavior computation itself as a local, internal process, as 
well as the application of SRTs to help determine true control flow. 

 

Figure 1: Behavior Computation System Architecture 

Once the true control flow is known, the input program, possibly containing complex “spaghetti” 
logic representing that control flow, is transformed into structured form through the application of 
the Structure Theorem. The constructive proof of this theorem defines a process for transforming 
arbitrary program logic into structured form, expressed in the basic control structures of se-
quence, ifthenelse, and whiledo [Linger 1979]. These control structures are nested and se-
quenced in an algebraic hierarchy with all arbitrary jumps eliminated.   

Each control structure is a single-entry, single-exit structure whose functional effect can be ex-
pressed as a mathematical function, that is, as a mapping from domain to range, or input to output. 
This structured form of the input program is the basis for behavior computation. The Correctness 
Theorem is applied to compute program behavior by composing the functional effects of instruc-
tions to produce the output computed behavior database [Linger 1979]. The theorem defines a 
mapping of procedural logic expressed in sequence, ifthenelse, and whiledo structures into 
procedure-free functional form, essentially, the as-built specification of each structure. The map-
ping for looping (whiledo) structures is expressed in a recursive equation of limited value for 
human understanding. The 2009 AFOSR-sponsored research resulted in methods to produce a 
more useful functional form for expressing loop behavior. The behavior computation process is 
compositional in nature, combining the net functional effects of instructions embedded in leaf 
node control structures in the algebraic hierarchy of the structured code, and then propagating 
their functional effects to the next level of control structures. This process continues until the be-
havior of an entire program has been computed. A valuable side effect of this process is the avail-
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ability of the intermediate behavior of every control structure in the hierarchy for analysis and 
understanding.         

The SRT technology developed through AFOSR research plays a key role in behavior computa-
tion. At each step, initial computed behavior is reduced to simpler form through the application of 
SRTs. For example, as noted above, SRTs dealing with finite arithmetic operations can be applied 
to simplify arithmetic behavior operations prior to propagating them to the next level. Libraries of 
SRTs dealing with common data processing operations can be defined using the internal meta-
programming language (MPL) of the behavior computation system. 

1.2 An Illustration of Behavior Computation for Reverse Engineering 

The following example, produced by the SEI as part of an internal study, illustrates the applica-
tion of SRT technology as it has continued to evolve under AFOSR sponsorship, leading to new 
perspectives on its use in both reverse engineering and new development. In this example, SRTs 
are applied to the reverse engineering of existing software. Consider the computations required 
for spatial maneuvering by a robot control arm. These computations depend on the correct opera-
tion of matrix multiplications (cross products of the form A x B  C) that compute rotation and 
translation movements. Code that performs matrix multiplications was selected for reverse engi-
neering and analysis of behavior, and four operators for use in SRTs were defined to specify the 
mathematical process:     

• Vector memory shape. Matrix multiplication operates on vectors of elements. This operator 
has parameters to define the vector start location, number of elements, and stride, that is, the 
size of steps to use when reading a vector from memory, in number of bytes.     

• Dot product. Matrix multiplication can be expressed using the dot products of vectors. The 
dot product operator has parameters representing the two vectors for which to compute the 
dot product. 

• Matrix memory shape. Matrix multiplication requires that the vectors form matrices. A ma-
trix is represented as an operator whose parameters represent the starting address of the ma-
trix in memory and the number of rows and columns in the matrix.  

• Matrix multiplication. Matrix multiplication must produce a matrix of dot products. The ma-
trix multiplication operator has parameters representing the two matrices to multiply togeth-
er. 

SRTs were developed using these operators to first recognize dot products of vectors and then 
recognize matrix multiplications. Three versions of the matrix multiplication code were then ana-
lyzed. 

Behavior of Code in Original Form 

For this version, no changes were made to the as-coded assembly language. The results of the be-
havior computation are depicted in Figure 2. This is a procedure-free conditional concurrent as-
signment produced by the Function extraction (FX) system, accounting for effects of the code on 
processor registers, memory, and flags. It is important to note that all the assignments in the fig-
ures are concurrent and represent “vector assignments” of right-hand-side expressions on initial 
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state into left-hand-side variables in the final state. This represents the net functional effect of the 
code.  

 

Figure 2: Behavior Computation for As-Coded Matrix Multiplication 

The condition on the behavior is “true” because the code always executes. Memory M contains a 
MATRIX of double words (dword) starting at location 12 + the stack pointer (ESP), specifically, a 
MATRIX_MULTIPLICATION of a 4x4 MATRIX starting at the location defined by ( 4 + ESP) and a 
4x4 MATRIX starting at the location defined by ( 8 + ESP). Thus, the computed behavior for the 
original code satisfies the SRTs that define a matrix and a matrix multiplication, both of which 
depend on SRTs for vector and dot product definition. Given that these SRTs are themselves cor-
rect (SRTs can be verified by theorem provers), the code correctly implements a matrix multipli-
cation. The computation also reveals that the registers contain residual values involving dot prod-
ucts and vectors, and the flags contain residual values, as well.       

Behavior of Code with Error Inserted  

Figure 3 depicts computed behavior for the matrix multiplication code with an error inserted; spe-
cifically, values in the target matrix (C matrix) are no longer initialized to zero as in the correct 
version. In this case, the computed behavior reveals that the code no longer computes a matrix 
multiplication. Memory M now contains a series of double words, each the sum of itself and a dot 
product of vectors. The code still satisfies SRTs for dot products and vectors, but not the SRT for 
matrix multiplication. The fact that each of these locations is a sum of itself and a computation 
that should ultimately contribute to a matrix multiplication reveals the problem. The sum is 
present because the location is not initialized to zero, and any value present on entry will contri-
bute to the final value on exit. Initializing the target matrix will solve the problem.   

REGISTERS

EAX := DOT_PRODUCT of 
VECTOR(4) at (12 + (dword at (8 + ESP))) by stride 16 
and 
VECTOR(4) at (48 + (dword at (4 + ESP))) by stride 4

ECX := DOT_PRODUCT of 
VECTOR(3) at (12 + (dword at (8 + ESP))) by stride 16 
and 
VECTOR(3) at (48 + (dword at (4 + ESP))) by stride 4

EDX := dword at (60 + (dword at (4 + ESP)))

EIP  := dword at ESP

ESP := 4 + ESP

CONDITION

TRUE 
MEMORY

M := 
MATRIX of dwords at (dword at (12 + ESP) := 

MATRIX_MULTIPLICATION of 
MATRIX(4,4) of dwords at (dword at (4 + ESP)) 
and 
MATRIX(4,4) of dwords at (dword at (8 + ESP)))

label := "exit”

FLAGS

AF := false
CF := arb_bool_val
OF := arb_bool_val
PF := is_even_parity_lowbyte(48 + (dword at (8 + ESP)))
SF := is_neg_signed_32(48 + (dword at (8 + ESP)))
ZF := (4294967248 == (dword at (8 + ESP)))
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Figure 3: Behavior Computation for Matrix Multiplication Containing an Error  

Behavior of Code with Malware Inserted  

Figure 4 shows computed behavior for the matrix multiplication obfuscated with a large number 
of arbitrary jumps, interleaved instructions, and malware inserted with instructions dispersed 
throughout the code. In this case, the condition is no longer simply “true.” A condition has been 
revealed involving SRTs named create file succeeded and write file succeeded. Since 
this code should not be creating and writing files, something is obviously wrong. The behavior is 
now affecting the file system and the operating system because the code is writing a file begin-
ning at buffer byte 0 and ending at byte 6738. This is the exact length of the code. The inserted 
malware is embedded within the code and is writing that code into the file system of the machine. 
It is a self-replicating virus. Note that the matrix multiplication is itself unaffected by the mal-
ware, but that hardly matters at this point. In addition, this behavior computation produced three 
other cases of behavior (not shown), all of which represented errors in the malicious code that 
prevented the self-replication.   

CONDITION

TRUE 

REGISTERS

EAX := (dword at (60 + (dword at (12 + ESP))) + 
DOT_PRODUCT of

VECTOR(4) at (12 + (dword at (8 + ESP))) by stride 16 
and 
VECTOR(4) at (48 + (dword at (4 + ESP))) by stride 4

ECX := (dword at (60 + (dword at (12 + ESP))) +
DOT_PRODUCT of 

VECTOR(3) at (12 + (dword at (8 + ESP))) by stride 16 
and 

VECTOR(3) at (48 + (dword at (4 + ESP))) by stride 4

EDX := dword at (60 + (dword at (4 + ESP)))

EIP := dword at ESP

ESP := 4 + ESP

MEMORY

M := 
dword at (dword at (12 + ESP)) := 
dword at (dword at (12 + ESP)) + 
DOT_PRODUCT of

VECTOR(4) at (dword at (4 + ESP)) by stride 4 
and 
VECTOR(4) at (dword at (8 + ESP)) by stride 16

dword at (4 + (dword at (12 + ESP)) := 
dword at (4 + (dword at (12 + ESP))) + 
DOT_PRODUCT  of

VECTOR(4) at (dword at (4 + ESP)) by stride 4 
and 
VECTOR(4) at (4 + (dword at (8 + ESP))) by stride 16 

dword at (8 + (dword at (12 + ESP)) := 
dword at (8 + (dword at (12 + ESP))) +
DOT_PRODUCT  of 

VECTOR(4) at (dword at (4 + ESP)) by stride 4 
and 
VECTOR(4) at (8 + (dword at (8 + ESP))) by stride 16 

…

(Flags not shown)
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Figure 4: Behavior Computation for Matrix Multiplication with Obfuscation and Embedded Malware 

This example illustrates the use of SRTs in reverse engineering to validate (or not validate) the 
behavior of existing code. Imagine, however, a development scenario in which the code does not 
yet exist. In this case, the SRTs assume the role of functional specifications that can guide devel-
opment of the code and validate (or not validate) its behavior. Behavior computation can also be 
performed on the developed code with little effort at any time after deployment to ensure that 
tampering has not occurred. Note also that SRTs can themselves be proven to be correct (or not 
correct) through use of theorem-proving systems, such as ACL2. As seen in this example, the 
AFOSR research has resulted in a view of SRTs as specifications of functional behavior for either 
reverse engineering of existing code or forward engineering of new code, with code verification 
carried out through behavior computation. This is an important outcome of the work that can im-
pact the development of certified software. It is of particular interest for potential application to 
the verification of embedded software in autonomous systems, a need that has been identified by 
the USAF.         

 

 

(Flags not shown)

CONDITION 1

create_file_succeeded(
file_name_addr = 158,
file_attribute = (word at (40 + (dword at (4 + ESP)))))

and
write_file_succeeded(

file_handle = get_new_file_handle(
file_name_addr = 158,
file_attribute = (word at (40 + (dword at (4 + ESP))))),

buffer_to_write = 0,
num_bytes_to_write=6738)

MEMORY

M := 

MATRIX of dwords at 100 := 
MATRIX_MULTIPLICATION of

(MATRIX(3,4) of dwords at (dword at (4 + ESP))) 
and 
(MATRIX(4,4) of dwords at (dword at (8 + ESP))) 

MATRIX of dwords at (dword at (12 + ESP)) :=
MATRIX_MULTIPLICATION of 

(MATRIX(4,4) of dwords at (dword at (4 + ESP))) 
and 
(MATRIX(4,4) of dwords at (dword at (8 + ESP))) FILE SYSTEM

FILES := 

create_file_and_truncate(
file_name_addr = 158, 
file_attribute = (word at (40 + (dword at (4 + ESP)))))

then
write_file(

file_handle = get_new_file_handle(
file_name_add r= 158, 
file_attribute = (word at (40 + (dword at (4 + ESP))))), 

buffer_to_write = 0, 
num_bytes_to_write = 6738)

OPERATING SYSTEM

DOS := 

mark_file_handle_as_writing(
file_handle = get_new_file_handle(

file_name_addr=158,
file_attribute = (word at (40 + (dword at (4 + ESP))))), 

buffer_to_write=0, 
num_bytes_to_write=6738)
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2 Research Results for Determining True Control Flow of 
Malware Programs 

An initial step in behavior computation is to determine the true control flow of the input program. 
A primary focus of AFOSR research in 2010 was on the development of foundations and algo-
rithms for this process. The H-Chart algorithm employs a frontier propagation strategy, which is 
the stepwise incorporation of control flow effects of successive flowchart nodes based on local 
computed behavior and application of SRTs. This creates an unstructured flowchart correspond-
ing to a machine code program that is closed under semantic reachability. It works by partitioning 
the machine state space into code and data portions and by creating different flowchart nodes for 
each reachable code state. In practice, the instruction pointer (EIP register for Intel x86 programs) 
is used for the code portion so that each flowchart node corresponds to a different value of the 
instruction pointer. SRT technology plays a prominent role in this solution, and the build-out of 
the SRTs was directed to support the types of semantic analyses required by the algorithm. 

2.1 H-Chart Algorithm 

The H-Chart algorithm improves upon the simple syntactic construction of a flow chart by only 
looking at individual machine code instructions. The algorithm can be characterized as computing 
the minimal semantically closed subgraph of a given input graph. The algorithm works by starting 
with a subgraph consisting of just the entry point of the input graph and incrementally growing 
the subgraph under the condition of semantic reachability. When the subgraph can no longer be 
grown, it becomes the output of H-Chart algorithm and is semantically closed. Since the subgraph 
started off as the entry point, it is contained in any semantically closed subset and is, therefore, 
minimal. The algorithm performs several types of semantic analyses on machine code to deter-
mine and apply information that is not apparent from an analysis of single machine-code instruc-
tions. For example, these semantic analyses can  

• determine that apparent conditional transfers of control do not actually occur (i.e., dead 
points) 

• determine possible addresses of the targets of control transfers that are not immediately ap-
parent (i.e., star points) 

• determine if a putative subroutine call structure actually implements proper subroutine se-
mantics (i.e., dummy calls and dummy returns) 

These capabilities depend on the availability of computed behavior employed to make localized 
decisions on correct control flow.  

Dead Points 

A dead point occurs when an apparent conditional transfer of control does not actually occur. 
Dead points can occur due to intentional code obfuscation, often encountered in malware pro-
grams, or as a result of insufficient compiler optimization. For example, the following conditional 
jump is never taken: 
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 xor eax, eax    ; set EAX to zero, ZF (zero flag) to true 

 jnz LABEL       ; jump on non-zero is never taken, because result is  

        always zero 

Similarly, the following conditional jump is always taken: 

 xor eax, eax    ; set EAX to zero, ZF (zero flag) to true 

 jz LABEL        ; jump on zero is always taken, because result is  

         always zero 

In either example, the H-Chart algorithm creates a flow chart of the conditional jump using only 
the transfer of control that is actually taken, as determined by the computed behavior to that point, 
as opposed to a syntactic flowcharting approach that always creates 1-in, 2-out predicate nodes 
from conditional jump instructions.   

Star Points 

A star point occurs when the target of a transfer of control is given by a variable or an expression, 
as opposed to a constant value, and, thus, the target address is not immediately apparent, for ex-
ample 

  mov eax, LABEL  ; LABEL is some address in the program 

 xor ebx, eb     ; set EBX to zero 

 cmp ecx,  0     ; set ZF to true if ECX is 0, set ZF to false otherwise 

 setz bl         ; change EBX to 1 if ZF is true, keep EBX at 0 otherwise 

 add eax, ebx    ; add EBX to EAX 

 jmp eax         ; this jumps to either LABEL or LABEL+1, depending if  

          ECX was 0 

Star points typically occur from jump tables that are implementing higher-level language case 
statements or virtual method invocations in object-oriented languages. A syntactic flowcharting 
approach is of little value in the presence of star points. In this case, the H-Chart algorithm per-
forms a behavior computation of the program up to the computed jump. The algorithm then ana-
lyzes the expression corresponding to the value of the jump target to determine the set of values 
that it can possibly take on as a function of the initial program state. 

Dummy Calls and Dummy Returns 

Dummy calls and dummy returns typically occur due to code obfuscation like those found in 
malware programs, although a dummy call is occasionally used to obtain the current program ad-
dress: 

 call $+5        ; relative call to next instruction: push address of  

        next instruction, then jump to it 

 pop eax         ; now EAX contains the address of this instruction 

An example of a dummy return is 

 push LABEL      ; push LABEL on the stack 

 ret             ; this is really an unconditional jump to LABEL and not a  

          subroutine termination 



 

CMU/SEI-2011-TR-009 | 9  

Syntactic flowcharting approaches that assume all subroutine calls and returns, to include calls to 
dummy subroutines, are valid, can produce incorrect flow charts. Code obfuscators occasionally 
employ dummy calls to trick the disassemblers, such as IDA Pro, into creating incorrect function 
boundaries. 

2.2 Using Behavior Computation for Semantic Analysis of Control Flow 

The H-Chart algorithm makes use of internal calls to FX behavior computation functions to per-
form its semantic analyses. This is advantageous because improvements made to behavior extrac-
tion capabilities will immediately feed back into corresponding improvements in H-Chart results. 

Dead Point Processing 

To examine whether a given branch from a conditional jump instruction is live, a function node 
with semantics ISLIVE := true is placed after the given branch, and function nodes with se-
mantics ISLIVE := false are placed at all other exits from the program, including the other 
branch from the conditional jump. Here, ISLIVE is a Boolean variable added to the state space. 
The resulting program is then structured and its behavior extracted. If the final value of the 
ISLIVE variable can be simplified to “false” using SRTs, then the given branch is not live, and the 
H-Chart algorithm will not create a predicate node for the conditional jump instruction. 

Star Point Processing 

To examine the possible target addresses of a given computed jump or a computed call instruc-
tion, a function node with the semantics TARGET_ADDRESS := jump-expression is placed after 
the given instruction, where jump-expression is the expression used to compute the jump target 
address by the instruction. The resulting program is then structured and its behavior extracted. 
After simplification using SRTs, the final value of TARGET_ADDRESS is examined to see if it was 
simplified to a constant value or to a conditional expression that selects between various constant 
values. Also, if memory locations in the initial state occur in the right-hand side of the behavior, 
these are substituted with the initialized contents of those locations from the loaded executable 
file. 

Dummy Calls and Dummy Returns Processing 

To examine whether a given call target implements proper subroutine semantics, each of the re-
turn instructions reachable from the putative subroutine entry point are analyzed as in the star 
point situation. If the targets of all the return instructions simplify to a memory access expression 
that retrieves the value from the stack that was placed by the call instruction, then the subroutine 
is found to have proper subroutine semantics. Otherwise, any calls to that target address are 
treated as dummy calls. 

2.3 Semantic Reduction Theorems in True Control Determination 

SRTs are crucial in performing the semantic analyses and subsequent simplifications required by 
the H-Chart algorithm. For example, consider the following machine code: 

 cmp eax, ebx 
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 jbe LABEL       ; conditional jump on “below or equal” 

Performing behavior computation at the instruction level yields the following for cmp eax, ebx: 

      [ ZF := int_equal(EAX, EBX) 

      : SF := is_neg_signed_32(add_32(EAX, negate_32(EBX))) 

      : PF := is_even_parity_lowbyte(add_32(EAX, negate_32(EBX))) 

      : CF := carry_flag_sub(EAX, EBX) 

      : OF := overflow_flag_sub_32(EAX, EBX) 

      : AF := auxiliary_carry_flag_sub(EAX, EBX) ] 

And the following for jbe LABEL: 

      [ or(CF,ZF) -> 

           goto LABEL 

      | and(not(CF),not(ZF)) -> 

           IDENTITY ] 

Composition through trace table analysis of these two behaviors gives the following overall beha-
vior:  

      [ or(carry_flag_sub(EAX, EBX), int_equal(EAX, EBX)) -> 

         [ ZF := int_equal(EAX, EBX) 

         : SF := is_neg_signed_32(add_32(EAX, negate_32(EBX))) 

         : PF := is_even_parity_lowbyte(add_32(EAX, negate_32(EBX))) 

         : CF := carry_flag_sub(EAX, EBX) 

         : OF := overflow_flag_sub_32(EAX, EBX) 

         : AF := auxiliary_carry_flag_sub(EAX, EBX) ] 

         goto LABEL 

      | and(not(carry_flag_sub(EAX, EBX)),not(int_equal(EAX, EBX))) -> 

         [ ZF := int_equal(EAX, EBX) 

         : SF := is_neg_signed_32(add_32(EAX, negate_32(EBX))) 

         : PF := is_even_parity_lowbyte(add_32(EAX, negate_32(EBX))) 

         : CF := carry_flag_sub(EAX, EBX) 

         : OF := overflow_flag_sub_32(EAX, EBX) 

         : AF := auxiliary_carry_flag_sub(EAX, EBX) ] 

     ] 

The conditions for this behavior are extensive, reflecting the fact that the Intel chip design makes 
use of a sequence of a first instruction to set the status flags followed by a second instruction to 
interpret those flags. Therefore, mathematical identities are required to verify that the condition 
code tests implement the desired behavior. Inside the FX system, these identities are expressed as 
SRTs. For example, the SRTs for the jbe check are 

     SRT: or(carry_flag_sub(EAX, EBX), int_equal(EAX, EBX)) 

     ==> less_or_equal(EAX,EBX)and 

     SRT: and(not(carry_flag_sub(EAX, EBX)), int_not_equal(EAX, EBX)) 

     ==> greater_than(EAX,EBX) 

These SRTs, together with removal of the status flag settings that are no longer in scope, simplify 
the behavior of the Intel code sequence cmp eax, ebx; jbe LABEL to a more understandable 
form: 
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      [ less_or_equal(EAX,EBX) -> 

         goto LABEL 

      | greater_than(EAX,EBX) -> 

         IDENTITY 

     ] 

Each of the condition code checks architected in the Intel chip gives rise to SRTs that reflect the 
usage pattern of that conditional jump preceded by the corresponding flag-setting instruction. 

Other SRTs required for the H-Chart algorithm come from common patterns of code obfuscation 
used in malware, common patterns of jump table access from various compilers, and so on. In 
summary, this research has revealed the value of semantic computational methods for determining 
the true control flow of malware code. 

2.4 Meta-Programming Language (MPL) 

In the FX system, the MPL provides the syntax and semantics of the right-hand sides of the condi-
tional, concurrent assignment statements that express the extracted behavior of input programs. 
The MPL was designed to be customizable and extendable, as the FX system is applied to differ-
ent domains of programming. 

The key underlying component of the MPL is the micro-operations. For example, some micro-
operations from the behaviors above are int_equal(), is_neg_signed_32(), add_32(), ne-
gate_32(), and carry_flag_sub(). A micro-operation in MPL is declared by giving informa-
tion about its arguments, their types, the micro-operation’s return type, the definition body, and a 
list of properties (such as commutativity and associativity) possessed by the micro-operation. 

An SRT expresses the equivalence of two MPL expressions and provides that occurrences of the 
first expression should be simplified by rewriting them into the second expression. For example, 
the following SRT expresses the fact that subtraction is equivalent to addition after negating the 
second operand and provides that occurrences of sub_32() should be rewritten in terms of 
add_32() and negate_32(): 

SRT: sub_32(x,y) ==> add_32(x,negate_32(y)) 

SRTs are the primary mechanism whereby MPL expressions are simplified. Such simplification 
can be applied after the behavior of a sequence of instructions is formed from composing the be-
haviors of the individual instructions. 
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3 Behavior Computation Technology Transition 

The research and development in behavior computation supported by AFOSR is being imple-
mented in the Function Extraction for Malicious Code (FX/MC) system. This system, based on 
Application Programming Interface (API), applies structuring and behavior computation to help 
eliminate 

• control flow obfuscation created by massive amounts of intruder-inserted complex branching 
logic superimposed on malware to make analysis difficult or even impossible 

• no-op blocks of code (code with no functional effect) inserted by intruders to increase the 
size and complexity of malware 

The system also helps identify subroutine boundaries in portable executable (PE) files of malware 
code. The H-Chart algorithm is part of this system.   

Oak Ridge National Laboratory (ORNL) is initiating a Department of Energy-sponsored project 
to apply behavior computation to verification and vulnerability analysis of embedded software in 
Smart Grid components. This two-year project will implement SEI-developed behavior computa-
tion capabilities on High-Performance Computing (HPC) clusters at ORNL and apply them to 
critical components in the grid network.       

In addition, behavior computation has the potential to be applied in a number of areas that have 
been examined and documented through studies and publications, including program comprehen-
sion [Collins 2008], software verification [Bartholomew 2007, Burns 2009, Linger 2006, Linger 
2007], software test and evaluation [Pleszkoch 2008], and security analysis [Linger 2010, Plesz-
koch 2004, Pleszkoch 2010, Walton 2006, Walton 2010].   
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4 Next Steps in the Research Program 

Building on 2009–10 results, the AFOSR research could be used to continue development of 
theory and implementation for SRTs in the behavior computation process. SRT research could 
also be applied to improvements in loop behavior computation (2009 focus) and true control flow 
determination (2010 focus).   

Most importantly, as noted above, the 2010 research revealed a potential new approach to both 
reverse engineering of legacy and acquired software and to the development of new software. 
This rigorous approach treats SRTs as specifications (a posteriori for reverse engineering, a priori 
for new development) that permit verification of software through behavior computation. This 
emerging potential could be investigated and reported upon as a key next step in development of 
the technology. Behavior computation research and development could help address challenging 
problems identified by the United States Air Force, for example, the need for better verification 
and validation (V&V) technology to certify embedded software in autonomous systems, as articu-
lated by Dr. Werner Dahm in the Technology Horizons report.   
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Appendix:      Mathematical Foundations of Software Behavior 
Computation 

Because the research by the Air Force Office of Scientific Research (AFOSR) has contributed so 
much to the understanding of the foundations of behavior computation, it is appropriate to include 
an appendix that summarizes some theoretical aspects of the work.    

Behavior Computation Strategy 

Viewing programs as rules, or implementations, for mathematical functions or relations permits 
automated computation of behavior by providing foundations for transformation from procedural 
logic to nonprocedural functional form. In brief, these transformations are defined by the Correct-
ness Theorem and are localized to individual single-entry, single-exit control structures nested and 
sequenced in an algebraic structure [Linger 1979]. The computed functional forms for each con-
trol structure can be propagated within the algebraic structure in a stepwise composition process. 
For completeness, composition requires that instructions be expressed in terms of their full func-
tional semantics. To create the initial algebraic structure, it is necessary to transform any spaghetti 
logic in an input program into structured form. The constructive proof of the Structure Theorem 
defines a method for this transformation [Linger 1979]. The structuring process itself takes as in-
put the true control flow of the input program, which must first be determined in the presence of 
computed jumps, jump tables, and so on. Finally, initial computed behavior exhibits opportunities 
for simplification and abstraction. Taken together, these requirements prescribe a general process 
for behavior computation as follows: 

transformation of instructions into functional semantics  

determination of true control flow of input spaghetti logic   

structuring of spaghetti logic into control structures in an algebraic structure   

computation of non-procedural behavior expressions in a stepwise process  

simplification and abstraction of initial computed behavior 

There is a lot more to behavior computation, as described below, but this framework provides an 
anchor for understanding and analysis.    

Theoretical Basis 

Function extraction (FX) takes, as input, a program expressed in a Turing-complete language with 
precisely defined semantics, such as Intel machine code, and produces, as output, a symbolic re-
presentation of the program’s behavior. The symbolic behavior expression can be used either by 
humans to help understand and verify what the program does or as input to further automated 
analysis. 
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FX is rooted in denotational semantics as defined by Dana Scott and Christopher Strachey [Scott 
1977, Stoy 1977] and applied to computing by Harlan Mills [Mills 1975, Linger 1979]. Denota-
tional semantics provides a basis for programming language semantics by, first, defining a ma-
thematical domain of semantic objects and, then, defining a mapping from the set of all programs 
into the domain of those semantic objects. Thus, denotational semantics operates at a higher level 
of abstraction than operational semantics, which, instead, works by defining a concrete model of 
computation and then mapping programs into that computational model. FX extends the practical 
application of denotational semantics by defining a referentially transparent symbolic representa-
tion for the domain of semantic objects based on lambda calculus and type theory [Barendregt 
1985, Sambin 1998] and then automating the extraction of the semantics from actual input pro-
grams. Thus, FX could be viewed as “computational denotational semantics.” 

Mills’ functional verification uses the particular domain of set-theoretic functions (with set-
theoretic relations for nondeterministic programs) to provide a mathematical basis for not only 
program semantics, but also program verification and top-down program development. The key 
result for its use in program verification is the Correctness Theorem, which defines function-
equivalent transformations from prime control structures into nonprocedural functional form: for 
control structure labeled P, operations on data labeled g and h, predicate labeled p, and program 
function labeled f. These function equations are independent of language syntax and program 
subject matter, defining the mathematical starting point for behavior calculation as follows: 

The behavior of a sequence control structure 

P: g; h 

can be given by 

f = [P] = [g; h] = [h] o [g] 

where square brackets denote the behavior signature of the enclosed program and o is the compo-
sition operator. That is, the program function of a sequence can be calculated by ordinary function 
composition of its constituent parts.     

The behavior of an alternation control structure 

P: if p then g else h endif 

can be given by 

f = [P] = [if p then g else h endif] 

  = ([p] = true  [g] | [p] = false  [h]) 

where | is the or symbol. That is, the program function of an alternation is given by a case analy-
sis of the “true” and “false” branches.    

The behavior of an iteration control structure  

P: while p do g enddo 
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can be expressed using function composition and case analysis in a recursive equation based on 
the equivalence of an iteration control structure and an iteration-free control structure (an ifthen 
structure): 

f = [P] = [while p do g enddo] 

  = [if p then g; while p do g enddo endif] 

  = [if p then g; f endif] 

This recursive functional form must undergo additional transformations to arrive at a non-
recursive representation of loop behavior. For FX, the Correctness Theorem guides stepwise 
computation and propagation of the procedure-free function of each prime control structure in 
turn.  

Functional verification, as defined by the Correctness Theorem, provides a practical approach to 
program correctness. In contrast to axiomatic verification, which is context-dependent, functional 
verification is context-free. For example, there could be dozens of individual statements in a large 
program that say x := x + 1. In functional verification, each of these statements is verified in 
exactly the same way; whereas, in axiomatic verification, each of these statements would have a 
different, unique precondition and postcondition based on its context in the larger program. Func-
tional verification localizes context, an important benefit for behavior computation. This localiza-
tion is a fundamental property of prime control structures, whose single-entry, single-exit flow-
charts permit nesting and sequencing in algebraic structures.   

Because functional verification methods operate directly on structured programs expressed in 
structured flowcharts, it is important to be able to transform other program representations into 
structured flowchart form. The Structure Theorem provides a constructive proof for transforming 
spaghetti logic into a function-equivalent algebraic expression in single-entry, single-exit prime 
control structures, including sequence, ifthenelse, and whiledo. Programs may exhibit an 
essentially infinite number of execution paths but only a finite number of control structures, each 
of which can be analyzed, in turn, in a finite, stepwise process. This algebraic structure permits 
stepwise application of the Correctness Theorem for computing behavior. In addition, a method 
for transforming machine code into flowcharts is described in Mills. This method forms the key 
basis for determining the true control flow (the H-Chart algorithm) of input spaghetti logic prior 
to structuring. 

Computability 

Rice’s Theorem states that any nontrivial functional property of Turing machines is undecidable. 
Since termination is a functional property, Rice’s Theorem can be thought of as a generalization 
of the undecidability of the Halting Problem. Applied to behavior computation, Rice’s Theorem 
means that FX is theoretically unable to reduce all function-equivalent input programs to an iden-
tical, normal-form behavior expression. 

At first thought, it may appear that Rice’s Theorem implies failure of the FX approach. However, 
this is not the case at all. Consider this example of two programs, P1 and P2. P1 takes an integer 
N as input and always returns 0. P2 also takes an integer N as input and searches for counterex-
amples to Riemann’s Hypothesis that are less than distance N from the complex origin. P2 returns 
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0 if no counterexample is found and returns 1 otherwise. It is an open problem in present-day ma-
thematics as to whether P1 and P2 compute the same function. Thus, it is not realistic to expect 
FX to output the same symbolic behavior expression for both P1 and P2. Instead, a realistic beha-
vior expression for P1 would show that the program always outputs 0, and a realistic behavior 
expression for P2 would show that the computational content of the program is to search for a 
counterexample to Riemann’s Hypothesis and report on the results. 

For real-world programs, although there are many different ways a person or compiler could im-
plement the specification of always returning 0, the authors have yet to see an implementation 
where the coder first proved Riemann’s Hypothesis and then coded P2. Thus, the theoretical limi-
tations of Rice’s Theorem prove not to be that important in practice. 

Another common example of Rice’s Theorem in practice is the termination of loops. Imagine a 
loop that keeps on looking for a counterexample for Riemann’s Hypothesis until it finds one and, 
thus, loops forever if Riemann’s Hypothesis is true. How can FX extract the behavior of such a 
loop when the best mathematicians in the world cannot figure out if the loop terminates or not? 
The answer is easy: The behavior of the loop is given as a conditional rule, based on the condition 
of Riemann’s Hypothesis being true or false. However, given more realistic programs, the FX 
system can often prove the termination of given loops and express the end-to-end loop behavior in 
a single noniterating behavior expression.  

In summary, it is theoretically and practically possible for FX to compute normal-form behavior 
expressions on a wide range of real-world input programs, even though complete coverage is un-
obtainable due to Rice’s Theorem. And non-normal-form behavior expressions can still be of sig-
nificant use in most, if not all, FX applications. 

Despite Rice’s Theorem, it is theoretically possible for FX to compute a mathematically correct 
symbolic behavior expression for every input program. This is because, from one theoretical pers-
pective, the behavior computation process can be viewed as a straightforward translation from one 
Turing-complete language into another. The next important question becomes what the run-time 
performance of such a translation process is. It turns out that the computational complexity of 
such a program transformation is typically linked to how much the size of the output expands 
compared to the size of the input. Input features that exist in the output language can typically be 
translated directly, in linear space and time. Input features that do not exist in the output language 
must be represented in some other way and may experience greater than linear growth in transla-
tion. 

For FX, the output language is the symbolic language of behavior expressions. Following the lead 
of denotational semantics, these expressions are both referentially transparent and procedure-free. 
Referential transparency is a key property of denotational semantics, which provides that every 
behavior expression and subexpression can be understood directly by examining it by itself, with-
out any context information being required. Procedure-free means that behavior expressions de-
scribe the output of a program directly in terms of its input, without defining the program’s proce-
dure that implements that computation.  

The FX system uses the trace table algorithm to translate procedural input into procedure-free 
output. Trace tables contain rows for instructions and columns for conditions and variables that 
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are assigned new values, with cells recording results of successive compositions. Trace tables 
represent the implementation of the function equations of the Correctness Theorem. The resulting 
computed behavior is expressed in terms of conditional concurrent assignments (CCAs). CCAs 
are procedure-free, vector assignments from input state to output state guarded by conditions on 
input state. CCAs define disjoint partitions of the behavior space and can represent behavior from 
individual instructions, to control structures, to entire programs. The right-hand sides of CCAs 
contain expressions in terms of program variables in the state space and operations on those va-
riables. This is the only language structure required for representing computed behavior of se-
quential logic.  

Because the trace table algorithm performs the substitution of intermediate value expressions into 
later value usage, using the trace table algorithm by itself can result in an exponential increase in 
the size of behavior expressions. This can be avoided by a common subexpression factoring and 
abbreviation technique. This abbreviation approach will completely solve the problem, permitting 
behavior computation in linear time and space under all circumstances. In particular, this tech-
nique allows intermediate program conditions to be localized to a behavior abbreviation and, thus, 
not propagate up to higher-level behavior expressions. It is also important to note that, as behavior 
computations move to higher levels in the algebraic structure, it is often the case that local beha-
vior drops out of expressions, essentially becoming out of scope. In addition, behavior at higher 
levels in the algebraic structure can often take advantage of symbolic operations that express 
higher levels of abstraction. For example, the top of an input procedure might easily be expressed 
as performing a matrix multiplication, whereas lower levels of that procedure that perform indi-
vidual computations in the matrix multiplication would be expressed, say, in terms of vector oper-
ations and dot products. Such abstractions are easily expressed in Semantic Reduction Theorems 
(SRTs) and can be defined.  

The objective of initial behavior computation is mathematical correctness in transforming from 
procedural logic to nonprocedural functional form. After initial extraction, which is linear in the 
number of instructions once the abbreviation technique has been applied, symbolic behavior ex-
pressions still must be simplified as much as possible for best use by both human users and fol-
low-on automated analysis. In understanding the run-time complexity of these simplification 
processes, it is important to realize that worst-case complexity is not always the best measure of 
performance. For example, the Simplex method for linear optimization exhibits an exponential 
worst-case run-time complexity but, in practice, always finds the linear optimum faster than more 
complicated optimization algorithms that only exhibit polynomial worst-case complexity. The 
simplifications used in FX have been chosen for their performance against typical, real-world in-
put programs, regardless of worst-case complexity.  

Note that, at a conceptual level, the run-time complexity of the behavior simplification processes 
are dependent on the degree of simplification that is performed. Thus, it is possible to give the FX 
user a measure of control over the amount of resources that should be allocated to this step. 

The primary method of behavior simplification in FX is the use of rewriting rules that are based 
on equivalence theorems for various symbolic operations. These theorems, known as SRTs, are 
expressed in meta-programming language (MPL), the internal language that FX uses for behavior 
expressions. MPL incorporates concepts from type theory and lambda calculus [Barendregt 1985, 
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Sambin 1998]. It provides a Turing-complete symbolic language for behavior expressions. The 
specific operations used in MPL are defined in an external MPL file to extend FX, which enables 
new instructions, new input languages, and new SRTs to be added without requiring recoding of 
the internal Java code of the system. Concepts from the rewriting tool Maude were used in the 
development of the SRT component of MPL. SRTs are used for reducing, simplifying, and ab-
stracting computed behavior expressions and are also applied to loop behavior computation. 

The complexity of applying rewrite rules depends on many factors, including the number of rules 
that need to be applied. The current FX system has a rewrite limit that cuts off the application of 
rewrite rules after a preselected count. 

Additional simplification methods are planned to be added to the system for improving human- 
readable results. Binary decision diagrams (BDD) simplify Boolean expressions and overcome 
the limitation that perfect Boolean simplification is NP-complete. Presburger arithmetic quantifier 
elimination provides a method for simplifying integer expressions involving addition, constant 
multiplication, and inequalities, which often occur in compiler-generated code. Common expres-
sion folding collapses instances of identical sub-behaviors, often in large numbers, that tend to 
occur in compiled code. Hierarchical organization provides levels of abstraction emphasizing 
nesting behavior found in real programs. These and other techniques are planned for future releas-
es of FX. 

Assumptions and Limitations 

One absolute assumption of FX is that the semantics of the input programming language are 
known precisely. For the case of Intel machine instructions, this includes the assumption that the 
Intel specification manuals, as augmented by information available on the Internet, provide a cor-
rect description of the x86 processor semantics. 

One absolute limitation of FX is given by Rice’s Theorem: FX cannot always provide a symbolic 
behavior expression in absolute normal form. More advanced results from recursion theory indi-
cate that there will inevitably also be input programs for which the FX output behavior expression 
is more complicated than the smallest equivalent behavior expression. However, it is always poss-
ible for FX to provide a symbolic behavior expression that is 100 percent mathematically correct 
relative to the assumption that the input programming language semantics are precisely known. 

In practice, the real-world assumptions of the FX system come from situations where we seek to 
provide a “better” answer than pure mathematical theory will allow. These are discussed in the 
Problem Classes and Boundaries section. 

Problem Classes and Boundaries 

Analysis and Simplification 

There will be cases where the FX simplification algorithms will not be able to produce the sim-
plest possible behavior expression. However, in particular cases where a simpler form is known, it 
is possible to augment the rewriting theorems (SRTs) as needed. For example, given Andrew 
Wiles’ proof of Fermat’s Last Theorem, it is now possible to add a simplification rule that will 
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recognize that a program written to find a counterexample to Fermat’s Last Theorem will never 
succeed in finding one. Note that such a rule has not been needed so far. 

Because of the lack of complete simplification, there will be times when the FX system will not 
be able to determine something about the input program and will be forced to assume the worst 
case. For example, in considering a conditional jump instruction, such as the JZ jump if the 
zero flag is set instruction, the H-Chart algorithm for defining true control flow will attempt 
to determine which outgoing branches of the conditional jump are live. There will be many cases 
where the FX system will be able to determine that both branches are, indeed, live. There will also 
be many cases where the system will be able to determine that one particular branch is definitely 
dead. However, there will inevitably be cases where the system cannot definitely determine 
whether a given branch is live or dead and so must conservatively assume that both branches are 
live, thus exploring additional parts of the input program. 

Self-Modifying Code 

The H-Chart algorithm for true control flow definition deals with self-modifying code in a ma-
thematically correct manner, but it is not very useful in practice. Thus, when self-modifying code 
can be detected, the appropriate response is to reject the input program as not analyzable. Howev-
er, as mentioned in the Analysis and Simplification section, there will also be cases where the lo-
cation of a memory write cannot be completely determined to be a data location and not a code 
location. In those cases, a reasonable response is to continue processing the input program with a 
warning that, if the code is self-modifying, the analysis will not be correct. 

Disciplined Stack Usage 

In some situations involving code that has undergone automated obfuscation, the sequence of a 
push followed by a pop is treated as a no-operation instruction by the obfuscation. However, from 
a mathematical perspective, this code sequence has the effect of doing a write to memory at a lo-
cation that is now in the “dirty” part of the stack. In order to undo the effects of the obfuscation, 
the FX system has been augmented with the capability to assume disciplined stack usage and 
identify such sequences as no-ops. Thus, for programs that do not have disciplined stack usage, an 
incorrect analysis may result. Note that, in the FX configuration file, there is an option for turning 
the dirty stack simplification behavior on or off. If turned off, FX will continue to track all up-
dates to the portion of memory representing the stack, regardless of the current value of the stack 
pointer. So, if an analyst thinks the program is reading already-popped items from stack memory, 
the dirty stack simplification behavior can be turned off, and the program can be reanalyzed. 

Concurrency 

The present version of the FX system uses only sequential semantics for Intel machine code. For 
example, the lock prefix for Intel instructions is completely ignored. The motivation for this 
choice is that such semantics are easier to understand and very useful for many FX applications. 
An FX system that computes the concurrent semantics of machine code is certainly possible based 
on the same basic principles as the current system. However, it will be important to understand 
the desired applications before making an appropriate choice from the many different versions of 
denotational semantic domains that have been developed to model concurrency.  
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Finite Arithmetic 

Precise behavior computation requires dealing with the finite precision of machine computations. 
The FX system deals with finite machine arithmetic exactly. For example, the extracted semantic 
behavior of an add instruction contains both overflow and non-overflow cases. In the planning 
stages of the FX system, it was envisioned that a simplified semantics containing just the non-
overflow case might be useful in certain FX applications where the emphasis was on the mainline 
calculation for an input program. However, it turned out that including the overflow semantics 
was more useful in all situations. 

Memory Aliasing 

Memory aliasing occurs if two addresses in a program could refer to the same memory location. 
This is a difficult problem in computer science, and Rice’s Theorem guarantees that there will 
always be some programs for which the answer is not known. For cases where occurrence of 
memory aliasing cannot be ruled out, there are three possibilities for how the FX system can han-
dle the situation. The first is to use conditional semantics to describe all possible cases of aliasing; 
however, this can lead to rapid growth in the size of the extracted behavior. The second is to use 
heuristics to select some subset of all potential memory aliases to consider in detail, with the other 
cases assumed to not overlap. The third is to use an extended memory model that keeps track of 
the order in which memory accesses are made; however, this can lead to more complicated se-
mantic behavior expressions because the order-dependent memory operations are not commuta-
tive. In real-world situations where the FX system was producing less than optimal behavior ex-
pressions due to the potential for memory aliasing, we have found that a human user can 
frequently determine whether aliasing is present and rerun the FX system with appropriate options 
to obtain a compact expression for the program’s behavior. 

Behavior Computation Capabilities 

FX can compute normal-form behavior expressions on a wide range of real-world input programs, 
even though complete coverage is unobtainable due to Rice’s Theorem. And non-normal-form 
behavior expressions can still be of significant use in FX applications.   

It is important not to define the FX system solely by limitations present in computability theory. 
For example, computer algebra systems cannot solve every equation, but they nonetheless provide 
invaluable assistance to human users by accurately keeping track of more details than human 
minds can manage and by performing symbolic algorithms that have been developed by the some 
of the best minds from throughout history. Similarly, the FX system can effortlessly keep track of 
the values of many variables across pages of program text that would leave an unaided human 
analyst in the dust. In addition, SRTs can encapsulate the skills and insights of the best human 
analysts, making that knowledge available to every FX user.  

The internal algorithms of the FX system have been designed to be language-independent, permit-
ting additional languages to be processed through new front ends that translate instructions into 
functional semantics. As a result, automated behavior computation can be applied to many tasks 
in the software engineering life cycle.  
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Malicious code analysis is a particular strength of FX technology. FX can help deobfuscate and 
determine the functionality of malware in native, metamorphic, and polymorphic forms. In this 
connection, malware exhibits a fundamental vulnerability: no matter how it is obfuscated by an 
intruder, the malware functionality must remain intact to execute on the target machine using its 
language and facilities. That is, obfuscation must not impair the intended malicious effect. The 
Function Extraction for Malicious Code (FX/MC) system, currently under development, uses 
computed behavior to remove obfuscation caused by insertion of spaghetti control flow and no-op 
blocks of code to reveal the core functional instructions and compute their behavior. Millions of 
lines of code have been processed in testing the deobfuscation capabilities of the system. 

One of most complicated types of metamorphic malware is virtualized malware, where the mal-
ware is implemented on top of a customized software-based virtual machine so that the malware 
behavior is expressed in a novel manner that resists traditional analysis. FX techniques have prov-
en to be an important tool to defeat this type of obfuscation. By examining the overall functional 
effect of sequences of virtual machine instructions, it proved to be possible to detect when a se-
quence of virtual instructions accomplished the same effect as some x86 instruction and then to 
record that decoded x86 instruction. In this manner, we were able to undo most of the virtual ma-
chine encoding that had been performed, obtaining a standard x86 program suitable for reverse 
engineering with existing tools and techniques [Pleszkoch 2010]. 
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