Copyright © 2011 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.
The bulk of the text of this specification is also available in the WHATWG Web Applications 1.0 specification, under a license that permits reuse of the specification text.
This specification defines an API for persistent data storage of key-value pair data in Web clients.
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the most recently formally published revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
If you wish to make comments regarding this document in a manner that is tracked by the W3C, please submit them via using our public bug database. If you do not have an account then you can enter feedback using this form:
You can also e-mail feedback to public-webapps@w3.org (subscribe, archives), or whatwg@whatwg.org (subscribe, archives). All feedback is welcome.
Implementors should be aware that this specification is not stable. Implementors who are not taking part in the discussions are likely to find the specification changing out from under them in incompatible ways. Vendors interested in implementing this specification before it eventually reaches the Candidate Recommendation stage should join the aforementioned mailing lists and take part in the discussions.
The latest stable version of the editor's draft of this specification is always available on the W3C CVS server and in the WHATWG Subversion repository. The latest editor's working copy (which may contain unfinished text in the process of being prepared) contains the latest draft text of this specification (amongst others). For more details, please see the WHATWG FAQ.
Notifications of changes to this specification are sent along with notifications of changes to related specifications using the following mechanisms:
svn checkout http://svn.whatwg.org/webapps/
The W3C Web Applications Working Group is the W3C working group responsible for this specification's progress along the W3C Recommendation track. This specification is the 28 November 2011 Editor's Draft.
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
The use of the storage mutex to avoid race conditions is currently considered by certain implementors to be too high a performance burden, to the point where allowing data corruption is considered preferable. Alternatives that do not require a user-agent-wide per-origin script lock are eagerly sought after. If reviewers have any suggestions, they are urged to send them to the addresses given in the previous section.
More details regarding this issue are available in these e-mails (as well as numerous others):
This section is non-normative.
This specification introduces two related mechanisms, similar to HTTP session cookies, for storing structured data on the client side. [COOKIES]
The first is designed for scenarios where the user is carrying out a single transaction, but could be carrying out multiple transactions in different windows at the same time.
Cookies don't really handle this case well. For example, a user could be buying plane tickets in two different windows, using the same site. If the site used cookies to keep track of which ticket the user was buying, then as the user clicked from page to page in both windows, the ticket currently being purchased would "leak" from one window to the other, potentially causing the user to buy two tickets for the same flight without really noticing.
To address this, this specification introduces the sessionStorage
IDL attribute.
Sites can add data to the session storage, and it will be accessible
to any page from the same site opened in that window.
For example, a page could have a checkbox that the user ticks to indicate that he wants insurance:
<label> <input type="checkbox" onchange="sessionStorage.insurance = checked ? 'true' : ''"> I want insurance on this trip. </label>
A later page could then check, from script, whether the user had checked the checkbox or not:
if (sessionStorage.insurance) { ... }
If the user had multiple windows opened on the site, each one would have its own individual copy of the session storage object.
The second storage mechanism is designed for storage that spans multiple windows, and lasts beyond the current session. In particular, Web applications may wish to store megabytes of user data, such as entire user-authored documents or a user's mailbox, on the client side for performance reasons.
Again, cookies do not handle this case well, because they are transmitted with every request.
The localStorage
IDL
attribute is used to access a page's local storage area.
The site at example.com can display a count of how many times the user has loaded its page by putting the following at the bottom of its page:
<p> You have viewed this page <span id="count">an untold number of</span> time(s). </p> <script> if (!localStorage.pageLoadCount) localStorage.pageLoadCount = 0; localStorage.pageLoadCount = parseInt(localStorage.pageLoadCount) + 1; document.getElementById('count').textContent = localStorage.pageLoadCount; </script>
Each site has its own separate storage area.
All diagrams, examples, and notes in this specification are non-normative, as are all sections explicitly marked non-normative. Everything else in this specification is normative.
The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this document are to be interpreted as described in RFC2119. For readability, these words do not appear in all uppercase letters in this specification. [RFC2119]
Requirements phrased in the imperative as part of algorithms (such as "strip any leading space characters" or "return false and abort these steps") are to be interpreted with the meaning of the key word ("must", "should", "may", etc) used in introducing the algorithm.
Some conformance requirements are phrased as requirements on attributes, methods or objects. Such requirements are to be interpreted as requirements on user agents.
Conformance requirements phrased as algorithms or specific steps may be implemented in any manner, so long as the end result is equivalent. (In particular, the algorithms defined in this specification are intended to be easy to follow, and not intended to be performant.)
The only conformance class defined by this specification is user agents.
User agents may impose implementation-specific limits on otherwise unconstrained inputs, e.g. to prevent denial of service attacks, to guard against running out of memory, or to work around platform-specific limitations.
When support for a feature is disabled (e.g. as an emergency measure to mitigate a security problem, or to aid in development, or for performance reasons), user agents must act as if they had no support for the feature whatsoever, and as if the feature was not mentioned in this specification. For example, if a particular feature is accessed via an attribute in a Web IDL interface, the attribute itself would be omitted from the objects that implement that interface — leaving the attribute on the object but making it return null or throw an exception is insufficient.
This specification relies on several other underlying specifications.
Many fundamental concepts from HTML are used by this specification. [HTML]
The IDL blocks in this specification use the semantics of the WebIDL specification. [WEBIDL]
The construction "a Foo
object", where
Foo
is actually an interface, is sometimes
used instead of the more accurate "an object implementing the
interface Foo
".
The term DOM is used to refer to the API set made available to
scripts in Web applications, and does not necessarily imply the
existence of an actual Document
object or of any other
Node
objects as defined in the DOM Core
specifications. [DOMCORE]
An IDL attribute is said to be getting when its value is being retrieved (e.g. by author script), and is said to be setting when a new value is assigned to it.
The term "JavaScript" is used to refer to ECMA262, rather than the official term ECMAScript, since the term JavaScript is more widely known. [ECMA262]
Storage
interfaceinterface Storage { readonly attribute unsigned long length; DOMString? key(unsigned long index); getter DOMString getItem(DOMString key); setter creator void setItem(DOMString key, DOMString value); deleter void removeItem(DOMString key); void clear(); };
Each Storage
object provides access to a list of
key/value pairs, which are sometimes called items. Keys are
strings. Any string (including the empty string) is a valid
key. Values are similarly strings.
Each Storage
object is associated with a list of
key/value pairs when it is created, as defined in the sections on
the sessionStorage
and localStorage
attributes. Multiple
separate objects implementing the Storage
interface can
all be associated with the same list of key/value pairs
simultaneously.
The length
attribute must return the number of key/value pairs currently
present in the list associated with the object.
The key(n)
method must return the name of the
nth key in the list. The order of keys is
user-agent defined, but must be consistent within an object so long
as the number of keys doesn't change. (Thus, adding or removing a key may change the
order of the keys, but merely changing the value of an existing key
must not.) If n is greater than or equal to the number of key/value pairs
in the object, then this method must return null.
The supported property names on a
Storage
object are the keys of each key/value pair
currently present in the list associated with the object.
The getItem(key)
method must return
the current value associated with
the given key. If the given key does not exist in the list associated with the
object then this method must return null.
The setItem(key, value)
method
must first check if a key/value pair
with the given key already exists in the list
associated with the object.
If it does not, then a new key/value pair must be added to the list, with the given key and with its value set to value.
If the given key does exist in the list, then it must have its value updated to value.
If it couldn't set the new value, the method must throw an
QuotaExceededError
exception. (Setting could fail if,
e.g., the user has disabled storage for the site, or if the quota
has been exceeded.)
The removeItem(key)
method must cause the key/value
pair with the given key to be removed from the
list associated with the object, if it exists. If no item with that
key exists, the method must do nothing.
The setItem()
and removeItem()
methods must be
atomic with respect to failure. In the case of failure, the method
does nothing. That is, changes to the data storage area must either
be successful, or the data storage area must not be changed at
all.
The clear()
method must atomically cause the list associated with the object to
be emptied of all key/value pairs, if there are any. If there are
none, then the method must do nothing.
When the setItem()
, removeItem()
, and clear()
methods are invoked, events
are fired on other Document
objects that can access the
newly stored or removed data, as defined in the sections on the
sessionStorage
and localStorage
attributes.
This specification does not require that the above methods wait until the data has been physically written to disk. Only consistency in what different scripts accessing the same underlying list of key/value pairs see is required.
sessionStorage
attribute[NoInterfaceObject]
interface WindowSessionStorage {
readonly attribute Storage sessionStorage;
};
Window implements WindowSessionStorage;
The sessionStorage
attribute represents the set of storage areas specific to the
current top-level browsing context.
Each top-level browsing context has a unique set of session storage areas, one for each origin.
User agents should not expire data from a browsing context's session storage areas, but may do so when the user requests that such data be deleted, or when the UA detects that it has limited storage space, or for security reasons. User agents should always avoid deleting data while a script that could access that data is running. When a top-level browsing context is destroyed (and therefore permanently inaccessible to the user) the data stored in its session storage areas can be discarded with it, as the API described in this specification provides no way for that data to ever be subsequently retrieved.
The lifetime of a browsing context can be unrelated to the lifetime of the actual user agent process itself, as the user agent may support resuming sessions after a restart.
When a new Document
is created in a browsing
context which has a top-level browsing context,
the user agent must check to see if that top-level browsing
context has a session storage area for that document's
origin. If it does, then that is the
Document
's assigned session storage area. If it does
not, a new storage area for that document's origin must
be created, and then that is the Document
's
assigned session storage area. A Document
's assigned
storage area does not change during the lifetime of a
Document
, even in the case of a nested browsing
context (e.g. in an iframe
) being moved to
another parent browsing context.
The sessionStorage
attribute must return a Storage
object associated with
the Document
's assigned session storage area, if any,
or null if there isn't one. Each Document
object must
have a separate object for its Window
's sessionStorage
attribute.
When a new top-level browsing context is created by cloning an existing browsing context, the new browsing context must start with the same session storage areas as the original, but the two sets must from that point on be considered separate, not affecting each other in any way.
When a new top-level browsing context is created by
a script in an existing
browsing context, or by the user following a link in an
existing browsing context, or in some other way related to a
specific Document
, then the session storage area of the
origin of that Document
must be copied
into the new browsing context when it is created. From that point
on, however, the two session storage areas must be considered
separate, not affecting each other in any way.
When the setItem()
, removeItem()
, and clear()
methods are called on a
Storage
object x that is associated
with a session storage area, if the methods did something, then in
every Document
object whose Window
object's sessionStorage
attribute's Storage
object is associated with the same
storage area, other than x, a storage
event must be fired, as described below.
localStorage
attribute[NoInterfaceObject] interface WindowLocalStorage